mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
adding a compositional simulator
flowexp_comp
This commit is contained in:
@@ -560,6 +560,16 @@ opm_add_test(flowexp_blackoil
|
||||
$<TARGET_OBJECTS:moduleVersion>
|
||||
)
|
||||
|
||||
opm_add_test(flowexp_comp
|
||||
ONLY_COMPILE
|
||||
ALWAYS_ENABLE
|
||||
DEPENDS opmsimulators
|
||||
LIBRARIES opmsimulators
|
||||
SOURCES
|
||||
flowexperimental/comp/flowexp_comp.cpp
|
||||
$<TARGET_OBJECTS:moduleVersion>
|
||||
)
|
||||
|
||||
if(dune-alugrid_FOUND)
|
||||
if (NOT BUILD_FLOW_ALU_GRID)
|
||||
set(FLOW_ALUGRID_ONLY_DEFAULT_ENABLE_IF "FALSE")
|
||||
|
||||
@@ -758,8 +758,10 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/simulators/flow/FlowMain.hpp
|
||||
opm/simulators/flow/FlowProblem.hpp
|
||||
opm/simulators/flow/FlowProblemBlackoil.hpp
|
||||
opm/simulators/flow/FlowProblemComp.hpp
|
||||
opm/simulators/flow/FlowProblemParameters.hpp
|
||||
opm/simulators/flow/FlowProblemBlackoilProperties.hpp
|
||||
opm/simulators/flow/FlowProblemCompProperties.hpp
|
||||
opm/simulators/flow/FlowUtils.hpp
|
||||
opm/simulators/flow/FlowsData.hpp
|
||||
opm/simulators/flow/FlowThresholdPressure.hpp
|
||||
|
||||
306
flowexperimental/comp/flowexp_comp.cpp
Normal file
306
flowexperimental/comp/flowexp_comp.cpp
Normal file
@@ -0,0 +1,306 @@
|
||||
/*
|
||||
Copyright 2024, SINTEF Digital
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include "config.h"
|
||||
#include <opm/models/utils/start.hh>
|
||||
#include <opm/material/constraintsolvers/PTFlash.hpp>
|
||||
#include "../FlowExpNewtonMethod.hpp"
|
||||
#include <opm/models/ptflash/flashmodel.hh>
|
||||
#include <opm/material/fluidsystems/GenericOilGasFluidSystem.hpp>
|
||||
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
|
||||
|
||||
#include <opm/simulators/flow/FlowProblemComp.hpp>
|
||||
#include <opm/simulators/flow/FlowProblemCompProperties.hpp>
|
||||
// TODO: not understanding why we need FlowGenericProblem here
|
||||
#include <opm/simulators/flow/FlowGenericProblem.hpp>
|
||||
#include <opm/simulators/flow/FlowGenericProblem_impl.hpp>
|
||||
#include <opm/simulators/linalg/parallelbicgstabbackend.hh>
|
||||
|
||||
// // the current code use eclnewtonmethod adding other conditions to proceed_ should do the trick for KA
|
||||
// // adding linearshe sould be chaning the update_ function in the same class with condition that the error is reduced.
|
||||
// the trick is to be able to recalculate the residual from here.
|
||||
// unsure where the timestepping is done from suggestedtime??
|
||||
// suggestTimeStep is taken from newton solver in problem.limitTimestep
|
||||
namespace Opm{
|
||||
template<typename TypeTag>
|
||||
class EmptyModel : public BaseAuxiliaryModule<TypeTag>
|
||||
{
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
||||
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
||||
public:
|
||||
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
||||
EmptyModel(Simulator& /*simulator*/){
|
||||
};
|
||||
void init(){}
|
||||
template<class Something>
|
||||
void init(Something /*A*/){}
|
||||
void prepareTracerBatches(){};
|
||||
using NeighborSet = std::set<unsigned>;
|
||||
void linearize(SparseMatrixAdapter& /*matrix*/, GlobalEqVector& /*residual*/){};
|
||||
unsigned numDofs() const{return 0;};
|
||||
void addNeighbors(std::vector<NeighborSet>& /*neighbors*/) const{};
|
||||
//void applyInitial(){};
|
||||
void initialSolutionApplied(){};
|
||||
//void initFromRestart(const data::Aquifers& aquiferSoln);
|
||||
template <class Restarter>
|
||||
void serialize(Restarter& /*res*/){};
|
||||
|
||||
template <class Restarter>
|
||||
void deserialize(Restarter& /*res*/){};
|
||||
|
||||
void beginEpisode(){};
|
||||
void beginTimeStep(){};
|
||||
void beginIteration(){};
|
||||
// add the water rate due to aquifers to the source term.
|
||||
template<class RateVector, class Context>
|
||||
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) const{};
|
||||
template<class RateVector>
|
||||
void addToSource(RateVector& rates, unsigned globalSpaceIdx, unsigned timeIdx) const{};
|
||||
void endIteration()const{};
|
||||
void endTimeStep(){};
|
||||
void endEpisode(){};
|
||||
void applyInitial(){};
|
||||
template<class RateType>
|
||||
void computeTotalRatesForDof(RateType& /*rate*/, unsigned /*globalIdx*/) const{};
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
namespace Opm::Properties {
|
||||
|
||||
namespace TTag {
|
||||
struct FlowExpCompProblem {
|
||||
using InheritsFrom = std::tuple<FlowBaseProblemComp, FlashModel>;
|
||||
};
|
||||
}
|
||||
|
||||
template<class TypeTag>
|
||||
struct SparseMatrixAdapter<TypeTag, TTag::FlowExpCompProblem>
|
||||
{
|
||||
private:
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
using Block = MatrixBlock<Scalar, numEq, numEq>;
|
||||
|
||||
public:
|
||||
using type = typename Linear::IstlSparseMatrixAdapter<Block>;
|
||||
};
|
||||
|
||||
#if 0
|
||||
template<class TypeTag>
|
||||
struct SolidEnergyLaw<TypeTag, TTag::FlowExpCompProblem>
|
||||
{
|
||||
private:
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||||
|
||||
public:
|
||||
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
|
||||
|
||||
using type = typename EclThermalLawManager::SolidEnergyLaw;
|
||||
};
|
||||
|
||||
// Set the material law for thermal conduction
|
||||
template<class TypeTag>
|
||||
struct ThermalConductionLaw<TypeTag, TTag::FlowExpCompProblem>
|
||||
{
|
||||
private:
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||||
|
||||
public:
|
||||
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
|
||||
|
||||
using type = typename EclThermalLawManager::ThermalConductionLaw;
|
||||
};
|
||||
|
||||
|
||||
template <class TypeTag>
|
||||
struct SpatialDiscretizationSplice<TypeTag, TTag::FlowExpCompProblem>
|
||||
{
|
||||
using type = TTag::EcfvDiscretization;
|
||||
};
|
||||
|
||||
template <class TypeTag>
|
||||
struct LocalLinearizerSplice<TypeTag, TTag::FlowExpCompProblem>
|
||||
{
|
||||
using type = TTag::AutoDiffLocalLinearizer;
|
||||
};
|
||||
#endif
|
||||
|
||||
// Set the problem property
|
||||
template <class TypeTag>
|
||||
struct Problem<TypeTag, TTag::FlowExpCompProblem>
|
||||
{
|
||||
using type = FlowProblemComp<TypeTag>;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct AquiferModel<TypeTag, TTag::FlowExpCompProblem> {
|
||||
using type = EmptyModel<TypeTag>;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct WellModel<TypeTag, TTag::FlowExpCompProblem> {
|
||||
using type = EmptyModel<TypeTag>;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct TracerModel<TypeTag, TTag::FlowExpCompProblem> {
|
||||
using type = EmptyModel<TypeTag>;
|
||||
};
|
||||
|
||||
|
||||
template <class TypeTag>
|
||||
struct FlashSolver<TypeTag, TTag::FlowExpCompProblem> {
|
||||
private:
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||||
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||||
|
||||
public:
|
||||
using type = Opm::PTFlash<Scalar, FluidSystem>;
|
||||
};
|
||||
|
||||
|
||||
template <class TypeTag, class MyTypeTag>
|
||||
struct NumComp { using type = UndefinedProperty; };
|
||||
|
||||
// TODO: this is unfortunate, have to check why we need to hard-code it
|
||||
template <class TypeTag>
|
||||
struct NumComp<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr int value = 3;
|
||||
};
|
||||
#if 0
|
||||
struct Temperature { using type = UndefinedProperty; };
|
||||
|
||||
template <class TypeTag>
|
||||
struct Temperature<TypeTag, TTag::FlowExpCompProblem> {
|
||||
using type = GetPropType<TypeTag, Scalar>;
|
||||
static constexpr type value = 423.25;
|
||||
};
|
||||
#endif
|
||||
|
||||
template <class TypeTag>
|
||||
struct FluidSystem<TypeTag, TTag::FlowExpCompProblem>
|
||||
{
|
||||
private:
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
static constexpr int num_comp = getPropValue<TypeTag, Properties::NumComp>();
|
||||
|
||||
public:
|
||||
using type = Opm::GenericOilGasFluidSystem<Scalar, num_comp>;
|
||||
};
|
||||
template<class TypeTag>
|
||||
struct EnableMech<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct EnableDisgasInWater<TypeTag, TTag::FlowExpCompProblem> { static constexpr bool value = false; };
|
||||
|
||||
template<class TypeTag>
|
||||
struct Stencil<TypeTag, TTag::FlowExpCompProblem>
|
||||
{
|
||||
private:
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
|
||||
public:
|
||||
using type = EcfvStencil<Scalar, GridView>;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct EnableApiTracking<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct EnableTemperature<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct EnableSaltPrecipitation<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
template<class TypeTag>
|
||||
struct EnablePolymerMW<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct EnablePolymer<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct EnableDispersion<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct EnableBrine<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
template<class TypeTag>
|
||||
struct EnableVapwat<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
template<class TypeTag>
|
||||
struct EnableSolvent<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
template<class TypeTag>
|
||||
struct EnableEnergy<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
template<class TypeTag>
|
||||
struct EnableFoam<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
template<class TypeTag>
|
||||
struct EnableExtbo<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
template<class TypeTag>
|
||||
struct EnableMICP<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
|
||||
// disable thermal flux boundaries by default
|
||||
#if 0
|
||||
template<class TypeTag>
|
||||
struct EnableThermalFluxBoundaries<TypeTag, TTag::FlowExpCompProblem> {
|
||||
static constexpr bool value = false;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace Opm::Properties
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
using TypeTag = Opm::Properties::TTag::FlowExpCompProblem;
|
||||
Opm::registerEclTimeSteppingParameters<double>();
|
||||
return Opm::start<TypeTag>(argc, argv);
|
||||
}
|
||||
@@ -40,6 +40,7 @@ namespace Opm {
|
||||
*
|
||||
* \tparam PVOffset The first index in a primary variable vector.
|
||||
*/
|
||||
// TODO: The indices class should handle whether phase is active, not the FluidSystem
|
||||
template <class TypeTag, int PVOffset>
|
||||
class FlashIndices
|
||||
: public EnergyIndices<PVOffset + getPropValue<TypeTag, Properties::NumComponents>(),
|
||||
@@ -50,6 +51,11 @@ class FlashIndices
|
||||
using EnergyIndices = Opm::EnergyIndices<PVOffset + numComponents, enableEnergy>;
|
||||
|
||||
public:
|
||||
static constexpr bool waterEnabled = false;
|
||||
static constexpr bool gasEnabled = true;
|
||||
static constexpr bool oilEnabled = true;
|
||||
static constexpr int waterPhaseIdx = -1;
|
||||
static constexpr int numPhases = 2;
|
||||
//! number of equations/primary variables
|
||||
static const int numEq = numComponents + EnergyIndices::numEq_;
|
||||
|
||||
|
||||
468
opm/simulators/flow/FlowProblemComp.hpp
Normal file
468
opm/simulators/flow/FlowProblemComp.hpp
Normal file
@@ -0,0 +1,468 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
Copyright 2024 SINTEF Digital
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::FlowProblemComp
|
||||
*/
|
||||
#ifndef OPM_FLOW_PROBLEM_COMP_HPP
|
||||
#define OPM_FLOW_PROBLEM_COMP_HPP
|
||||
|
||||
|
||||
#include <opm/simulators/flow/FlowProblem.hpp>
|
||||
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
||||
|
||||
#include <opm/material/thermal/EclThermalLawManager.hpp>
|
||||
|
||||
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
/*!
|
||||
* \ingroup CompositionalSimulator
|
||||
*
|
||||
* \brief This problem simulates an input file given in the data format used by the
|
||||
* commercial ECLiPSE simulator.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class FlowProblemComp : public FlowProblem<TypeTag>
|
||||
{
|
||||
// TODO: the naming of the Types will be adjusted
|
||||
using FlowProblemType = FlowProblem<TypeTag>;
|
||||
|
||||
using typename FlowProblemType::Scalar;
|
||||
using typename FlowProblemType::Simulator;
|
||||
using typename FlowProblemType::GridView;
|
||||
using typename FlowProblemType::FluidSystem;
|
||||
using typename FlowProblemType::Vanguard;
|
||||
|
||||
// might not be needed
|
||||
using FlowProblemType::dim;
|
||||
using FlowProblemType::dimWorld;
|
||||
|
||||
using FlowProblemType::numPhases;
|
||||
using FlowProblemType::numComponents;
|
||||
|
||||
using FlowProblemType::gasPhaseIdx;
|
||||
using FlowProblemType::oilPhaseIdx;
|
||||
using FlowProblemType::waterPhaseIdx;
|
||||
|
||||
using typename FlowProblemType::Indices;
|
||||
using typename FlowProblemType::PrimaryVariables;
|
||||
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
||||
using typename FlowProblemType::Evaluation;
|
||||
using typename FlowProblemType::MaterialLaw;
|
||||
using typename FlowProblemType::RateVector;
|
||||
|
||||
using InitialFluidState = CompositionalFluidState<Scalar, FluidSystem>;
|
||||
|
||||
public:
|
||||
using FlowProblemType::porosity;
|
||||
using FlowProblemType::pvtRegionIndex;
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::registerParameters
|
||||
*/
|
||||
static void registerParameters()
|
||||
{
|
||||
FlowProblemType::registerParameters();
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \copydoc Doxygen::defaultProblemConstructor
|
||||
*/
|
||||
explicit FlowProblemComp(Simulator& simulator)
|
||||
: FlowProblemType(simulator)
|
||||
{
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::finishInit
|
||||
*/
|
||||
void finishInit()
|
||||
{
|
||||
// TODO: there should be room to remove duplication for this function,
|
||||
// but there is relatively complicated logic in the function calls in this function
|
||||
// some refactoring is needed for this function
|
||||
FlowProblemType::finishInit();
|
||||
|
||||
auto& simulator = this->simulator();
|
||||
|
||||
auto finishTransmissibilities = [updated = false, this]() mutable {
|
||||
if (updated) {
|
||||
return;
|
||||
}
|
||||
this->transmissibilities_.finishInit(
|
||||
[&vg = this->simulator().vanguard()](const unsigned int it) { return vg.gridIdxToEquilGridIdx(it); });
|
||||
updated = true;
|
||||
};
|
||||
|
||||
finishTransmissibilities();
|
||||
|
||||
const auto& eclState = simulator.vanguard().eclState();
|
||||
const auto& schedule = simulator.vanguard().schedule();
|
||||
|
||||
// Set the start time of the simulation
|
||||
simulator.setStartTime(schedule.getStartTime());
|
||||
simulator.setEndTime(schedule.simTime(schedule.size() - 1));
|
||||
|
||||
// We want the episode index to be the same as the report step index to make
|
||||
// things simpler, so we have to set the episode index to -1 because it is
|
||||
// incremented by endEpisode(). The size of the initial time step and
|
||||
// length of the initial episode is set to zero for the same reason.
|
||||
simulator.setEpisodeIndex(-1);
|
||||
simulator.setEpisodeLength(0.0);
|
||||
|
||||
// the "NOGRAV" keyword from Frontsim or setting the EnableGravity to false
|
||||
// disables gravity, else the standard value of the gravity constant at sea level
|
||||
// on earth is used
|
||||
this->gravity_ = 0.0;
|
||||
if (Parameters::Get<Parameters::EnableGravity>())
|
||||
this->gravity_[dim - 1] = 9.80665;
|
||||
if (!eclState.getInitConfig().hasGravity())
|
||||
this->gravity_[dim - 1] = 0.0;
|
||||
|
||||
if (this->enableTuning_) {
|
||||
// if support for the TUNING keyword is enabled, we get the initial time
|
||||
// steping parameters from it instead of from command line parameters
|
||||
const auto& tuning = schedule[0].tuning();
|
||||
this->initialTimeStepSize_ = tuning.TSINIT.has_value() ? tuning.TSINIT.value() : -1.0;
|
||||
this->maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
|
||||
}
|
||||
|
||||
this->initFluidSystem_();
|
||||
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)
|
||||
&& FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
this->maxOilSaturation_.resize(this->model().numGridDof(), 0.0);
|
||||
}
|
||||
|
||||
this->readRockParameters_(simulator.vanguard().cellCenterDepths(), [&simulator](const unsigned idx) {
|
||||
std::array<int, dim> coords;
|
||||
simulator.vanguard().cartesianCoordinate(idx, coords);
|
||||
for (auto& c : coords) {
|
||||
++c;
|
||||
}
|
||||
return coords;
|
||||
});
|
||||
FlowProblemType::readMaterialParameters_();
|
||||
FlowProblemType::readThermalParameters_();
|
||||
|
||||
const auto& initconfig = eclState.getInitConfig();
|
||||
if (initconfig.restartRequested())
|
||||
readEclRestartSolution_();
|
||||
else
|
||||
this->readInitialCondition_();
|
||||
|
||||
FlowProblemType::updatePffDofData_();
|
||||
|
||||
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>()) {
|
||||
const auto& vanguard = this->simulator().vanguard();
|
||||
const auto& gridView = vanguard.gridView();
|
||||
int numElements = gridView.size(/*codim=*/0);
|
||||
this->polymer_.maxAdsorption.resize(numElements, 0.0);
|
||||
}
|
||||
|
||||
/* readBoundaryConditions_();
|
||||
|
||||
// compute and set eq weights based on initial b values
|
||||
computeAndSetEqWeights_();
|
||||
|
||||
if (enableDriftCompensation_) {
|
||||
drift_.resize(this->model().numGridDof());
|
||||
drift_ = 0.0;
|
||||
} */
|
||||
|
||||
// TODO: check wether the following can work with compostional
|
||||
if (enableVtkOutput_ && eclState.getIOConfig().initOnly()) {
|
||||
simulator.setTimeStepSize(0.0);
|
||||
FlowProblemType::writeOutput(true);
|
||||
}
|
||||
|
||||
// after finishing the initialization and writing the initial solution, we move
|
||||
// to the first "real" episode/report step
|
||||
// for restart the episode index and start is already set
|
||||
if (!initconfig.restartRequested()) {
|
||||
simulator.startNextEpisode(schedule.seconds(1));
|
||||
simulator.setEpisodeIndex(0);
|
||||
simulator.setTimeStepIndex(0);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::boundary
|
||||
*
|
||||
* Reservoir simulation uses no-flow conditions as default for all boundaries.
|
||||
*/
|
||||
template <class Context>
|
||||
void boundary(BoundaryRateVector& values,
|
||||
const Context& context,
|
||||
unsigned spaceIdx,
|
||||
unsigned /* timeIdx */) const
|
||||
{
|
||||
OPM_TIMEBLOCK_LOCAL(eclProblemBoundary);
|
||||
if (!context.intersection(spaceIdx).boundary())
|
||||
return;
|
||||
|
||||
values.setNoFlow();
|
||||
|
||||
if (this->nonTrivialBoundaryConditions()) {
|
||||
throw std::logic_error("boundary condition is not supported by compostional modeling yet");
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::initial
|
||||
*
|
||||
* The reservoir problem uses a constant boundary condition for
|
||||
* the whole domain.
|
||||
*/
|
||||
template <class Context>
|
||||
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
||||
{
|
||||
const unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||||
const auto& initial_fs = initialFluidStates_[globalDofIdx];
|
||||
Opm::CompositionalFluidState<Evaluation, FluidSystem> fs;
|
||||
using ComponentVector = Dune::FieldVector<Evaluation, numComponents>;
|
||||
for (unsigned p = 0; p < numPhases; ++p) { // TODO: assuming the phaseidx continuous
|
||||
ComponentVector evals;
|
||||
auto& last_eval = evals[numComponents - 1];
|
||||
last_eval = 1.;
|
||||
for (unsigned c = 0; c < numComponents - 1; ++c) {
|
||||
const auto val = initial_fs.moleFraction(p, c);
|
||||
const Evaluation eval = Evaluation::createVariable(val, c + 1);
|
||||
evals[c] = eval;
|
||||
last_eval -= eval;
|
||||
}
|
||||
for (unsigned c = 0; c < numComponents; ++c) {
|
||||
fs.setMoleFraction(p, c, evals[c]);
|
||||
}
|
||||
|
||||
// pressure
|
||||
const auto p_val = initial_fs.pressure(p);
|
||||
fs.setPressure(p, Evaluation::createVariable(p_val, 0));
|
||||
|
||||
const auto sat_val = initial_fs.saturation(p);
|
||||
fs.setSaturation(p, sat_val);
|
||||
|
||||
const auto temp_val = initial_fs.temperature(p);
|
||||
fs.setTemperature(temp_val);
|
||||
}
|
||||
|
||||
{
|
||||
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
||||
paramCache.updatePhase(fs, FluidSystem::oilPhaseIdx);
|
||||
paramCache.updatePhase(fs, FluidSystem::gasPhaseIdx);
|
||||
fs.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::oilPhaseIdx));
|
||||
fs.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::gasPhaseIdx));
|
||||
fs.setViscosity(FluidSystem::oilPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::oilPhaseIdx));
|
||||
fs.setViscosity(FluidSystem::gasPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::gasPhaseIdx));
|
||||
}
|
||||
|
||||
// Set initial K and L
|
||||
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
||||
const Evaluation Ktmp = fs.wilsonK_(compIdx);
|
||||
fs.setKvalue(compIdx, Ktmp);
|
||||
}
|
||||
|
||||
const Evaluation& Ltmp = -1.0;
|
||||
fs.setLvalue(Ltmp);
|
||||
|
||||
values.assignNaive(fs);
|
||||
}
|
||||
|
||||
void addToSourceDense(RateVector&, unsigned, unsigned) const
|
||||
{
|
||||
// we do nothing for now
|
||||
}
|
||||
|
||||
const InitialFluidState& initialFluidState(unsigned globalDofIdx) const
|
||||
{ return initialFluidStates_[globalDofIdx]; }
|
||||
|
||||
std::vector<InitialFluidState>& initialFluidStates()
|
||||
{ return initialFluidStates_; }
|
||||
|
||||
const std::vector<InitialFluidState>& initialFluidStates() const
|
||||
{ return initialFluidStates_; }
|
||||
|
||||
// TODO: do we need this one?
|
||||
template<class Serializer>
|
||||
void serializeOp(Serializer& serializer)
|
||||
{
|
||||
serializer(static_cast<FlowProblemType&>(*this));
|
||||
}
|
||||
protected:
|
||||
|
||||
void updateExplicitQuantities_(int /* episodeIdx*/, int /* timeStepSize */, bool /* first_step_after_restart */) override
|
||||
{
|
||||
// we do nothing here for now
|
||||
}
|
||||
|
||||
void readEquilInitialCondition_()
|
||||
{
|
||||
throw std::logic_error("Equilibration is not supported by compositional modeling yet");
|
||||
}
|
||||
|
||||
void readEclRestartSolution_()
|
||||
{
|
||||
throw std::logic_error("Restarting is not supported by compositional modeling yet");
|
||||
}
|
||||
|
||||
void readExplicitInitialCondition_()
|
||||
{
|
||||
readExplicitInitialConditionCompositional_();
|
||||
}
|
||||
|
||||
void readExplicitInitialConditionCompositional_()
|
||||
{
|
||||
const auto& simulator = this->simulator();
|
||||
const auto& vanguard = simulator.vanguard();
|
||||
const auto& eclState = vanguard.eclState();
|
||||
const auto& fp = eclState.fieldProps();
|
||||
// const bool has_xmf = fp.has_double("XMF");
|
||||
assert(fp.has_double("XMF"));
|
||||
// const bool has_ymf = fp.has_double("YMF");
|
||||
assert(fp.has_double("YMF"));
|
||||
const bool has_temp = fp.has_double("TEMPI");
|
||||
const bool has_pressure = fp.has_double("PRESSURE");
|
||||
|
||||
// const bool has_gas = fp.has_double("SGAS");
|
||||
assert(fp.has_double("SGAS"));
|
||||
if (!has_pressure)
|
||||
throw std::runtime_error("The ECL input file requires the presence of the PRESSURE "
|
||||
"keyword if the model is initialized explicitly");
|
||||
|
||||
std::size_t numDof = this->model().numGridDof();
|
||||
|
||||
initialFluidStates_.resize(numDof);
|
||||
|
||||
std::vector<double> xmfData;
|
||||
std::vector<double> ymfData;
|
||||
std::vector<double> waterSaturationData;
|
||||
std::vector<double> gasSaturationData;
|
||||
std::vector<double> soilData;
|
||||
std::vector<double> pressureData;
|
||||
std::vector<double> tempiData;
|
||||
|
||||
if (waterPhaseIdx > 0 && Indices::numPhases > 1)
|
||||
waterSaturationData = fp.get_double("SWAT");
|
||||
else
|
||||
waterSaturationData.resize(numDof);
|
||||
|
||||
pressureData = fp.get_double("PRESSURE");
|
||||
|
||||
assert(waterPhaseIdx < 0);
|
||||
|
||||
xmfData = fp.get_double("XMF");
|
||||
ymfData = fp.get_double("YMF");
|
||||
if (has_temp) {
|
||||
tempiData = fp.get_double("TEMPI");
|
||||
} else {
|
||||
; // TODO: throw?
|
||||
}
|
||||
|
||||
if (gasPhaseIdx > 0) // && FluidSystem::phaseIsActive(oilPhaseIdx))
|
||||
gasSaturationData = fp.get_double("SGAS");
|
||||
else
|
||||
gasSaturationData.resize(numDof);
|
||||
|
||||
// constexpr std::size_t num_comps = 3;
|
||||
|
||||
for (std::size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
|
||||
auto& dofFluidState = initialFluidStates_[dofIdx];
|
||||
// dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx));
|
||||
|
||||
Scalar temperatureLoc = tempiData[dofIdx];
|
||||
assert(std::isfinite(temperatureLoc) && temperatureLoc > 0);
|
||||
dofFluidState.setTemperature(temperatureLoc);
|
||||
|
||||
if (gasPhaseIdx > 0) {
|
||||
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
|
||||
gasSaturationData[dofIdx]);
|
||||
}
|
||||
if (oilPhaseIdx > 0) {
|
||||
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
|
||||
1.0
|
||||
- waterSaturationData[dofIdx]
|
||||
- gasSaturationData[dofIdx]);
|
||||
}
|
||||
|
||||
//////
|
||||
// set phase pressures
|
||||
//////
|
||||
const Scalar pressure = pressureData[dofIdx]; // oil pressure (or gas pressure for water-gas system or water pressure for single phase)
|
||||
|
||||
// TODO: zero capillary pressure for now
|
||||
const std::array<Scalar, numPhases> pc = {0};
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx))
|
||||
continue;
|
||||
|
||||
if (Indices::oilEnabled)
|
||||
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
|
||||
else if (Indices::gasEnabled)
|
||||
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
|
||||
else if (Indices::waterEnabled)
|
||||
//single (water) phase
|
||||
dofFluidState.setPressure(phaseIdx, pressure);
|
||||
}
|
||||
|
||||
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
||||
const std::size_t data_idx = compIdx * numDof + dofIdx;
|
||||
const Scalar xmf = xmfData[data_idx];
|
||||
const Scalar ymf = xmfData[data_idx];
|
||||
|
||||
dofFluidState.setMoleFraction(FluidSystem::oilPhaseIdx, compIdx, xmf);
|
||||
dofFluidState.setMoleFraction(FluidSystem::gasPhaseIdx, compIdx, ymf);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void handleSolventBC(const BCProp::BCFace& /* bc */, RateVector& /* rate */) const override
|
||||
{
|
||||
throw std::logic_error("solvent is disabled for compositional modeling and you're trying to add solvent to BC");
|
||||
}
|
||||
|
||||
void handlePolymerBC(const BCProp::BCFace& /* bc */, RateVector& /* rate */) const override
|
||||
{
|
||||
throw std::logic_error("polymer is disabled for compositional modeling and you're trying to add polymer to BC");
|
||||
}
|
||||
|
||||
std::vector<InitialFluidState> initialFluidStates_;
|
||||
|
||||
bool enableVtkOutput_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_FLOW_PROBLEM_COMP_HPP
|
||||
96
opm/simulators/flow/FlowProblemCompProperties.hpp
Normal file
96
opm/simulators/flow/FlowProblemCompProperties.hpp
Normal file
@@ -0,0 +1,96 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::FlowBaseProblemComp
|
||||
*/
|
||||
#ifndef OPM_FLOW_PROBLEM_COMP_PROPERTIES_HPP
|
||||
#define OPM_FLOW_PROBLEM_COMP_PROPERTIES_HPP
|
||||
|
||||
|
||||
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
|
||||
|
||||
#include <opm/models/utils/propertysystem.hh>
|
||||
|
||||
#include <opm/simulators/flow/FlowBaseProblemProperties.hpp>
|
||||
|
||||
#include <tuple>
|
||||
|
||||
namespace Opm {
|
||||
template <class TypeTag>
|
||||
class FlowProblemComp;
|
||||
}
|
||||
|
||||
namespace Opm::Properties {
|
||||
|
||||
namespace TTag {
|
||||
|
||||
struct FlowBaseProblemComp {
|
||||
using InheritsFrom = std::tuple<FlowBaseProblem>;
|
||||
};
|
||||
|
||||
}
|
||||
// Set the problem property
|
||||
template<class TypeTag>
|
||||
struct Problem<TypeTag, TTag::FlowBaseProblemComp>
|
||||
{ using type = FlowProblemComp<TypeTag>; };
|
||||
|
||||
template<class TypeTag>
|
||||
struct TracerModel<TypeTag, TTag::FlowBaseProblemComp> {
|
||||
using type = ::Opm::TracerModel<TypeTag>;
|
||||
};
|
||||
|
||||
// Set the material law for fluid fluxes
|
||||
template<class TypeTag>
|
||||
struct MaterialLaw<TypeTag, TTag::FlowBaseProblemComp>
|
||||
{
|
||||
private:
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||||
|
||||
// using Traits = ThreePhaseMaterialTraits<Scalar,
|
||||
// /*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
||||
// /*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
||||
// /*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
|
||||
|
||||
// TODO: We should be able to use FluidSystem here and using Indices to handle the active phases
|
||||
// some more development is needed
|
||||
using Traits = ThreePhaseMaterialTraits<Scalar,
|
||||
/*wettingPhaseIdx=*/ 0,
|
||||
/*nonWettingPhaseIdx=*/ 1,
|
||||
/*gasPhaseIdx=*/ 2>;
|
||||
|
||||
public:
|
||||
using EclMaterialLawManager = ::Opm::EclMaterialLawManager<Traits>;
|
||||
|
||||
using type = typename EclMaterialLawManager::MaterialLaw;
|
||||
};
|
||||
|
||||
// Enable diffusion
|
||||
template<class TypeTag>
|
||||
struct EnableDiffusion<TypeTag, TTag::FlowBaseProblemComp>
|
||||
{ static constexpr bool value = false; };
|
||||
|
||||
} // namespace Opm::Properties
|
||||
#endif // OPM_FLOW_PROBLEM_COMP_PROPERTIES_HPP
|
||||
Reference in New Issue
Block a user