mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-26 01:01:00 -06:00
extending drsdtcon with regimes, and option for GAS/WATER
This commit is contained in:
parent
ad8dd1e4b8
commit
2b5825e0e5
269
opm/models/blackoil/blackoilconvectivemixingmodule.hh
Normal file
269
opm/models/blackoil/blackoilconvectivemixingmodule.hh
Normal file
@ -0,0 +1,269 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \brief Classes required for molecular diffusion.
|
||||
*/
|
||||
#ifndef EWOMS_CONVECTIVEMIXING_MODULE_HH
|
||||
#define EWOMS_CONVECTIVEMIXING_MODULE_HH
|
||||
|
||||
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
||||
#include <opm/input/eclipse/Schedule/OilVaporizationProperties.hpp>
|
||||
#include <opm/input/eclipse/Schedule/Schedule.hpp>
|
||||
#include <opm/material/common/Valgrind.hpp>
|
||||
|
||||
#include <dune/common/fvector.hh>
|
||||
|
||||
#include <stdexcept>
|
||||
#include <iostream>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
/*!
|
||||
* \copydoc Opm::BlackOilConvectiveMixingModule
|
||||
* \brief Provides the requiered methods for dynamic convective mixing.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class BlackOilConvectiveMixingModule
|
||||
{
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||||
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
||||
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||||
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
||||
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
|
||||
enum { conti0EqIdx = Indices::conti0EqIdx };
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
|
||||
public:
|
||||
|
||||
struct ConvectiveMixingModuleParam
|
||||
{
|
||||
bool active_;
|
||||
std::vector<Scalar> Xhi_;
|
||||
std::vector<Scalar> Psi_;
|
||||
};
|
||||
|
||||
#if HAVE_ECL_INPUT
|
||||
static void beginEpisode(const EclipseState& eclState, const Schedule& schedule, const int episodeIdx, ConvectiveMixingModuleParam& info)
|
||||
{
|
||||
// check that Xhi and Psi didn't change
|
||||
std::size_t numRegions = eclState.runspec().tabdims().getNumPVTTables();
|
||||
const auto& control = schedule[episodeIdx].oilvap();
|
||||
if (!info.active_) {
|
||||
return;
|
||||
}
|
||||
if (info.Xhi_.empty()) {
|
||||
info.Xhi_.resize(numRegions);
|
||||
info.Psi_.resize(numRegions);
|
||||
}
|
||||
for (size_t i = 0; i < numRegions; ++i ) {
|
||||
info.Xhi_[i] = control.getMaxDRSDT(i);
|
||||
info.Psi_[i] = control.getPsi(i);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
template <class Context>
|
||||
static void addConvectiveMixingFlux(RateVector& flux,
|
||||
const Context& elemCtx,
|
||||
unsigned scvfIdx,
|
||||
unsigned timeIdx)
|
||||
{
|
||||
|
||||
// need for dary flux calculation
|
||||
const auto& problem = elemCtx.problem();
|
||||
const auto& stencil = elemCtx.stencil(timeIdx);
|
||||
const auto& scvf = stencil.interiorFace(scvfIdx);
|
||||
|
||||
unsigned interiorDofIdx = scvf.interiorIndex();
|
||||
unsigned exteriorDofIdx = scvf.exteriorIndex();
|
||||
assert(interiorDofIdx != exteriorDofIdx);
|
||||
|
||||
const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
|
||||
const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
|
||||
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
|
||||
Scalar faceArea = scvf.area();
|
||||
const Scalar g = problem.gravity()[dimWorld - 1];
|
||||
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
||||
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
|
||||
const Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
|
||||
const Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
|
||||
const Scalar distZ = zIn - zEx;
|
||||
addConvectiveMixingFlux(flux,
|
||||
intQuantsIn,
|
||||
intQuantsEx,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
distZ * g,
|
||||
trans,
|
||||
faceArea,
|
||||
problem.moduleParams().convectiveMixingModuleParam);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Adds the diffusive mass flux flux to the flux vector over a flux
|
||||
* integration point.
|
||||
*/
|
||||
static void addConvectiveMixingFlux(RateVector& flux,
|
||||
const IntensiveQuantities& intQuantsIn,
|
||||
const IntensiveQuantities& intQuantsEx,
|
||||
const unsigned globalIndexIn,
|
||||
const unsigned globalIndexEx,
|
||||
const Scalar distZg,
|
||||
const Scalar trans,
|
||||
const Scalar faceArea,
|
||||
const ConvectiveMixingModuleParam& info)
|
||||
{
|
||||
|
||||
|
||||
if (!info.active_) {
|
||||
return;
|
||||
}
|
||||
|
||||
const auto& liquidPhaseIdx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
FluidSystem::waterPhaseIdx :
|
||||
FluidSystem::oilPhaseIdx;
|
||||
const Evaluation SoMax = 0.0;
|
||||
|
||||
//interiour
|
||||
const Scalar rs_zero_in = 0.0;
|
||||
const auto& t_in = Opm::getValue(intQuantsIn.fluidState().temperature(liquidPhaseIdx));
|
||||
const auto& p_in = Opm::getValue(intQuantsIn.fluidState().pressure(liquidPhaseIdx));
|
||||
const auto& rssat_in = FluidSystem::saturatedDissolutionFactor(intQuantsIn.fluidState(),
|
||||
liquidPhaseIdx,
|
||||
intQuantsIn.pvtRegionIndex(),
|
||||
SoMax);
|
||||
|
||||
const auto& salt_in = Opm::getValue(intQuantsIn.fluidState().saltSaturation());
|
||||
|
||||
const auto& bLiquidIn = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
FluidSystem::waterPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, rs_zero_in, salt_in):
|
||||
FluidSystem::oilPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, rs_zero_in);
|
||||
|
||||
const auto& bLiquidSatIn = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
FluidSystem::waterPvt().saturatedInverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, salt_in) :
|
||||
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in);
|
||||
|
||||
const auto& densityLiquidIn = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
FluidSystem::waterPvt().waterReferenceDensity(intQuantsIn.pvtRegionIndex()) :
|
||||
FluidSystem::oilPvt().oilReferenceDensity(intQuantsIn.pvtRegionIndex());
|
||||
|
||||
const auto rho_in = bLiquidIn * densityLiquidIn;
|
||||
const auto rho_sat_in = bLiquidSatIn
|
||||
* (densityLiquidIn + rssat_in * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, intQuantsIn.pvtRegionIndex()));
|
||||
|
||||
//exteriour
|
||||
const Scalar rs_zero_ex = 0.0;
|
||||
const auto& t_ex = Opm::getValue(intQuantsEx.fluidState().temperature(liquidPhaseIdx));
|
||||
const auto& p_ex = Opm::getValue(intQuantsEx.fluidState().pressure(liquidPhaseIdx));
|
||||
const auto& rssat_ex = FluidSystem::saturatedDissolutionFactor(intQuantsEx.fluidState(),
|
||||
liquidPhaseIdx,
|
||||
intQuantsEx.pvtRegionIndex(),
|
||||
SoMax);
|
||||
const auto& salt_ex = Opm::getValue(intQuantsEx.fluidState().saltSaturation());
|
||||
|
||||
const auto& bLiquidEx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
FluidSystem::waterPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_ex, p_ex, rs_zero_ex, salt_ex) :
|
||||
FluidSystem::oilPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_ex, p_ex, rs_zero_ex);
|
||||
|
||||
const auto& bLiquidSatEx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
FluidSystem::waterPvt().saturatedInverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_ex, p_ex, salt_ex) :
|
||||
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_ex, p_ex);
|
||||
|
||||
const auto& densityLiquidEx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
FluidSystem::waterPvt().waterReferenceDensity(intQuantsEx.pvtRegionIndex()) :
|
||||
FluidSystem::oilPvt().oilReferenceDensity(intQuantsEx.pvtRegionIndex());
|
||||
|
||||
|
||||
const auto rho_ex = bLiquidEx * densityLiquidEx;
|
||||
const auto rho_sat_ex = bLiquidSatEx
|
||||
* (densityLiquidEx + rssat_ex * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, intQuantsEx.pvtRegionIndex()));
|
||||
|
||||
//rho difference approximation
|
||||
const auto delta_rho = (rho_sat_ex + rho_sat_in - rho_in -rho_ex)/2;
|
||||
const auto pressure_difference_convective_mixing = delta_rho * distZg;
|
||||
|
||||
//if change in pressure
|
||||
if (Opm::abs(pressure_difference_convective_mixing) > 1e-12){
|
||||
|
||||
// find new upstream direction
|
||||
short interiorDofIdx = 0;
|
||||
short exteriorDofIdx = 1;
|
||||
short upIdx = 0;
|
||||
short downIdx = 1;
|
||||
|
||||
if (pressure_difference_convective_mixing > 0) {
|
||||
upIdx = exteriorDofIdx;
|
||||
downIdx = interiorDofIdx;
|
||||
}
|
||||
|
||||
const auto& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
|
||||
unsigned globalUpIndex = (upIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
|
||||
|
||||
const auto& down = (downIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
|
||||
unsigned globalDownIndex = (downIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
|
||||
|
||||
const auto& Rsup = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
up.fluidState().Rsw() :
|
||||
up.fluidState().Rs();
|
||||
const auto& Rsdown = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
|
||||
down.fluidState().Rsw() :
|
||||
down.fluidState().Rs();
|
||||
|
||||
const auto& RsSat = FluidSystem::saturatedDissolutionFactor(up.fluidState(),
|
||||
liquidPhaseIdx,
|
||||
up.pvtRegionIndex(),
|
||||
SoMax);
|
||||
const Evaluation& transMult = up.rockCompTransMultiplier();
|
||||
|
||||
Evaluation sg = up.fluidState().saturation(FluidSystem::gasPhaseIdx);
|
||||
Evaluation X = (Rsup - RsSat * sg) / (RsSat * ( 1.0 - sg));
|
||||
if ( (X > info.Psi_[up.pvtRegionIndex()] || Rsdown > 0) ) {
|
||||
const auto& invB = up.fluidState().invB(liquidPhaseIdx);
|
||||
const auto& visc = up.fluidState().viscosity(liquidPhaseIdx);
|
||||
// what will be the flux when muliplied with trans_mob
|
||||
const auto convectiveFlux = -trans*transMult*info.Xhi_[up.pvtRegionIndex()]*invB*pressure_difference_convective_mixing*Rsup/(visc*faceArea);
|
||||
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
||||
if (globalUpIndex == globalIndexIn)
|
||||
flux[conti0EqIdx + activeGasCompIdx] += convectiveFlux;
|
||||
else
|
||||
flux[conti0EqIdx + activeGasCompIdx] += Opm::getValue(convectiveFlux);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -190,6 +190,9 @@ public:
|
||||
Scalar RsMax = FluidSystem::enableDissolvedGas()
|
||||
? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
|
||||
: 0.0;
|
||||
Scalar RswMax = FluidSystem::enableDissolvedGasInWater()
|
||||
? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
|
||||
: 0.0;
|
||||
|
||||
asImp_().updateTemperature_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
@ -300,8 +303,8 @@ public:
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
SoMax = max(fluidState_.saturation(oilPhaseIdx),
|
||||
problem.maxOilSaturation(globalSpaceIdx));
|
||||
}
|
||||
|
||||
|
||||
|
||||
// take the meaning of the switching primary variable into account for the gas
|
||||
// and oil phase compositions
|
||||
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rs) {
|
||||
@ -310,16 +313,16 @@ public:
|
||||
} else {
|
||||
if (FluidSystem::enableDissolvedGas()) { // Add So > 0? i.e. if only water set rs = 0)
|
||||
const Evaluation& RsSat = enableExtbo ? asImp_().rs() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
oilPhaseIdx,
|
||||
pvtRegionIdx,
|
||||
SoMax);
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
oilPhaseIdx,
|
||||
pvtRegionIdx,
|
||||
SoMax);
|
||||
fluidState_.setRs(min(RsMax, RsSat));
|
||||
}
|
||||
else if constexpr (compositionSwitchEnabled)
|
||||
fluidState_.setRs(0.0);
|
||||
}
|
||||
|
||||
}
|
||||
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rv) {
|
||||
const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
fluidState_.setRv(Rv);
|
||||
@ -356,7 +359,7 @@ public:
|
||||
const Evaluation& RswSat = FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
waterPhaseIdx,
|
||||
pvtRegionIdx);
|
||||
fluidState_.setRsw(RswSat);
|
||||
fluidState_.setRsw(min(RswMax, RswSat));
|
||||
}
|
||||
}
|
||||
|
||||
@ -402,10 +405,13 @@ public:
|
||||
rho = fluidState_.invB(waterPhaseIdx);
|
||||
rho *= FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
|
||||
if (FluidSystem::enableDissolvedGasInWater()) {
|
||||
rho +=
|
||||
fluidState_.invB(waterPhaseIdx) *
|
||||
fluidState_.Rsw() *
|
||||
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
||||
const auto& oilVaporizationControl = problem.simulator().vanguard().schedule()[problem.episodeIndex()].oilvap();
|
||||
if(!oilVaporizationControl.drsdtConvective()) {
|
||||
rho +=
|
||||
fluidState_.invB(waterPhaseIdx) *
|
||||
fluidState_.Rsw() *
|
||||
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
}
|
||||
fluidState_.setDensity(waterPhaseIdx, rho);
|
||||
}
|
||||
@ -431,11 +437,14 @@ public:
|
||||
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
||||
rho = fluidState_.invB(oilPhaseIdx);
|
||||
rho *= FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
rho +=
|
||||
fluidState_.invB(oilPhaseIdx) *
|
||||
fluidState_.Rs() *
|
||||
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
const auto& oilVaporizationControl = problem.simulator().vanguard().schedule()[problem.episodeIndex()].oilvap();
|
||||
if(!oilVaporizationControl.drsdtConvective()) {
|
||||
rho +=
|
||||
fluidState_.invB(oilPhaseIdx) *
|
||||
fluidState_.Rs() *
|
||||
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
}
|
||||
fluidState_.setDensity(oilPhaseIdx, rho);
|
||||
}
|
||||
|
@ -37,6 +37,7 @@
|
||||
#include "blackoilbrinemodules.hh"
|
||||
#include "blackoildiffusionmodule.hh"
|
||||
#include "blackoilmicpmodules.hh"
|
||||
#include "blackoilconvectivemixingmodule.hh"
|
||||
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
||||
|
||||
namespace Opm {
|
||||
@ -90,6 +91,8 @@ class BlackOilLocalResidual : public GetPropType<TypeTag, Properties::DiscLocalR
|
||||
using BrineModule = BlackOilBrineModule<TypeTag>;
|
||||
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
|
||||
using MICPModule = BlackOilMICPModule<TypeTag>;
|
||||
using ConvectiveMixingModule = BlackOilConvectiveMixingModule<TypeTag>;
|
||||
|
||||
|
||||
public:
|
||||
/*!
|
||||
@ -210,7 +213,7 @@ public:
|
||||
else
|
||||
evalPhaseFluxes_<Scalar>(flux, phaseIdx, pvtRegionIdx, extQuants, up.fluidState());
|
||||
}
|
||||
|
||||
|
||||
// deal with solvents (if present)
|
||||
SolventModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
@ -233,6 +236,9 @@ public:
|
||||
MICPModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with convective mixing (if present)
|
||||
ConvectiveMixingModule::addConvectiveMixingFlux(flux,elemCtx, scvfIdx, timeIdx);
|
||||
}
|
||||
|
||||
/*!
|
||||
|
@ -36,6 +36,7 @@
|
||||
#include "blackoilfoammodules.hh"
|
||||
#include "blackoilbrinemodules.hh"
|
||||
#include "blackoildiffusionmodule.hh"
|
||||
#include "blackoilconvectivemixingmodule.hh"
|
||||
#include "blackoildispersionmodule.hh"
|
||||
#include "blackoilmicpmodules.hh"
|
||||
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
||||
@ -103,6 +104,9 @@ class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLo
|
||||
using FoamModule = BlackOilFoamModule<TypeTag>;
|
||||
using BrineModule = BlackOilBrineModule<TypeTag>;
|
||||
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
|
||||
using ConvectiveMixingModule = BlackOilConvectiveMixingModule<TypeTag>;
|
||||
using ConvectiveMixingModuleParam = typename ConvectiveMixingModule::ConvectiveMixingModuleParam;
|
||||
|
||||
using DispersionModule = BlackOilDispersionModule<TypeTag, enableDispersion>;
|
||||
using MICPModule = BlackOilMICPModule<TypeTag>;
|
||||
|
||||
@ -124,6 +128,11 @@ public:
|
||||
double diffusivity;
|
||||
double dispersivity;
|
||||
};
|
||||
|
||||
struct ModuleParams {
|
||||
ConvectiveMixingModuleParam convectiveMixingModuleParam;
|
||||
};
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseLocalResidual::computeStorage
|
||||
*/
|
||||
@ -227,7 +236,8 @@ public:
|
||||
const unsigned globalIndexEx,
|
||||
const IntensiveQuantities& intQuantsIn,
|
||||
const IntensiveQuantities& intQuantsEx,
|
||||
const ResidualNBInfo& nbInfo)
|
||||
const ResidualNBInfo& nbInfo,
|
||||
const ModuleParams& moduleParams)
|
||||
{
|
||||
OPM_TIMEBLOCK_LOCAL(computeFlux);
|
||||
flux = 0.0;
|
||||
@ -239,7 +249,8 @@ public:
|
||||
intQuantsEx,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
nbInfo);
|
||||
nbInfo,
|
||||
moduleParams);
|
||||
}
|
||||
|
||||
// This function demonstrates compatibility with the ElementContext-based interface.
|
||||
@ -306,7 +317,8 @@ public:
|
||||
intQuantsEx,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
res_nbinfo);
|
||||
res_nbinfo,
|
||||
problem.moduleParams());
|
||||
}
|
||||
|
||||
static void calculateFluxes_(RateVector& flux,
|
||||
@ -315,7 +327,8 @@ public:
|
||||
const IntensiveQuantities& intQuantsEx,
|
||||
const unsigned& globalIndexIn,
|
||||
const unsigned& globalIndexEx,
|
||||
const ResidualNBInfo& nbInfo)
|
||||
const ResidualNBInfo& nbInfo,
|
||||
const ModuleParams& moduleParams)
|
||||
{
|
||||
OPM_TIMEBLOCK_LOCAL(calculateFluxes);
|
||||
const Scalar Vin = nbInfo.Vin;
|
||||
@ -395,7 +408,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// deal with solvents (if present)
|
||||
static_assert(!enableSolvent, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
@ -443,6 +456,18 @@ public:
|
||||
static_assert(!enableBrine, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// BrineModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with convective mixing
|
||||
ConvectiveMixingModule::addConvectiveMixingFlux(flux,
|
||||
intQuantsIn,
|
||||
intQuantsEx,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
nbInfo.dZg,
|
||||
nbInfo.trans,
|
||||
nbInfo.faceArea,
|
||||
moduleParams.convectiveMixingModuleParam);
|
||||
|
||||
|
||||
// deal with diffusion (if present). opm-models expects per area flux (added in the tmpdiffusivity).
|
||||
if constexpr(enableDiffusion){
|
||||
typename DiffusionModule::ExtensiveQuantities::EvaluationArray effectiveDiffusionCoefficient;
|
||||
@ -617,7 +642,7 @@ public:
|
||||
RateVector& bdyFlux,
|
||||
const BoundaryConditionData& bdyInfo,
|
||||
const IntensiveQuantities& insideIntQuants,
|
||||
[[maybe_unused]] unsigned globalSpaceIdx)
|
||||
unsigned globalSpaceIdx)
|
||||
{
|
||||
OPM_TIMEBLOCK_LOCAL(computeBoundaryThermal);
|
||||
// only heat is allowed to flow through this boundary
|
||||
|
@ -705,7 +705,8 @@ public:
|
||||
pw,
|
||||
saltConcentration);
|
||||
setPrimaryVarsMeaningWater(WaterMeaning::Rsw);
|
||||
(*this)[Indices::waterSwitchIdx] = rswSat; //primary variable becomes Rsw
|
||||
Scalar rswMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
|
||||
(*this)[Indices::waterSwitchIdx] = min(rswSat, rswMax); //primary variable becomes Rsw
|
||||
setPrimaryVarsMeaningPressure(PressureMeaning::Pw);
|
||||
this->setScaledPressure_(pw);
|
||||
changed = true;
|
||||
@ -749,7 +750,8 @@ public:
|
||||
saltConcentration);
|
||||
|
||||
Scalar rsw = (*this)[Indices::waterSwitchIdx];
|
||||
if (rsw > rswSat) {
|
||||
Scalar rswMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
|
||||
if (rsw > min(rswSat, rswMax)) {
|
||||
// the gas phase appears, i.e., switch the primary variables to WaterMeaning::Sw
|
||||
setPrimaryVarsMeaningWater(WaterMeaning::Sw);
|
||||
(*this)[Indices::waterSwitchIdx] = 1.0; // hydrocarbon water saturation
|
||||
|
@ -650,7 +650,7 @@ public:
|
||||
return;
|
||||
}
|
||||
const unsigned int numCells = model_().numTotalDof();
|
||||
|
||||
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
@ -671,7 +671,7 @@ public:
|
||||
adres = 0.0;
|
||||
darcyFlux = 0.0;
|
||||
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
|
||||
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
|
||||
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo, problem_().moduleParams());
|
||||
adres *= nbInfo.res_nbinfo.faceArea;
|
||||
if (enableFlows) {
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
|
||||
@ -757,7 +757,7 @@ private:
|
||||
adres = 0.0;
|
||||
darcyFlux = 0.0;
|
||||
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
|
||||
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
|
||||
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo, problem_().moduleParams());
|
||||
adres *= nbInfo.res_nbinfo.faceArea;
|
||||
if (enableDispersion) {
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
|
||||
|
Loading…
Reference in New Issue
Block a user