extending drsdtcon with regimes, and option for GAS/WATER

This commit is contained in:
Trine Mykkeltvedt 2024-06-07 07:35:16 +02:00 committed by Tor Harald Sandve
parent ad8dd1e4b8
commit 2b5825e0e5
6 changed files with 340 additions and 29 deletions

View File

@ -0,0 +1,269 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Classes required for molecular diffusion.
*/
#ifndef EWOMS_CONVECTIVEMIXING_MODULE_HH
#define EWOMS_CONVECTIVEMIXING_MODULE_HH
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/input/eclipse/Schedule/OilVaporizationProperties.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <stdexcept>
#include <iostream>
namespace Opm {
/*!
* \copydoc Opm::BlackOilConvectiveMixingModule
* \brief Provides the requiered methods for dynamic convective mixing.
*/
template <class TypeTag>
class BlackOilConvectiveMixingModule
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { dimWorld = GridView::dimensionworld };
public:
struct ConvectiveMixingModuleParam
{
bool active_;
std::vector<Scalar> Xhi_;
std::vector<Scalar> Psi_;
};
#if HAVE_ECL_INPUT
static void beginEpisode(const EclipseState& eclState, const Schedule& schedule, const int episodeIdx, ConvectiveMixingModuleParam& info)
{
// check that Xhi and Psi didn't change
std::size_t numRegions = eclState.runspec().tabdims().getNumPVTTables();
const auto& control = schedule[episodeIdx].oilvap();
if (!info.active_) {
return;
}
if (info.Xhi_.empty()) {
info.Xhi_.resize(numRegions);
info.Psi_.resize(numRegions);
}
for (size_t i = 0; i < numRegions; ++i ) {
info.Xhi_[i] = control.getMaxDRSDT(i);
info.Psi_[i] = control.getPsi(i);
}
}
#endif
template <class Context>
static void addConvectiveMixingFlux(RateVector& flux,
const Context& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
// need for dary flux calculation
const auto& problem = elemCtx.problem();
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
unsigned interiorDofIdx = scvf.interiorIndex();
unsigned exteriorDofIdx = scvf.exteriorIndex();
assert(interiorDofIdx != exteriorDofIdx);
const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
Scalar faceArea = scvf.area();
const Scalar g = problem.gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
const Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
const Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
const Scalar distZ = zIn - zEx;
addConvectiveMixingFlux(flux,
intQuantsIn,
intQuantsEx,
globalIndexIn,
globalIndexEx,
distZ * g,
trans,
faceArea,
problem.moduleParams().convectiveMixingModuleParam);
}
/*!
* \brief Adds the diffusive mass flux flux to the flux vector over a flux
* integration point.
*/
static void addConvectiveMixingFlux(RateVector& flux,
const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx,
const unsigned globalIndexIn,
const unsigned globalIndexEx,
const Scalar distZg,
const Scalar trans,
const Scalar faceArea,
const ConvectiveMixingModuleParam& info)
{
if (!info.active_) {
return;
}
const auto& liquidPhaseIdx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPhaseIdx :
FluidSystem::oilPhaseIdx;
const Evaluation SoMax = 0.0;
//interiour
const Scalar rs_zero_in = 0.0;
const auto& t_in = Opm::getValue(intQuantsIn.fluidState().temperature(liquidPhaseIdx));
const auto& p_in = Opm::getValue(intQuantsIn.fluidState().pressure(liquidPhaseIdx));
const auto& rssat_in = FluidSystem::saturatedDissolutionFactor(intQuantsIn.fluidState(),
liquidPhaseIdx,
intQuantsIn.pvtRegionIndex(),
SoMax);
const auto& salt_in = Opm::getValue(intQuantsIn.fluidState().saltSaturation());
const auto& bLiquidIn = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, rs_zero_in, salt_in):
FluidSystem::oilPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, rs_zero_in);
const auto& bLiquidSatIn = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().saturatedInverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in, salt_in) :
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_in, p_in);
const auto& densityLiquidIn = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().waterReferenceDensity(intQuantsIn.pvtRegionIndex()) :
FluidSystem::oilPvt().oilReferenceDensity(intQuantsIn.pvtRegionIndex());
const auto rho_in = bLiquidIn * densityLiquidIn;
const auto rho_sat_in = bLiquidSatIn
* (densityLiquidIn + rssat_in * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, intQuantsIn.pvtRegionIndex()));
//exteriour
const Scalar rs_zero_ex = 0.0;
const auto& t_ex = Opm::getValue(intQuantsEx.fluidState().temperature(liquidPhaseIdx));
const auto& p_ex = Opm::getValue(intQuantsEx.fluidState().pressure(liquidPhaseIdx));
const auto& rssat_ex = FluidSystem::saturatedDissolutionFactor(intQuantsEx.fluidState(),
liquidPhaseIdx,
intQuantsEx.pvtRegionIndex(),
SoMax);
const auto& salt_ex = Opm::getValue(intQuantsEx.fluidState().saltSaturation());
const auto& bLiquidEx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_ex, p_ex, rs_zero_ex, salt_ex) :
FluidSystem::oilPvt().inverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_ex, p_ex, rs_zero_ex);
const auto& bLiquidSatEx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().saturatedInverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_ex, p_ex, salt_ex) :
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(intQuantsIn.pvtRegionIndex(), t_ex, p_ex);
const auto& densityLiquidEx = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
FluidSystem::waterPvt().waterReferenceDensity(intQuantsEx.pvtRegionIndex()) :
FluidSystem::oilPvt().oilReferenceDensity(intQuantsEx.pvtRegionIndex());
const auto rho_ex = bLiquidEx * densityLiquidEx;
const auto rho_sat_ex = bLiquidSatEx
* (densityLiquidEx + rssat_ex * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, intQuantsEx.pvtRegionIndex()));
//rho difference approximation
const auto delta_rho = (rho_sat_ex + rho_sat_in - rho_in -rho_ex)/2;
const auto pressure_difference_convective_mixing = delta_rho * distZg;
//if change in pressure
if (Opm::abs(pressure_difference_convective_mixing) > 1e-12){
// find new upstream direction
short interiorDofIdx = 0;
short exteriorDofIdx = 1;
short upIdx = 0;
short downIdx = 1;
if (pressure_difference_convective_mixing > 0) {
upIdx = exteriorDofIdx;
downIdx = interiorDofIdx;
}
const auto& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
unsigned globalUpIndex = (upIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
const auto& down = (downIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
unsigned globalDownIndex = (downIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
const auto& Rsup = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
up.fluidState().Rsw() :
up.fluidState().Rs();
const auto& Rsdown = (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) ?
down.fluidState().Rsw() :
down.fluidState().Rs();
const auto& RsSat = FluidSystem::saturatedDissolutionFactor(up.fluidState(),
liquidPhaseIdx,
up.pvtRegionIndex(),
SoMax);
const Evaluation& transMult = up.rockCompTransMultiplier();
Evaluation sg = up.fluidState().saturation(FluidSystem::gasPhaseIdx);
Evaluation X = (Rsup - RsSat * sg) / (RsSat * ( 1.0 - sg));
if ( (X > info.Psi_[up.pvtRegionIndex()] || Rsdown > 0) ) {
const auto& invB = up.fluidState().invB(liquidPhaseIdx);
const auto& visc = up.fluidState().viscosity(liquidPhaseIdx);
// what will be the flux when muliplied with trans_mob
const auto convectiveFlux = -trans*transMult*info.Xhi_[up.pvtRegionIndex()]*invB*pressure_difference_convective_mixing*Rsup/(visc*faceArea);
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (globalUpIndex == globalIndexIn)
flux[conti0EqIdx + activeGasCompIdx] += convectiveFlux;
else
flux[conti0EqIdx + activeGasCompIdx] += Opm::getValue(convectiveFlux);
}
}
};
};
}
#endif

View File

@ -190,6 +190,9 @@ public:
Scalar RsMax = FluidSystem::enableDissolvedGas()
? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
: 0.0;
Scalar RswMax = FluidSystem::enableDissolvedGasInWater()
? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
: 0.0;
asImp_().updateTemperature_(elemCtx, dofIdx, timeIdx);
@ -300,8 +303,8 @@ public:
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
SoMax = max(fluidState_.saturation(oilPhaseIdx),
problem.maxOilSaturation(globalSpaceIdx));
}
// take the meaning of the switching primary variable into account for the gas
// and oil phase compositions
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rs) {
@ -310,16 +313,16 @@ public:
} else {
if (FluidSystem::enableDissolvedGas()) { // Add So > 0? i.e. if only water set rs = 0)
const Evaluation& RsSat = enableExtbo ? asImp_().rs() :
FluidSystem::saturatedDissolutionFactor(fluidState_,
oilPhaseIdx,
pvtRegionIdx,
SoMax);
FluidSystem::saturatedDissolutionFactor(fluidState_,
oilPhaseIdx,
pvtRegionIdx,
SoMax);
fluidState_.setRs(min(RsMax, RsSat));
}
else if constexpr (compositionSwitchEnabled)
fluidState_.setRs(0.0);
}
}
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rv) {
const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
fluidState_.setRv(Rv);
@ -356,7 +359,7 @@ public:
const Evaluation& RswSat = FluidSystem::saturatedDissolutionFactor(fluidState_,
waterPhaseIdx,
pvtRegionIdx);
fluidState_.setRsw(RswSat);
fluidState_.setRsw(min(RswMax, RswSat));
}
}
@ -402,10 +405,13 @@ public:
rho = fluidState_.invB(waterPhaseIdx);
rho *= FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
if (FluidSystem::enableDissolvedGasInWater()) {
rho +=
fluidState_.invB(waterPhaseIdx) *
fluidState_.Rsw() *
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
const auto& oilVaporizationControl = problem.simulator().vanguard().schedule()[problem.episodeIndex()].oilvap();
if(!oilVaporizationControl.drsdtConvective()) {
rho +=
fluidState_.invB(waterPhaseIdx) *
fluidState_.Rsw() *
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
}
}
fluidState_.setDensity(waterPhaseIdx, rho);
}
@ -431,11 +437,14 @@ public:
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
rho = fluidState_.invB(oilPhaseIdx);
rho *= FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
if (FluidSystem::enableDissolvedGas()) {
rho +=
fluidState_.invB(oilPhaseIdx) *
fluidState_.Rs() *
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
if (FluidSystem::enableDissolvedGas()) {
const auto& oilVaporizationControl = problem.simulator().vanguard().schedule()[problem.episodeIndex()].oilvap();
if(!oilVaporizationControl.drsdtConvective()) {
rho +=
fluidState_.invB(oilPhaseIdx) *
fluidState_.Rs() *
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
}
}
fluidState_.setDensity(oilPhaseIdx, rho);
}

View File

@ -37,6 +37,7 @@
#include "blackoilbrinemodules.hh"
#include "blackoildiffusionmodule.hh"
#include "blackoilmicpmodules.hh"
#include "blackoilconvectivemixingmodule.hh"
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
namespace Opm {
@ -90,6 +91,8 @@ class BlackOilLocalResidual : public GetPropType<TypeTag, Properties::DiscLocalR
using BrineModule = BlackOilBrineModule<TypeTag>;
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
using MICPModule = BlackOilMICPModule<TypeTag>;
using ConvectiveMixingModule = BlackOilConvectiveMixingModule<TypeTag>;
public:
/*!
@ -210,7 +213,7 @@ public:
else
evalPhaseFluxes_<Scalar>(flux, phaseIdx, pvtRegionIdx, extQuants, up.fluidState());
}
// deal with solvents (if present)
SolventModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
@ -233,6 +236,9 @@ public:
MICPModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
// deal with convective mixing (if present)
ConvectiveMixingModule::addConvectiveMixingFlux(flux,elemCtx, scvfIdx, timeIdx);
}
/*!

View File

@ -36,6 +36,7 @@
#include "blackoilfoammodules.hh"
#include "blackoilbrinemodules.hh"
#include "blackoildiffusionmodule.hh"
#include "blackoilconvectivemixingmodule.hh"
#include "blackoildispersionmodule.hh"
#include "blackoilmicpmodules.hh"
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
@ -103,6 +104,9 @@ class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLo
using FoamModule = BlackOilFoamModule<TypeTag>;
using BrineModule = BlackOilBrineModule<TypeTag>;
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
using ConvectiveMixingModule = BlackOilConvectiveMixingModule<TypeTag>;
using ConvectiveMixingModuleParam = typename ConvectiveMixingModule::ConvectiveMixingModuleParam;
using DispersionModule = BlackOilDispersionModule<TypeTag, enableDispersion>;
using MICPModule = BlackOilMICPModule<TypeTag>;
@ -124,6 +128,11 @@ public:
double diffusivity;
double dispersivity;
};
struct ModuleParams {
ConvectiveMixingModuleParam convectiveMixingModuleParam;
};
/*!
* \copydoc FvBaseLocalResidual::computeStorage
*/
@ -227,7 +236,8 @@ public:
const unsigned globalIndexEx,
const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx,
const ResidualNBInfo& nbInfo)
const ResidualNBInfo& nbInfo,
const ModuleParams& moduleParams)
{
OPM_TIMEBLOCK_LOCAL(computeFlux);
flux = 0.0;
@ -239,7 +249,8 @@ public:
intQuantsEx,
globalIndexIn,
globalIndexEx,
nbInfo);
nbInfo,
moduleParams);
}
// This function demonstrates compatibility with the ElementContext-based interface.
@ -306,7 +317,8 @@ public:
intQuantsEx,
globalIndexIn,
globalIndexEx,
res_nbinfo);
res_nbinfo,
problem.moduleParams());
}
static void calculateFluxes_(RateVector& flux,
@ -315,7 +327,8 @@ public:
const IntensiveQuantities& intQuantsEx,
const unsigned& globalIndexIn,
const unsigned& globalIndexEx,
const ResidualNBInfo& nbInfo)
const ResidualNBInfo& nbInfo,
const ModuleParams& moduleParams)
{
OPM_TIMEBLOCK_LOCAL(calculateFluxes);
const Scalar Vin = nbInfo.Vin;
@ -395,7 +408,7 @@ public:
}
}
}
}
// deal with solvents (if present)
static_assert(!enableSolvent, "Relevant computeFlux() method must be implemented for this module before enabling.");
@ -443,6 +456,18 @@ public:
static_assert(!enableBrine, "Relevant computeFlux() method must be implemented for this module before enabling.");
// BrineModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
// deal with convective mixing
ConvectiveMixingModule::addConvectiveMixingFlux(flux,
intQuantsIn,
intQuantsEx,
globalIndexIn,
globalIndexEx,
nbInfo.dZg,
nbInfo.trans,
nbInfo.faceArea,
moduleParams.convectiveMixingModuleParam);
// deal with diffusion (if present). opm-models expects per area flux (added in the tmpdiffusivity).
if constexpr(enableDiffusion){
typename DiffusionModule::ExtensiveQuantities::EvaluationArray effectiveDiffusionCoefficient;
@ -617,7 +642,7 @@ public:
RateVector& bdyFlux,
const BoundaryConditionData& bdyInfo,
const IntensiveQuantities& insideIntQuants,
[[maybe_unused]] unsigned globalSpaceIdx)
unsigned globalSpaceIdx)
{
OPM_TIMEBLOCK_LOCAL(computeBoundaryThermal);
// only heat is allowed to flow through this boundary

View File

@ -705,7 +705,8 @@ public:
pw,
saltConcentration);
setPrimaryVarsMeaningWater(WaterMeaning::Rsw);
(*this)[Indices::waterSwitchIdx] = rswSat; //primary variable becomes Rsw
Scalar rswMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
(*this)[Indices::waterSwitchIdx] = min(rswSat, rswMax); //primary variable becomes Rsw
setPrimaryVarsMeaningPressure(PressureMeaning::Pw);
this->setScaledPressure_(pw);
changed = true;
@ -749,7 +750,8 @@ public:
saltConcentration);
Scalar rsw = (*this)[Indices::waterSwitchIdx];
if (rsw > rswSat) {
Scalar rswMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
if (rsw > min(rswSat, rswMax)) {
// the gas phase appears, i.e., switch the primary variables to WaterMeaning::Sw
setPrimaryVarsMeaningWater(WaterMeaning::Sw);
(*this)[Indices::waterSwitchIdx] = 1.0; // hydrocarbon water saturation

View File

@ -650,7 +650,7 @@ public:
return;
}
const unsigned int numCells = model_().numTotalDof();
#ifdef _OPENMP
#pragma omp parallel for
#endif
@ -671,7 +671,7 @@ public:
adres = 0.0;
darcyFlux = 0.0;
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo, problem_().moduleParams());
adres *= nbInfo.res_nbinfo.faceArea;
if (enableFlows) {
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
@ -757,7 +757,7 @@ private:
adres = 0.0;
darcyFlux = 0.0;
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo, problem_().moduleParams());
adres *= nbInfo.res_nbinfo.faceArea;
if (enableDispersion) {
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {