mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #530 from atgeirr/enable-onephase-revised
Enable onephase revised
This commit is contained in:
commit
2c8d0a95fc
@ -376,7 +376,6 @@ public:
|
||||
// and the thermal condictivity coefficients
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
||||
fs.setEnthalpy(phaseIdx, 0.0);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -128,16 +128,21 @@ public:
|
||||
|
||||
// extract the water and the gas saturations for convenience
|
||||
Evaluation Sw = 0.0;
|
||||
if (waterEnabled)
|
||||
Sw = priVars.makeEvaluation(Indices::waterSaturationIdx, timeIdx);
|
||||
|
||||
if (waterEnabled) {
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::OnePhase_p) {
|
||||
Sw = 1.0;
|
||||
} else {
|
||||
Sw = priVars.makeEvaluation(Indices::waterSaturationIdx, timeIdx);
|
||||
}
|
||||
}
|
||||
Evaluation Sg = 0.0;
|
||||
if (compositionSwitchEnabled)
|
||||
{
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg)
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
|
||||
// -> threephase case
|
||||
assert( priVars.primaryVarsMeaning() != PrimaryVariables::OnePhase_p );
|
||||
Sg = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
||||
} else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
||||
// -> gas-water case
|
||||
Sg = 1.0 - Sw;
|
||||
|
||||
@ -201,9 +206,11 @@ public:
|
||||
// update the Saturation functions for the blackoil solvent module.
|
||||
asImp_().solventPostSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
const Evaluation& SoMax =
|
||||
Opm::max(fluidState_.saturation(oilPhaseIdx),
|
||||
elemCtx.problem().maxOilSaturation(globalSpaceIdx));
|
||||
Evaluation SoMax = 0.0;
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
SoMax = Opm::max(fluidState_.saturation(oilPhaseIdx),
|
||||
elemCtx.problem().maxOilSaturation(globalSpaceIdx));
|
||||
}
|
||||
|
||||
// take the meaning of the switiching primary variable into account for the gas
|
||||
// and oil phase compositions
|
||||
@ -257,9 +264,7 @@ public:
|
||||
else
|
||||
fluidState_.setRv(0.0);
|
||||
}
|
||||
else {
|
||||
assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv);
|
||||
|
||||
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
|
||||
const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
fluidState_.setRv(Rv);
|
||||
|
||||
@ -274,14 +279,18 @@ public:
|
||||
SoMax);
|
||||
|
||||
fluidState_.setRs(Opm::min(RsMax, RsSat));
|
||||
}
|
||||
else
|
||||
} else {
|
||||
fluidState_.setRs(0.0);
|
||||
}
|
||||
} else {
|
||||
assert(priVars.primaryVarsMeaning() == PrimaryVariables::OnePhase_p);
|
||||
}
|
||||
|
||||
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
||||
paramCache.setRegionIndex(pvtRegionIdx);
|
||||
paramCache.setMaxOilSat(SoMax);
|
||||
if(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
|
||||
paramCache.setMaxOilSat(SoMax);
|
||||
}
|
||||
paramCache.updateAll(fluidState_);
|
||||
|
||||
// compute the phase densities and transform the phase permeabilities into mobilities
|
||||
@ -338,7 +347,14 @@ public:
|
||||
Scalar rockCompressibility = problem.rockCompressibility(elemCtx, dofIdx, timeIdx);
|
||||
if (rockCompressibility > 0.0) {
|
||||
Scalar rockRefPressure = problem.rockReferencePressure(elemCtx, dofIdx, timeIdx);
|
||||
Evaluation x = rockCompressibility*(fluidState_.pressure(oilPhaseIdx) - rockRefPressure);
|
||||
Evaluation x;
|
||||
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
||||
x = rockCompressibility*(fluidState_.pressure(oilPhaseIdx) - rockRefPressure);
|
||||
} else if (FluidSystem::phaseIsActive(waterPhaseIdx)){
|
||||
x = rockCompressibility*(fluidState_.pressure(waterPhaseIdx) - rockRefPressure);
|
||||
} else {
|
||||
x = rockCompressibility*(fluidState_.pressure(gasPhaseIdx) - rockRefPressure);
|
||||
}
|
||||
porosity_ *= 1.0 + x + 0.5*x*x;
|
||||
}
|
||||
|
||||
|
163
opm/models/blackoil/blackoilonephaseindices.hh
Normal file
163
opm/models/blackoil/blackoilonephaseindices.hh
Normal file
@ -0,0 +1,163 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Ewoms::BlackOilTwoPhaseIndices
|
||||
*/
|
||||
#ifndef EWOMS_BLACK_OIL_ONE_PHASE_INDICES_HH
|
||||
#define EWOMS_BLACK_OIL_ONE_PHASE_INDICES_HH
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace Ewoms {
|
||||
|
||||
/*!
|
||||
* \ingroup BlackOilModel
|
||||
*
|
||||
* \brief The primary variable and equation indices for the black-oil model.
|
||||
*/
|
||||
template <unsigned numSolventsV, unsigned numPolymersV, unsigned numEnergyV, bool enableFoam, unsigned PVOffset, unsigned canonicalCompIdx>
|
||||
struct BlackOilOnePhaseIndices
|
||||
{
|
||||
//! Is phase enabled or not
|
||||
static const bool oilEnabled = (canonicalCompIdx == 0);
|
||||
static const bool waterEnabled = (canonicalCompIdx == 1);
|
||||
static const bool gasEnabled = (canonicalCompIdx == 2);
|
||||
|
||||
//! Are solvents involved?
|
||||
static const bool enableSolvent = numSolventsV > 0;
|
||||
|
||||
//! Are polymers involved?
|
||||
static const bool enablePolymer = numPolymersV > 0;
|
||||
|
||||
//! Shall energy be conserved?
|
||||
static const bool enableEnergy = numEnergyV > 0;
|
||||
|
||||
//! Number of solvent components to be considered
|
||||
static const int numSolvents = enableSolvent ? numSolventsV : 0;
|
||||
|
||||
//! Number of polymer components to be considered
|
||||
static const int numPolymers = enablePolymer ? numPolymersV : 0;
|
||||
|
||||
//! Number of energy equations to be considered
|
||||
static const int numEnergy = enableEnergy ? numEnergyV : 0;
|
||||
|
||||
//! Number of foam equations to be considered
|
||||
static const int numFoam = enableFoam? 1 : 0;
|
||||
|
||||
//! The number of fluid phases
|
||||
static const int numPhases = 1;
|
||||
|
||||
//! The number of equations
|
||||
static const int numEq = numPhases + numSolvents + numPolymers + numEnergy + numFoam;
|
||||
|
||||
//////////////////////////////
|
||||
// Primary variable indices
|
||||
//////////////////////////////
|
||||
|
||||
//! The index of the water saturation. For two-phase oil gas models this is disabled.
|
||||
static const int waterSaturationIdx = -10000;
|
||||
|
||||
//! Index of the oil pressure in a vector of primary variables
|
||||
static const int pressureSwitchIdx = PVOffset + 0;
|
||||
|
||||
/*!
|
||||
* \brief Index of the switching variable which determines the composition of the
|
||||
* hydrocarbon phases.
|
||||
*
|
||||
* \note For two-phase water oil models this is disabled.
|
||||
*/
|
||||
static const int compositionSwitchIdx = -10000;
|
||||
|
||||
//! Index of the primary variable for the first solvent
|
||||
static const int solventSaturationIdx =
|
||||
enableSolvent ? PVOffset + numPhases : -1000;
|
||||
|
||||
//! Index of the primary variable for the first polymer
|
||||
static const int polymerConcentrationIdx =
|
||||
enablePolymer ? PVOffset + numPhases + numSolvents : -1000;
|
||||
|
||||
//! Index of the primary variable for the second polymer primary variable (molecular weight)
|
||||
static const int polymerMoleWeightIdx =
|
||||
numPolymers > 1 ? polymerConcentrationIdx + 1 : -1000;
|
||||
|
||||
//! Index of the primary variable for the foam
|
||||
static const int foamConcentrationIdx =
|
||||
enableFoam ? PVOffset + numPhases + numSolvents + numPolymers : -1000;
|
||||
|
||||
//! Index of the primary variable for temperature
|
||||
static const int temperatureIdx =
|
||||
enableEnergy ? PVOffset + numPhases + numSolvents + numPolymers + numFoam: - 1000;
|
||||
|
||||
//////////////////////
|
||||
// Equation indices
|
||||
//////////////////////
|
||||
|
||||
//! \brief returns the index of "active" component
|
||||
static unsigned canonicalToActiveComponentIndex(unsigned compIdx)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static unsigned activeToCanonicalComponentIndex(unsigned compIdx)
|
||||
{
|
||||
// assumes canonical oil = 0, water = 1, gas = 2;
|
||||
assert(compIdx == 0);
|
||||
if(gasEnabled) {
|
||||
return 2;
|
||||
} else if (waterEnabled) {
|
||||
return 1;
|
||||
} else {
|
||||
assert(oilEnabled);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
//! Index of the continuity equation of the first (and only) phase
|
||||
static const int conti0EqIdx = PVOffset + 0;
|
||||
|
||||
//! Index of the continuity equation for the first solvent component
|
||||
static const int contiSolventEqIdx =
|
||||
enableSolvent ? PVOffset + numPhases : -1000;
|
||||
|
||||
//! Index of the continuity equation for the first polymer component
|
||||
static const int contiPolymerEqIdx =
|
||||
enablePolymer ? PVOffset + numPhases + numSolvents : -1000;
|
||||
|
||||
//! Index of the continuity equation for the second polymer component (molecular weight)
|
||||
static const int contiPolymerMWEqIdx =
|
||||
numPolymers > 1 ? contiPolymerEqIdx + 1 : -1000;
|
||||
|
||||
//! Index of the continuity equation for the foam component
|
||||
static const int contiFoamEqIdx =
|
||||
enableFoam ? PVOffset + numPhases + numSolvents + numPolymers : -1000;
|
||||
|
||||
//! Index of the continuity equation for energy
|
||||
static const int contiEnergyEqIdx =
|
||||
enableEnergy ? PVOffset + numPhases + numSolvents + numPolymers + numFoam : -1000;
|
||||
};
|
||||
|
||||
} // namespace Ewoms
|
||||
|
||||
#endif
|
@ -112,6 +112,7 @@ public:
|
||||
Sw_po_Sg, // threephase case
|
||||
Sw_po_Rs, // water + oil case
|
||||
Sw_pg_Rv, // water + gas case
|
||||
OnePhase_p, // onephase case
|
||||
};
|
||||
|
||||
BlackOilPrimaryVariables()
|
||||
@ -264,10 +265,14 @@ public:
|
||||
EnergyModule::assignPrimaryVars(*this, fluidState);
|
||||
|
||||
// determine the meaning of the primary variables
|
||||
if ((gasPresent && oilPresent) || onlyWater)
|
||||
if (FluidSystem::numActivePhases() == 1) {
|
||||
primaryVarsMeaning_ = OnePhase_p;
|
||||
}
|
||||
else if ((gasPresent && oilPresent) || (onlyWater && FluidSystem::phaseIsActive(oilPhaseIdx))) {
|
||||
// gas and oil: both hydrocarbon phases are in equilibrium (i.e., saturated
|
||||
// with the "protagonist" component of the other phase.)
|
||||
primaryVarsMeaning_ = Sw_po_Sg;
|
||||
}
|
||||
else if (oilPresent) {
|
||||
// only oil: if dissolved gas is enabled, we need to consider the oil phase
|
||||
// composition, if it is disabled, the gas component must stick to its phase
|
||||
@ -287,7 +292,16 @@ public:
|
||||
}
|
||||
|
||||
// assign the actual primary variables
|
||||
if (primaryVarsMeaning() == Sw_po_Sg) {
|
||||
if (primaryVarsMeaning() == OnePhase_p) {
|
||||
if (waterEnabled) {
|
||||
(*this)[waterSaturationIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
|
||||
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(waterPhaseIdx));
|
||||
} else {
|
||||
throw std::logic_error("For single-phase runs, only pure water is presently allowed.");
|
||||
}
|
||||
|
||||
}
|
||||
else if (primaryVarsMeaning() == Sw_po_Sg) {
|
||||
if (waterEnabled)
|
||||
(*this)[waterSaturationIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
|
||||
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(oilPhaseIdx));
|
||||
@ -340,6 +354,9 @@ public:
|
||||
// the IntensiveQuantities). The reason is that most intensive quantities are not
|
||||
// required to be able to decide if the primary variables needs to be switched or
|
||||
// not, so it would be a waste to compute them.
|
||||
if (primaryVarsMeaning() == OnePhase_p){
|
||||
return false;
|
||||
}
|
||||
Scalar Sw = 0.0;
|
||||
if (waterEnabled)
|
||||
Sw = (*this)[Indices::waterSaturationIdx];
|
||||
|
@ -83,17 +83,6 @@ public:
|
||||
BlackOilRateVector(Scalar value) : ParentType(Toolbox::createConstant(value))
|
||||
{}
|
||||
|
||||
template <class Eval = Evaluation>
|
||||
BlackOilRateVector(const typename std::enable_if<std::is_same<Eval, Evaluation>::value, Evaluation>::type& value) : ParentType(value)
|
||||
{}
|
||||
|
||||
/*!
|
||||
* \copydoc ImmiscibleRateVector::ImmiscibleRateVector(const
|
||||
* ImmiscibleRateVector& )
|
||||
*/
|
||||
BlackOilRateVector(const BlackOilRateVector& value) : ParentType(value)
|
||||
{}
|
||||
|
||||
/*!
|
||||
* \copydoc ImmiscibleRateVector::setMassRate
|
||||
*/
|
||||
|
@ -104,7 +104,7 @@ struct BlackOilTwoPhaseIndices
|
||||
|
||||
//! Index of the primary variable for the foam
|
||||
static const int foamConcentrationIdx =
|
||||
enableFoam ? polymerMoleWeightIdx + 1 : -1000;
|
||||
enableFoam ? PVOffset + numPhases + numSolvents + numPolymers : -1000;
|
||||
|
||||
//! Index of the primary variable for temperature
|
||||
static const int temperatureIdx =
|
||||
@ -167,9 +167,9 @@ struct BlackOilTwoPhaseIndices
|
||||
static const int contiPolymerMWEqIdx =
|
||||
numPolymers > 1 ? contiPolymerEqIdx + 1 : -1000;
|
||||
|
||||
//! Index of the continuity equation for the foam component
|
||||
//! Index of the continuity equation for the foam component
|
||||
static const int contiFoamEqIdx =
|
||||
enableFoam ? contiPolymerMWEqIdx + 1 : -1000;
|
||||
enableFoam ? PVOffset + numPhases + numSolvents + numPolymers : -1000;
|
||||
|
||||
//! Index of the continuity equation for energy
|
||||
static const int contiEnergyEqIdx =
|
||||
|
@ -579,8 +579,10 @@ protected:
|
||||
|
||||
// Use the implicit Euler time discretization
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
||||
double dt = elemCtx.simulator().timeStepSize();
|
||||
assert(dt > 0);
|
||||
tmp[eqIdx] -= tmp2[eqIdx];
|
||||
tmp[eqIdx] *= scvVolume / elemCtx.simulator().timeStepSize();
|
||||
tmp[eqIdx] *= scvVolume / dt;
|
||||
|
||||
residual[dofIdx][eqIdx] += tmp[eqIdx];
|
||||
}
|
||||
|
@ -125,7 +125,7 @@ public:
|
||||
time_ = 0.0;
|
||||
endTime_ = EWOMS_GET_PARAM(TypeTag, Scalar, EndTime);
|
||||
timeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, InitialTimeStepSize);
|
||||
|
||||
assert(timeStepSize_ > 0);
|
||||
const std::string& predetTimeStepFile =
|
||||
EWOMS_GET_PARAM(TypeTag, std::string, PredeterminedTimeStepsFile);
|
||||
if (!predetTimeStepFile.empty()) {
|
||||
@ -400,7 +400,9 @@ public:
|
||||
* \param timeStepSize The new value for the time step size \f$\mathrm{[s]}\f$
|
||||
*/
|
||||
void setTimeStepSize(Scalar value)
|
||||
{ timeStepSize_ = value; }
|
||||
{
|
||||
timeStepSize_ = value;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set the current time step index to a given value.
|
||||
@ -760,7 +762,7 @@ public:
|
||||
else
|
||||
// ask the problem to provide the next time step size
|
||||
dt = std::min(maxTimeStepSize(), problem_->nextTimeStepSize());
|
||||
|
||||
assert(dt > 0);
|
||||
setTimeStepSize(dt);
|
||||
}
|
||||
prePostProcessTimer_.stop();
|
||||
|
Loading…
Reference in New Issue
Block a user