Merge remote-tracking branch 'atgeirr/fully-implicit' into fully-implicit

This commit is contained in:
Bård Skaflestad 2013-05-31 16:07:12 +02:00
commit 2606d94935
2 changed files with 128 additions and 19 deletions

View File

@ -51,9 +51,27 @@ namespace Opm
rock_.init(deck, grid);
}
const int samples = 0;
const int region_number = 0;
phase_usage_ = phaseUsageFromDeck(deck);
// Surface densities. Accounting for different orders in eclipse and our code.
if (deck.hasField("DENSITY")) {
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
if (phase_usage_.phase_used[Aqua]) {
densities_[phase_usage_.phase_pos[Aqua]] = d[ECL_water];
}
if (phase_usage_.phase_used[Vapour]) {
densities_[phase_usage_.phase_pos[Vapour]] = d[ECL_gas];
}
if (phase_usage_.phase_used[Liquid]) {
densities_[phase_usage_.phase_pos[Liquid]] = d[ECL_oil];
}
} else {
THROW("Input is missing DENSITY\n");
}
// Set the properties.
props_.resize(phase_usage_.num_phases);
// Water PVT

View File

@ -35,6 +35,7 @@
#include <cmath>
#include <iomanip>
#define DUMP(foo) std::cout << "==========================================\n" #foo ":\n" << collapseJacs(foo) << std::endl
typedef AutoDiff::ForwardBlock<double> ADB;
typedef ADB::V V;
@ -110,6 +111,33 @@ namespace {
V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav)
{
const int nw = wells.number_of_wells;
const int nperf = wells.well_connpos[nw];
const int dim = grid.dimensions;
V wdp = V::Zero(nperf,1);
ASSERT(wdp.size() == rho.size());
// Main loop, iterate over all perforations,
// using the following formula:
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
// where the total density rho(perf) is taken to be
// sum_p (rho_p*saturation_p) in the perforation cell.
// [although this is computed on the outside of this function].
for (int w = 0; w < nw; ++w) {
const double ref_depth = wells.depth_ref[w];
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
const int cell = wells.well_cells[j];
const double cell_depth = grid.cell_centroids[dim * cell + dim - 1];
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
}
}
return wdp;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
@ -469,8 +497,8 @@ namespace Opm {
const int pos = pu.phase_pos[ phase ];
rq_[pos].b = fluidReciprocFVF(phase, press, rs, cells_);
rq_[pos].accum[aix] = rq_[pos].b * sat[pos];
// std::cout << "rq_[" << pos << "].b:\n" << rq_[pos].b;
// std::cout << "rq_[" << pos << "].accum[" << aix << "]:\n" << rq_[pos].accum[aix];
// DUMP(rq_[pos].b);
// DUMP(rq_[pos].accum[aix]);
}
}
@ -480,6 +508,7 @@ namespace Opm {
const int pg = pu.phase_pos[ Gas ];
rq_[pg].accum[aix] += state.Rs * rq_[po].accum[aix];
// DUMP(rq_[pg].accum[aix]);
}
}
@ -521,7 +550,7 @@ namespace Opm {
dtpv*(rq_[phase].accum[1] - rq_[phase].accum[0])
+ ops_.div*rq_[phase].mflux;
// std::cout << residual_.mass_balance[phase];
// DUMP(residual_.mass_balance[phase]);
}
// -------- Extra (optional) sg or rs equation, and rs contributions to the mass balance equations --------
@ -536,6 +565,7 @@ namespace Opm {
const ADB rs_face = upwind.select(state.Rs);
residual_.mass_balance[ Gas ] += ops_.div * (rs_face * rq_[po].mflux);
// DUMP(residual_.mass_balance[ Gas ]);
// Also, we have another equation: sg = 0 or rs = rsMax.
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
@ -544,6 +574,7 @@ namespace Opm {
const ADB rs_eq = state.Rs - rs_max;
Selector<double> use_rs_eq(rs_eq.value());
residual_.rs_or_sg_eq = use_rs_eq.select(rs_eq, sg_eq);
// DUMP(residual_.rs_or_sg_eq);
}
// -------- Well equation, and well contributions to the mass balance equations --------
@ -555,7 +586,6 @@ namespace Opm {
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
const std::vector<int> cells = buildAllCells(nc);
const std::vector<int> well_cells(wells_.well_cells, wells_.well_cells + nperf);
const V transw = Eigen::Map<const V>(wells_.WI, nperf);
@ -567,32 +597,87 @@ namespace Opm {
// and corresponding perforation well pressures.
const ADB p_perfcell = subset(state.pressure, well_cells);
// Finally construct well perforation pressures and well flows.
const V well_perf_dp_ = V::Zero(nperf);
const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp_;
// Compute well pressure differentials.
// Construct pressure difference vector for wells.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const int dim = grid_.dimensions;
const double* g = geo_.gravity();
if (g) {
// Guard against gravity in anything but last dimension.
for (int dd = 0; dd < dim - 1; ++dd) {
ASSERT(g[dd] == 0.0);
}
}
ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern());
for (int phase = 0; phase < 3; ++phase) {
if (active_[phase]) {
const int pos = pu.phase_pos[phase];
const ADB cell_rho = fluidDensity(phase, state.pressure, state.Rs, cells_);
cell_rho_total += state.saturation[pos] * cell_rho;
}
}
ADB inj_rho_total = ADB::constant(V::Zero(nperf), state.pressure.blockPattern());
ASSERT(np == wells_.number_of_phases);
const DataBlock compi = Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np);
for (int phase = 0; phase < 3; ++phase) {
if (active_[phase]) {
const int pos = pu.phase_pos[phase];
const ADB cell_rho = fluidDensity(phase, state.pressure, state.Rs, cells_);
const V fraction = compi.col(pos);
inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells);
}
}
const V rho_perf_cell = subset(cell_rho_total, well_cells).value();
const V rho_perf_well = inj_rho_total.value();
V prodperfs = V::Constant(nperf, -1.0);
for (int w = 0; w < nw; ++w) {
if (wells_.type[w] == PRODUCER) {
std::fill(prodperfs.data() + wells_.well_connpos[w],
prodperfs.data() + wells_.well_connpos[w+1], 1.0);
}
}
const Selector<double> producer(prodperfs);
const V rho_perf = producer.select(rho_perf_cell, rho_perf_well);
const V well_perf_dp = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0);
const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp;
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
DUMP(nkgradp_well);
const Selector<double> cell_to_well_selector(nkgradp_well.value());
ADB qs = ADB::constant(V::Zero(nw*np), state.bhp.blockPattern());
// We can safely use a dummy rs here (for well calculations)
// as long as we do not inject oil.
const ADB rs_perfwell = ADB::constant(V::Zero(nperf), state.bhp.blockPattern());
const std::vector<ADB> well_kr = computeRelPermWells(state, well_s, well_cells);
ADB perf_total_mob = subset(rq_[0].mob, well_cells);
for (int phase = 1; phase < np; ++phase) {
perf_total_mob += subset(rq_[phase].mob, well_cells);
}
std::vector<ADB> well_contribs(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const ADB& cell_b = rq_[phase].b;
const ADB well_b = fluidReciprocFVF(canph_[phase], p_perfwell, rs_perfwell, well_cells);
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
const ADB perf_b = subset(cell_b, well_cells);
const ADB& cell_mob = rq_[phase].mob;
const ADB well_mu = fluidViscosity(canph_[phase], p_perfwell, rs_perfwell, well_cells);
const ADB well_mob = well_kr[phase] / well_mu;
const ADB perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
const V well_fraction = compi.col(phase);
// Using total mobilities for all phases for injection.
const ADB perf_mob_injector = (wops_.w2p * well_fraction.matrix()).array() * perf_total_mob;
const ADB perf_mob = producer.select(subset(cell_mob, well_cells),
perf_mob_injector);
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
const ADB well_rates = wops_.p2w * (perf_flux*perf_b);
qs = qs + superset(well_rates, Span(nw, 1, phase*nw), nw*np);
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
residual_.mass_balance[phase] += well_contrib;
// const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
well_contribs[phase] = superset(perf_flux*perf_b, well_cells, nc);
// DUMP(well_contribs[phase]);
residual_.mass_balance[phase] += well_contribs[phase];
}
if (active_[Gas] && active_[Oil]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
// DUMP(well_contribs[gaspos] + well_contribs[oilpos]*state.Rs);
residual_.mass_balance[gaspos] += well_contribs[oilpos]*state.Rs;
}
// Handling BHP and SURFACE_RATE wells.
V bhp_targets(nw);
@ -635,7 +720,7 @@ namespace Opm {
mass_res = vertcat(mass_res, residual_.rs_or_sg_eq);
}
const ADB total_residual = collapseJacs(vertcat(mass_res, residual_.well_eq));
// std::cout << total_residual;
DUMP(total_residual);
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual.derivative()[0];
@ -874,6 +959,8 @@ namespace Opm {
const ADB& b = rq_[ actph ].b;
const ADB& mob = rq_[ actph ].mob;
rq_[ actph ].mflux = upwind.select(b * mob) * head;
// DUMP(rq_[ actph ].mob);
// DUMP(rq_[ actph ].mflux);
}
@ -953,8 +1040,12 @@ namespace Opm {
const std::vector<int>& cells) const
{
const double* rhos = fluid_.surfaceDensity();
ADB b = fluidReciprocFVF(phase, p, rs, cells);
ADB b = fluidReciprocFVF(phase, p, rs, cells);
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
if (phase == Oil && active_[Gas]) {
// It is correct to index into rhos with canonical phase indices.
rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b;
}
return rho;
}