diff --git a/cmake/Modules/opm-autodiff-prereqs.cmake b/cmake/Modules/opm-autodiff-prereqs.cmake index 650e533c1..86fad9a34 100644 --- a/cmake/Modules/opm-autodiff-prereqs.cmake +++ b/cmake/Modules/opm-autodiff-prereqs.cmake @@ -19,5 +19,5 @@ set (opm-autodiff_DEPS dune-istl REQUIRED; opm-core REQUIRED" # Eigen - "Eigen3 3.1 REQUIRED" + "Eigen3 3.1.2 " ) diff --git a/opm/autodiff/BlackoilPropsAd.cpp b/opm/autodiff/BlackoilPropsAd.cpp index e41cb27e2..e88e52b2d 100644 --- a/opm/autodiff/BlackoilPropsAd.cpp +++ b/opm/autodiff/BlackoilPropsAd.cpp @@ -166,6 +166,35 @@ namespace Opm return mu.col(pu_.phase_pos[Gas]); } + /// Gas viscosity. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + V BlackoilPropsAd::muGas(const V& pg, + const V& rv, + const std::vector& /*cond*/, + const Cells& cells) const + { + if (!pu_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); + } + const int n = cells.size(); + assert(pg.size() == n); + const int np = props_.numPhases(); + Block z = Block::Zero(n, np); + if (pu_.phase_used[Oil]) { + // Faking a z with the right ratio: + // rv = zo/zg + z.col(pu_.phase_pos[Oil]) = rv; + z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1); + } + Block mu(n, np); + props_.viscosity(n, pg.data(), z.data(), cells.data(), mu.data(), 0); + return mu.col(pu_.phase_pos[Gas]); + } + /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -268,6 +297,45 @@ namespace Opm return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs); #endif } + /// Gas viscosity. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n viscosity values. + ADB BlackoilPropsAd::muGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const + { +#if 1 + return ADB::constant(muGas(pg.value(), rv.value(),cond,cells), pg.blockPattern()); +#else + if (!pu_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); + } + const int n = cells.size(); + assert(pg.value().size() == n); + const int np = props_.numPhases(); + Block z = Block::Zero(n, np); + if (pu_.phase_used[Oil]) { + // Faking a z with the right ratio: + // rv = zo/zg + z.col(pu_.phase_pos[Oil]) = rv; + z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1); + } + Block mu(n, np); + Block dmu(n, np); + props_.viscosity(n, pg.value().data(), z.data(), cells.data(), mu.data(), dmu.data()); + ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Gas])); + const int num_blocks = pg.numBlocks(); + std::vector jacs(num_blocks); + for (int block = 0; block < num_blocks; ++block) { + jacs[block] = dmu_diag * pg.derivative()[block]; + } + return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs); +#endif + } // ------ Formation volume factor (b) ------ @@ -357,6 +425,36 @@ namespace Opm return matrix.col(gi*np + gi); } + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + V BlackoilPropsAd::bGas(const V& pg, + const V& rv, + const std::vector& /*cond*/, + const Cells& cells) const + { + if (!pu_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not present."); + } + const int n = cells.size(); + assert(pg.size() == n); + const int np = props_.numPhases(); + Block z = Block::Zero(n, np); + if (pu_.phase_used[Oil]) { + // Faking a z with the right ratio: + // rv = zo/zg + z.col(pu_.phase_pos[Oil]) = rv; + z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1); + } + Block matrix(n, np*np); + props_.matrix(n, pg.data(), z.data(), cells.data(), matrix.data(), 0); + const int gi = pu_.phase_pos[Gas]; + return matrix.col(gi*np + gi); + } + /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -454,6 +552,44 @@ namespace Opm return ADB::function(matrix.col(column), jacs); } + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + ADB BlackoilPropsAd::bGas(const ADB& pg, + const ADB& rv, + const std::vector& /*cond*/, + const Cells& cells) const + { + if (!pu_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); + } + const int n = cells.size(); + assert(pg.value().size() == n); + const int np = props_.numPhases(); + Block z = Block::Zero(n, np); + if (pu_.phase_used[Oil]) { + // Faking a z with the right ratio: + // rv = zo/zg + z.col(pu_.phase_pos[Oil]) = rv.value(); + z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1); + } + Block matrix(n, np*np); + Block dmatrix(n, np*np); + props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data()); + const int phase_ind = pu_.phase_pos[Gas]; + const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column. + ADB::M db_diag = spdiag(dmatrix.col(column)); + const int num_blocks = pg.numBlocks(); + std::vector jacs(num_blocks); + for (int block = 0; block < num_blocks; ++block) { + jacs[block] = db_diag * pg.derivative()[block]; + } + return ADB::function(matrix.col(column), jacs); + } + // ------ Rs bubble point curve ------ @@ -461,7 +597,7 @@ namespace Opm /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. - V BlackoilPropsAd::rsMax(const V& po, + V BlackoilPropsAd::rsSat(const V& po, const Cells& cells) const { // Suppress warning about "unused parameters". @@ -475,7 +611,37 @@ namespace Opm /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. - ADB BlackoilPropsAd::rsMax(const ADB& po, + ADB BlackoilPropsAd::rsSat(const ADB& po, + const Cells& cells) const + { + // Suppress warning about "unused parameters". + static_cast(po); + static_cast(cells); + + OPM_THROW(std::runtime_error, "Method rsMax() not implemented."); + } + + // ------ Rs bubble point curve ------ + + /// Bubble point curve for Rs as function of oil pressure. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + V BlackoilPropsAd::rvSat(const V& po, + const Cells& cells) const + { + // Suppress warning about "unused parameters". + static_cast(po); + static_cast(cells); + + OPM_THROW(std::runtime_error, "Method rsMax() not implemented."); + } + + /// Bubble point curve for Rs as function of oil pressure. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + ADB BlackoilPropsAd::rvSat(const ADB& po, const Cells& cells) const { // Suppress warning about "unused parameters". diff --git a/opm/autodiff/BlackoilPropsAd.hpp b/opm/autodiff/BlackoilPropsAd.hpp index 88f5a30fd..00fc6d523 100644 --- a/opm/autodiff/BlackoilPropsAd.hpp +++ b/opm/autodiff/BlackoilPropsAd.hpp @@ -124,6 +124,17 @@ namespace Opm V muGas(const V& pg, const Cells& cells) const; + /// Gas viscosity. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n gas solution factor values. + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n viscosity values. + V muGas(const V& pg, + const V& rv, + const std::vector& cond, + const Cells& cells) const; + /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -149,6 +160,16 @@ namespace Opm ADB muGas(const ADB& pg, const Cells& cells) const; + /// Gas viscosity. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n gas solution factor values. + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n viscosity values. + ADB muGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const; // ------ Formation volume factor (b) ------ @@ -177,6 +198,17 @@ namespace Opm V bGas(const V& pg, const Cells& cells) const; + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + V bGas(const V& pg, + const V& rv, + const std::vector& cond, + const Cells& cells) const; + /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -203,22 +235,47 @@ namespace Opm const Cells& cells) const; + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + ADB bGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const; // ------ Rs bubble point curve ------ - /// Bubble point curve for Rs as function of oil pressure. + /// Solution gas/oil ratio and its derivatives at saturated condition as a function of p. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. - V rsMax(const V& po, + V rsSat(const V& po, const Cells& cells) const; - /// Bubble point curve for Rs as function of oil pressure. + /// Solution gas/oil ratio and its derivatives at saturated condition as a function of p. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. - ADB rsMax(const ADB& po, + ADB rsSat(const ADB& po, const Cells& cells) const; + // ------ Rv condensation curve ------ + + /// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + V rvSat(const V& po, + const Cells& cells) const; + + /// Vapor oil/gas ratio and its derivatives at saturated conditions as a function of p. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + ADB rvSat(const ADB& po, + const Cells& cells) const; // ------ Relative permeability ------ diff --git a/opm/autodiff/BlackoilPropsAdFromDeck.cpp b/opm/autodiff/BlackoilPropsAdFromDeck.cpp index 8902972cd..d4b17c1bf 100644 --- a/opm/autodiff/BlackoilPropsAdFromDeck.cpp +++ b/opm/autodiff/BlackoilPropsAdFromDeck.cpp @@ -28,6 +28,7 @@ #include #include #include +#include #include #include @@ -108,8 +109,8 @@ namespace Opm } else { props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_)); } - // } else if (deck.hasField("PVTG")) { - // props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_)); + } else if (deck.hasField("PVTG")) { + props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_)); } else { OPM_THROW(std::runtime_error, "Input is missing PVDG or PVTG\n"); } @@ -256,6 +257,29 @@ namespace Opm return mu; } + /// Gas viscosity. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n viscosity values. + V BlackoilPropsAdFromDeck::muGas(const V& pg, + const V& rv, + const std::vector& cond, + const Cells& cells) const + { + if (!phase_usage_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); + } + const int n = cells.size(); + assert(pg.size() == n); + V mu(n); + V dmudp(n); + V dmudr(n); + + props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rv.data(),&cond[0], + mu.data(), dmudp.data(), dmudr.data()); + return mu; + } + /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -332,9 +356,9 @@ namespace Opm V mu(n); V dmudp(n); V dmudr(n); - const double* rs = 0; + const double* rv = 0; - props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.value().data(), rs, + props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.value().data(), rv, mu.data(), dmudp.data(), dmudr.data()); ADB::M dmudp_diag = spdiag(dmudp); @@ -346,6 +370,39 @@ namespace Opm return ADB::function(mu, jacs); } + /// Gas viscosity. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n taxonomies classifying fluid condition. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n viscosity values. + ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const + { + if (!phase_usage_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); + } + const int n = cells.size(); + assert(pg.value().size() == n); + V mu(n); + V dmudp(n); + V dmudr(n); + + props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.value().data(), rv.value().data(),&cond[0], + mu.data(), dmudp.data(), dmudr.data()); + + ADB::M dmudp_diag = spdiag(dmudp); + ADB::M dmudr_diag = spdiag(dmudr); + const int num_blocks = pg.numBlocks(); + std::vector jacs(num_blocks); + for (int block = 0; block < num_blocks; ++block) { + jacs[block] = dmudp_diag * pg.derivative()[block] + dmudr_diag * rv.derivative()[block]; + } + return ADB::function(mu, jacs); + } + // ------ Formation volume factor (b) ------ @@ -439,6 +496,33 @@ namespace Opm return b; } + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + V BlackoilPropsAdFromDeck::bGas(const V& pg, + const V& rv, + const std::vector& cond, + const Cells& cells) const + { + if (!phase_usage_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); + } + const int n = cells.size(); + assert(pg.size() == n); + + V b(n); + V dbdp(n); + V dbdr(n); + + props_[phase_usage_.phase_pos[Gas]]->b(n, pg.data(), rv.data(), &cond[0], + b.data(), dbdp.data(), dbdr.data()); + + return b; + } + /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -519,9 +603,9 @@ namespace Opm V b(n); V dbdp(n); V dbdr(n); - const double* rs = 0; + const double* rv = 0; - props_[phase_usage_.phase_pos[Gas]]->b(n, pg.value().data(), rs, + props_[phase_usage_.phase_pos[Gas]]->b(n, pg.value().data(), rv, b.data(), dbdp.data(), dbdr.data()); ADB::M dbdp_diag = spdiag(dbdp); @@ -533,6 +617,40 @@ namespace Opm return ADB::function(b, jacs); } + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const + { + if (!phase_usage_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); + } + const int n = cells.size(); + assert(pg.size() == n); + + V b(n); + V dbdp(n); + V dbdr(n); + + props_[phase_usage_.phase_pos[Gas]]->b(n, pg.value().data(), rv.value().data(), &cond[0], + b.data(), dbdp.data(), dbdr.data()); + + ADB::M dbdp_diag = spdiag(dbdp); + ADB::M dmudr_diag = spdiag(dbdr); + const int num_blocks = pg.numBlocks(); + std::vector jacs(num_blocks); + for (int block = 0; block < num_blocks; ++block) { + jacs[block] = dbdp_diag * pg.derivative()[block] + dmudr_diag * rv.derivative()[block];; + } + return ADB::function(b, jacs); + } + // ------ Rs bubble point curve ------ @@ -541,7 +659,7 @@ namespace Opm /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. - V BlackoilPropsAdFromDeck::rsMax(const V& po, + V BlackoilPropsAdFromDeck::rsSat(const V& po, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { @@ -551,7 +669,7 @@ namespace Opm assert(po.size() == n); V rbub(n); V drbubdp(n); - props_[Oil]->rbub(n, po.data(), rbub.data(), drbubdp.data()); + props_[Oil]->rsSat(n, po.data(), rbub.data(), drbubdp.data()); return rbub; } @@ -559,7 +677,7 @@ namespace Opm /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. - ADB BlackoilPropsAdFromDeck::rsMax(const ADB& po, + ADB BlackoilPropsAdFromDeck::rsSat(const ADB& po, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { @@ -569,7 +687,7 @@ namespace Opm assert(po.size() == n); V rbub(n); V drbubdp(n); - props_[Oil]->rbub(n, po.value().data(), rbub.data(), drbubdp.data()); + props_[Oil]->rsSat(n, po.value().data(), rbub.data(), drbubdp.data()); ADB::M drbubdp_diag = spdiag(drbubdp); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); @@ -579,6 +697,50 @@ namespace Opm return ADB::function(rbub, jacs); } + // ------ Condensation curve ------ + + /// Condensation curve for Rv as function of oil pressure. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + V BlackoilPropsAdFromDeck::rvSat(const V& po, + const Cells& cells) const + { + if (!phase_usage_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call rvMax(): gas phase not present."); + } + const int n = cells.size(); + assert(po.size() == n); + V rv(n); + V drvdp(n); + props_[Gas]->rvSat(n, po.data(), rv.data(), drvdp.data()); + return rv; + } + + /// Condensation curve for Rv as function of oil pressure. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + ADB BlackoilPropsAdFromDeck::rvSat(const ADB& po, + const Cells& cells) const + { + if (!phase_usage_.phase_used[Gas]) { + OPM_THROW(std::runtime_error, "Cannot call rvMax(): gas phase not present."); + } + const int n = cells.size(); + assert(po.size() == n); + V rv(n); + V drvdp(n); + props_[Gas]->rvSat(n, po.value().data(), rv.data(), drvdp.data()); + ADB::M drvdp_diag = spdiag(drvdp); + const int num_blocks = po.numBlocks(); + std::vector jacs(num_blocks); + for (int block = 0; block < num_blocks; ++block) { + jacs[block] = drvdp_diag * po.derivative()[block]; + } + return ADB::function(rv, jacs); + } + // ------ Relative permeability ------ /// Relative permeabilities for all phases. diff --git a/opm/autodiff/BlackoilPropsAdFromDeck.hpp b/opm/autodiff/BlackoilPropsAdFromDeck.hpp index 943a06f65..81dc0d601 100644 --- a/opm/autodiff/BlackoilPropsAdFromDeck.hpp +++ b/opm/autodiff/BlackoilPropsAdFromDeck.hpp @@ -125,6 +125,17 @@ namespace Opm V muGas(const V& pg, const Cells& cells) const; + /// Oil viscosity. + /// \param[in] po Array of n oil pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n viscosity values. + V muGas(const V& po, + const V& rv, + const std::vector& cond, + const Cells& cells) const; + /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -150,6 +161,14 @@ namespace Opm ADB muGas(const ADB& pg, const Cells& cells) const; + /// Gas viscosity. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n viscosity values. + ADB muGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const; // ------ Formation volume factor (b) ------ @@ -178,6 +197,17 @@ namespace Opm V bGas(const V& pg, const Cells& cells) const; + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + V bGas(const V& pg, + const V& rv, + const std::vector& cond, + const Cells& cells) const; + /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -203,6 +233,16 @@ namespace Opm ADB bGas(const ADB& pg, const Cells& cells) const; + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + ADB bGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const; // ------ Rs bubble point curve ------ @@ -210,16 +250,31 @@ namespace Opm /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. - V rsMax(const V& po, + V rsSat(const V& po, const Cells& cells) const; /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. - ADB rsMax(const ADB& po, + ADB rsSat(const ADB& po, const Cells& cells) const; + // ------ Rv condensation curve ------ + + /// Condensation curve for Rv as function of oil pressure. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + V rvSat(const V& po, + const Cells& cells) const; + + /// Condensation curve for Rv as function of oil pressure. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + ADB rvSat(const ADB& po, + const Cells& cells) const; // ------ Relative permeability ------ diff --git a/opm/autodiff/BlackoilPropsAdInterface.hpp b/opm/autodiff/BlackoilPropsAdInterface.hpp index ec98951bc..e9ad205d2 100644 --- a/opm/autodiff/BlackoilPropsAdInterface.hpp +++ b/opm/autodiff/BlackoilPropsAdInterface.hpp @@ -145,6 +145,15 @@ namespace Opm ADB muGas(const ADB& pg, const Cells& cells) const = 0; + /// Gas viscosity. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n viscosity values. + virtual + ADB muGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const = 0; // ------ Formation volume factor (b) ------ @@ -176,6 +185,18 @@ namespace Opm V bGas(const V& pg, const Cells& cells) const = 0; + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + virtual + V bGas(const V& pg, + const V& rv, + const std::vector& cond, + const Cells& cells) const = 0; + /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. @@ -204,6 +225,17 @@ namespace Opm ADB bGas(const ADB& pg, const Cells& cells) const = 0; + /// Gas formation volume factor. + /// \param[in] pg Array of n gas pressure values. + /// \param[in] rv Array of n vapor oil/gas ratio + /// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n formation volume factor values. + virtual + ADB bGas(const ADB& pg, + const ADB& rv, + const std::vector& cond, + const Cells& cells) const = 0; // ------ Rs bubble point curve ------ @@ -212,7 +244,7 @@ namespace Opm /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. virtual - V rsMax(const V& po, + V rsSat(const V& po, const Cells& cells) const = 0; /// Bubble point curve for Rs as function of oil pressure. @@ -220,7 +252,25 @@ namespace Opm /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. virtual - ADB rsMax(const ADB& po, + ADB rsSat(const ADB& po, + const Cells& cells) const = 0; + + // ------ Rs bubble point curve ------ + + /// Bubble point curve for Rs as function of oil pressure. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + virtual + V rvSat(const V& po, + const Cells& cells) const = 0; + + /// Bubble point curve for Rs as function of oil pressure. + /// \param[in] po Array of n oil pressure values. + /// \param[in] cells Array of n cell indices to be associated with the pressure values. + /// \return Array of n bubble point values for Rs. + virtual + ADB rvSat(const ADB& po, const Cells& cells) const = 0; // ------ Relative permeability ------ diff --git a/opm/autodiff/FullyImplicitBlackoilSolver.cpp b/opm/autodiff/FullyImplicitBlackoilSolver.cpp index 5a7545abb..df83fd1ab 100644 --- a/opm/autodiff/FullyImplicitBlackoilSolver.cpp +++ b/opm/autodiff/FullyImplicitBlackoilSolver.cpp @@ -37,6 +37,7 @@ #include #include #include +//#include // A debugging utility. #define DUMP(foo) \ @@ -211,6 +212,7 @@ namespace { ADB::null(), ADB::null(), ADB::null() } ) + , phaseCondition_(grid.number_of_cells) { } @@ -226,6 +228,7 @@ namespace { { const V pvdt = geo_.poreVolume() / dt; + classifyCondition(x); { const SolutionState state = constantState(x, xw); computeAccum(state, 0); @@ -286,6 +289,7 @@ namespace { : pressure ( ADB::null()) , saturation(np, ADB::null()) , rs ( ADB::null()) + , rv ( ADB::null()) , qs ( ADB::null()) , bhp ( ADB::null()) { @@ -336,18 +340,16 @@ namespace { // The block pattern assumes the following primary variables: // pressure // water saturation (if water present) - // gas saturation (if gas present) - // gas solution factor (if both gas and oil present) + // gas saturation, Rv (vapor oil/gas ratio) or Rs (solution gas/oil ratio) depending on hydrocarbon state + // Gas only (undersaturated gas): Rv + // Gas and oil: Sg + // Oil only (undersaturated oil): Rs // well rates per active phase and well // well bottom-hole pressure // Note that oil is assumed to always be present, but is never // a primary variable. assert(active_[ Oil ]); std::vector bpat(np, nc); - const bool gasandoil = (active_[ Oil ] && active_[ Gas ]); - if (gasandoil) { - bpat.push_back(nc); - } bpat.push_back(xw.bhp().size() * np); bpat.push_back(xw.bhp().size()); @@ -384,7 +386,7 @@ namespace { } } - // Gas-oil ratio (rs). + // Solution Gas-oil ratio (rs). if (active_[ Oil ] && active_[ Gas ]) { const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); state.rs = ADB::constant(rs, bpat); @@ -393,6 +395,15 @@ namespace { state.rs = ADB::constant(Rs, bpat); } + // Vapor Oil-gas ratio (rv). + if (active_[ Oil ] && active_[ Gas ]) { + const V rv = Eigen::Map(& x.rv()[0], x.rv().size()); + state.rv = ADB::constant(rv, bpat); + } else { + const V rv = V::Zero(nc, 1); + state.rv = ADB::constant(rv, bpat); + } + // Well rates. assert (not xw.wellRates().empty()); // Need to reshuffle well rates, from ordered by wells, then phase, @@ -423,8 +434,8 @@ namespace { const int np = x.numPhases(); std::vector vars0; - vars0.reserve(active_[Oil] && active_[Gas] ? np + 2 : np + 1); // Rs is primary if oil and gas present. - + // p, Sw and Rs, Rv or Sg is used as primary depending on solution conditions + vars0.reserve(np + 1); // Initial pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); @@ -440,16 +451,49 @@ namespace { const V sw = s.col(pu.phase_pos[ Water ]); vars0.push_back(sw); } - if (active_[ Gas ]) { + + // store cell status in vectors + V isRs = V::Zero(nc,1); + V isRv = V::Zero(nc,1); + V isSg = V::Zero(nc,1); + bool disgas = false; + bool vapoil = false; + + if (active_[ Gas ]){ + // this is a temporary hack to find if vapoil or disgas + // is a active component. Should be given directly from + // DISGAS and VAPOIL keywords in the deck. + for (int c = 0; c < nc; c++){ + if(x.rv()[c] > 0) + vapoil = true; + if(x.gasoilratio ()[c] > 0) + disgas = true; + } + + for (int c = 0; c < nc ; c++ ) { + const PhasePresence cond = phaseCondition()[c]; + if ( (!cond.hasFreeGas()) && disgas ) { + isRs[c] = 1; + } + else if ( (!cond.hasFreeOil()) && vapoil ) { + isRv[c] = 1; + } + else { + isSg[c] = 1; + } + } + + + // define new primary variable xvar depending on solution condition + V xvar(nc); const V sg = s.col(pu.phase_pos[ Gas ]); - vars0.push_back(sg); + const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); + const V rv = Eigen::Map(& x.rv()[0], x.rv().size()); + xvar = isRs*rs + isRv*rv + isSg*sg; + vars0.push_back(xvar); } - // Initial gas-oil ratio (Rs). - if (active_[ Oil ] && active_[ Gas ]) { - const V rs = Eigen::Map(& x.gasoilratio()[0], x.gasoilratio().size()); - vars0.push_back(rs); - } + // Initial well rates. assert (not xw.wellRates().empty()); @@ -474,36 +518,45 @@ namespace { int nextvar = 0; state.pressure = vars[ nextvar++ ]; - // Saturation. + // Saturations const std::vector& bpat = vars[0].blockPattern(); { ADB so = ADB::constant(V::Ones(nc, 1), bpat); if (active_[ Water ]) { ADB& sw = vars[ nextvar++ ]; - state.saturation[ pu.phase_pos[ Water ] ] = sw; - + state.saturation[pu.phase_pos[ Water ]] = sw; so = so - sw; } - if (active_[ Gas ]) { - ADB& sg = vars[ nextvar++ ]; - state.saturation[ pu.phase_pos[ Gas ] ] = sg; + // Define Sg Rs and Rv in terms of xvar. + std::vector all_cells = buildAllCells(nc); + ADB rsSat = fluidRsSat(state.pressure,all_cells); + ADB rvSat = fluidRvSat(state.pressure,all_cells); + ADB xvar = vars[ nextvar++ ]; + if (active_[ Gas]) { + ADB sg = isSg*xvar + isRv* so; + state.saturation[ pu.phase_pos[ Gas ] ] = sg; so = so - sg; + + if (disgas) { + state.rs = (1-isRs) * rsSat + isRs*xvar; + } else { + state.rs = rsSat; + } + if (vapoil) { + state.rv = (1-isRv) * rvSat + isRv*xvar; + } else { + state.rv = rvSat; + } } + if (active_[ Oil ]) { // Note that so is never a primary variable. state.saturation[ pu.phase_pos[ Oil ] ] = so; } } - // Rs. - if (active_[ Oil ] && active_[ Gas ]) { - state.rs = vars[ nextvar++ ]; - } else { - state.rs = ADB::constant(V::Zero(nc), bpat); - } - // Qs. state.qs = vars[ nextvar++ ]; @@ -528,9 +581,9 @@ namespace { const ADB& press = state.pressure; const std::vector& sat = state.saturation; const ADB& rs = state.rs; + const ADB& rv = state.rv; - std::vector cond; - classifyCondition(state, cond); + const std::vector cond = phaseCondition(); const ADB pv_mult = poroMult(press); @@ -538,7 +591,7 @@ namespace { for (int phase = 0; phase < maxnp; ++phase) { if (active_[ phase ]) { const int pos = pu.phase_pos[ phase ]; - rq_[pos].b = fluidReciprocFVF(phase, press, rs, cond, cells_); + rq_[pos].b = fluidReciprocFVF(phase, press, rs, rv, cond, cells_); rq_[pos].accum[aix] = pv_mult * rq_[pos].b * sat[pos]; // DUMP(rq_[pos].b); // DUMP(rq_[pos].accum[aix]); @@ -546,11 +599,12 @@ namespace { } if (active_[ Oil ] && active_[ Gas ]) { - // Account for gas dissolved in oil. + // Account for gas dissolved in oil and vaporized oil const int po = pu.phase_pos[ Oil ]; const int pg = pu.phase_pos[ Gas ]; rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix]; + rq_[po].accum[aix] += state.rv * rq_[pg].accum[aix]; //DUMP(rq_[pg].accum[aix]); } } @@ -594,32 +648,33 @@ namespace { pvdt*(rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0]) + ops_.div*rq_[phaseIdx].mflux; + + // DUMP(ops_.div*rq_[phase].mflux); // DUMP(residual_.mass_balance[phase]); } - // -------- Extra (optional) sg or rs equation, and rs contributions to the mass balance equations -------- + // -------- Extra (optional) rs and rv contributions to the mass balance equations -------- - // Add the extra (flux) terms to the gas mass balance equations - // from gas dissolved in the oil phase. + // Add the extra (flux) terms to the mass balance equations + // From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv) // The extra terms in the accumulation part of the equation are already handled. if (active_[ Oil ] && active_[ Gas ]) { const int po = fluid_.phaseUsage().phase_pos[ Oil ]; - const UpwindSelector upwind(grid_, ops_, + const UpwindSelector upwindOil(grid_, ops_, rq_[po].head.value()); - const ADB rs_face = upwind.select(state.rs); + const ADB rs_face = upwindOil.select(state.rs); residual_.mass_balance[ Gas ] += ops_.div * (rs_face * rq_[po].mflux); + + const int pg = fluid_.phaseUsage().phase_pos[ Gas ]; + const UpwindSelector upwindGas(grid_, ops_, + rq_[pg].head.value()); + const ADB rv_face = upwindGas.select(state.rv); + + residual_.mass_balance[ Oil ] += ops_.div * (rv_face * rq_[pg].mflux); + // DUMP(residual_.mass_balance[ Gas ]); - // Also, we have another equation: sg = 0 or rs = rsMax. - const int pg = fluid_.phaseUsage().phase_pos[ Gas ]; - const ADB sg_eq = state.saturation[pg]; - const ADB rs_max = fluidRsMax(state.pressure, cells_); - const ADB rs_eq = state.rs - rs_max; - // Consider the fluid to be saturated if sg >= 1e-14 (a small number) - Selector use_sat_eq(sg_eq.value()-1e-14); - residual_.rs_or_sg_eq = use_sat_eq.select(rs_eq, sg_eq); - // DUMP(residual_.rs_or_sg_eq); } // -------- Well equation, and well contributions to the mass balance equations -------- @@ -655,14 +710,14 @@ namespace { } } - std::vector cond; - classifyCondition(state, cond); + // make a copy of the phaseConditions + std::vector cond = phaseCondition_; ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern()); for (int phase = 0; phase < 3; ++phase) { if (active_[phase]) { const int pos = pu.phase_pos[phase]; - const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, cond, cells_); + const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, state.rv,cond, cells_); cell_rho_total += state.saturation[pos] * cell_rho; } } @@ -672,7 +727,7 @@ namespace { for (int phase = 0; phase < 3; ++phase) { if (active_[phase]) { const int pos = pu.phase_pos[phase]; - const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, cond, cells_); + const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, state.rv,cond, cells_); const V fraction = compi.col(pos); inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells); } @@ -724,9 +779,12 @@ namespace { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; const ADB rs_perf = subset(state.rs, well_cells); + const ADB rv_perf = subset(state.rv, well_cells); well_rates_all += superset(wops_.p2w * (well_perf_rates[oilpos]*rs_perf), Span(nw, 1, gaspos*nw), nw*np); + well_rates_all += superset(wops_.p2w * (well_perf_rates[gaspos]*rv_perf), Span(nw, 1, oilpos*nw), nw*np); // DUMP(well_contribs[gaspos] + well_contribs[oilpos]*state.rs); residual_.mass_balance[gaspos] += well_contribs[oilpos]*state.rs; + residual_.mass_balance[oilpos] += well_contribs[gaspos]*state.rv; } // Set the well flux equation @@ -774,9 +832,6 @@ namespace { for (int phase = 1; phase < np; ++phase) { mass_res = vertcat(mass_res, residual_.mass_balance[phase]); } - if (active_[Oil] && active_[Gas]) { - mass_res = vertcat(mass_res, residual_.rs_or_sg_eq); - } const ADB well_res = vertcat(residual_.well_flux_eq, residual_.well_eq); const ADB total_residual = collapseJacs(vertcat(mass_res, well_res)); // DUMP(total_residual); @@ -788,6 +843,18 @@ namespace { = linsolver_.solve(matr.rows(), matr.nonZeros(), matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(), total_residual.value().data(), dx.data()); + /* + std::ofstream filestream("matrix.out"); + filestream << matr; + filestream.close(); + std::ofstream filestream2("sol.out"); + filestream2 << dx; + filestream2.close(); + std::ofstream filestream3("r.out"); + filestream3 << total_residual.value(); + filestream3.close(); */ + + if (!rep.converged) { OPM_THROW(std::runtime_error, "FullyImplicitBlackoilSolver::solveJacobianSystem(): " @@ -812,7 +879,7 @@ namespace { void FullyImplicitBlackoilSolver::updateState(const V& dx, BlackoilState& state, - WellState& well_state) const + WellState& well_state) { const int np = fluid_.numPhases(); const int nc = grid_.number_of_cells; @@ -822,15 +889,47 @@ namespace { const V zero = V::Zero(nc); const V one = V::Constant(nc, 1.0); + // store cell status in vectors + V isRs = V::Zero(nc,1); + V isRv = V::Zero(nc,1); + V isSg = V::Zero(nc,1); + + bool disgas = false; + bool vapoil = false; + + // this is a temporary hack to find if vapoil or disgas + // is a active component. Should be given directly from + // DISGAS and VAPOIL keywords in the deck. + for (int c = 0; c0) + vapoil = true; + if(state.gasoilratio()[c]>0) + disgas = true; + } + + const std::vector conditions = phaseCondition(); + for (int c = 0; c < nc; c++ ) { + const PhasePresence cond = conditions[c]; + if ( (!cond.hasFreeGas()) && disgas ) { + isRs[c] = 1; + } + else if ( (!cond.hasFreeOil()) && vapoil ) { + isRv[c] = 1; + } + else { + isSg[c] = 1; + } + } + // Extract parts of dx corresponding to each part. const V dp = subset(dx, Span(nc)); int varstart = nc; const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null; varstart += dsw.size(); - const V dsg = active_[Gas] ? subset(dx, Span(nc, 1, varstart)) : null; - varstart += dsg.size(); - const V drs = (active_[Water] && active_[Gas]) ? subset(dx, Span(nc, 1, varstart)) : null; - varstart += drs.size(); + + const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null; + varstart += dxvar.size(); + const V dqs = subset(dx, Span(np*nw, 1, varstart)); varstart += dqs.size(); const V dbhp = subset(dx, Span(nw, 1, varstart)); @@ -845,81 +944,151 @@ namespace { const V p = (p_old - dp_limited).max(zero); std::copy(&p[0], &p[0] + nc, state.pressure().begin()); - // Rs update. Moved before the saturation update because it is - // needed there. - if (active_[Oil] && active_[Gas]) { - const double drsmaxrel = 0.8; - const V rs_old = Eigen::Map(&state.gasoilratio()[0], nc); - const V absdrsmax = drsmaxrel*rs_old.abs(); - const V drs_limited = sign(drs) * drs.abs().min(absdrsmax); - const V rs = rs_old - drs_limited; - std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin()); - } // Saturation updates. - const double dsmax = 0.3; - const DataBlock s_old = Eigen::Map(& state.saturation()[0], nc, np); - V so = one; const Opm::PhaseUsage& pu = fluid_.phaseUsage(); + const DataBlock s_old = Eigen::Map(& state.saturation()[0], nc, np); + const double dsmax = 0.3; + V so = one; + V sw; + if (active_[ Water ]) { const int pos = pu.phase_pos[ Water ]; const V sw_old = s_old.col(pos); const V dsw_limited = sign(dsw) * dsw.abs().min(dsmax); - const V sw = (sw_old - dsw_limited).unaryExpr(Chop01()); + sw = (sw_old - dsw_limited).unaryExpr(Chop01()); so -= sw; for (int c = 0; c < nc; ++c) { state.saturation()[c*np + pos] = sw[c]; } } - if (active_[ Gas ]) { + + V sg; + if (active_[Gas]) { const int pos = pu.phase_pos[ Gas ]; const V sg_old = s_old.col(pos); + const V dsg = isSg * dxvar - isRv * dsw; const V dsg_limited = sign(dsg) * dsg.abs().min(dsmax); - V sg = sg_old - dsg_limited; - if (active_[ Oil ]) { - // Appleyard chop process. - const double epsilon = std::sqrt(std::numeric_limits::epsilon()); - const double above_epsilon = 2.0*epsilon; - const double rs_adjust = 1.0; - auto sat2usat = (sg_old > 0.0) && (sg <= 0.0); - Eigen::Map rs(&state.gasoilratio()[0], nc); - const V rs_sat = fluidRsMax(p, cells_); - auto over_saturated = ((sg > 0) || (rs > rs_sat*rs_adjust)) && (sat2usat == false); - auto usat2sat = (sg_old < epsilon) && over_saturated; - auto zerosg = (sat2usat && sg_old <= above_epsilon); - auto epssg = (sat2usat && sg_old > epsilon); - // With no simple support for Matlab-style statements below, - // we use an explicit for loop. - // sg(zerosg) = 0.0; - // sg(epssg) = epsilon; - // sg(usat2sat) = above_epsilon; - // rs(sg > 0) = rs_sat(sg > 0); - // rs(rs > rs_sat*rs_adjust) = rs_sat(rs > rs_sat*rs_adjust); - for (int c = 0; c < nc; ++c) { - - if (zerosg[c]) { - sg[c] = 0.0; - } - if (epssg[c]) { - sg[c] = epsilon; - } - if (usat2sat[c]) { - sg[c] = above_epsilon; - } - if (sg[c] > 0.0) { - rs[c] = rs_sat[c]; - } - if (rs[c] > rs_sat[c]*rs_adjust) { - rs[c] = rs_sat[c]; - } - } - } - sg.unaryExpr(Chop01()); + sg = sg_old - dsg_limited; so -= sg; + } + + + + const double drsmax = 1e9; + const double drvmax = 1e9;//% same as in Mrst + V rs; + if (disgas) { + const V rs_old = Eigen::Map(&state.gasoilratio()[0], nc); + const V drs = isRs * dxvar; + const V drs_limited = sign(drs) * drs.abs().min(drsmax); + rs = rs_old - drs_limited; + } + V rv; + if (vapoil) { + const V rv_old = Eigen::Map(&state.rv()[0], nc); + const V drv = isRv * dxvar; + const V drv_limited = sign(drv) * drv.abs().min(drvmax); + rv = rv_old - drv_limited; + } + + // Appleyard chop process. + const double epsilon = std::sqrt(std::numeric_limits::epsilon()); + auto watOnly = sw > (1 - epsilon); + + + // phase translation sg <-> rs + const V rsSat0 = fluidRsSat(p_old, cells_); + const V rsSat = fluidRsSat(p, cells_); + + // reset the phase conditions + std::vector cond(nc); + + if (disgas) { + // The obvioious case + auto ix0 = (sg > 0 && isRs == 0); + + // keep oil saturated if previous sg is sufficient large: + const int pos = pu.phase_pos[ Gas ]; + auto ix1 = (sg < 0 && s_old.col(pos) > epsilon); + // Set oil saturated if previous rs is sufficiently large + const V rs_old = Eigen::Map(&state.gasoilratio()[0], nc); + auto ix2 = ( (rs > rsSat * (1+epsilon) && isRs == 1 ) && (rs_old > rsSat0 * (1-epsilon)) ); + + auto gasPresent = watOnly || ix0 || ix1 || ix2; for (int c = 0; c < nc; ++c) { - state.saturation()[c*np + pos] = sg[c]; + if (gasPresent[c]) { + rs[c] = rsSat[c]; + cond[c].setFreeGas(); + } + } } + + // phase transitions so <-> rv + const V rvSat0 = fluidRvSat(p_old, cells_); + const V rvSat = fluidRvSat(p, cells_); + + if (vapoil) { + // The obvious case + auto ix0 = (so > 0 && isRv == 0); + + // keep oil saturated if previous sg is sufficient large: + const int pos = pu.phase_pos[ Oil ]; + auto ix1 = (so < 0 && s_old.col(pos) > epsilon ); + // Set oil saturated if previous rs is sufficiently large + const V rv_old = Eigen::Map(&state.rv()[0], nc); + auto ix2 = ( (rv > rvSat * (1+epsilon) && isRv == 1) && (rv_old > rvSat0 * (1-epsilon)) ); + auto oilPresent = watOnly || ix0 || ix1 || ix2; + for (int c = 0; c < nc; ++c) { + if (oilPresent[c]) { + rv[c] = rvSat[c]; + cond[c].setFreeOil(); + } + } + + } + std::copy(&cond[0], &cond[0] + nc, phaseCondition_.begin()); + + auto ixg = sg < 0; + for (int c = 0; c < nc; ++c) { + if (ixg[c]) { + sw[c] = sw[c] / (1-sg[c]); + so[c] = so[c] / (1-sg[c]); + sg[c] = 0; + } + } + + + auto ixo = so < 0; + for (int c = 0; c < nc; ++c) { + if (ixo[c]) { + sw[c] = sw[c] / (1-so[c]); + sg[c] = sg[c] / (1-so[c]); + so[c] = 0; + } + } + + auto ixw = sw < 0; + for (int c = 0; c < nc; ++c) { + if (ixw[c]) { + so[c] = so[c] / (1-sw[c]); + sg[c] = sg[c] / (1-so[c]); + sw[c] = 0; + } + } + + + // Update saturations + + for (int c = 0; c < nc; ++c) { + state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c]; + } + + for (int c = 0; c < nc; ++c) { + state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c]; + } + if (active_[ Oil ]) { const int pos = pu.phase_pos[ Oil ]; for (int c = 0; c < nc; ++c) { @@ -927,6 +1096,15 @@ namespace { } } + // Rs and Rv updates + if (disgas) + std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin()); + + if (vapoil) + std::copy(&rv[0], &rv[0] + nc, state.rv().begin()); + + + // Qs update. // Since we need to update the wellrates, that are ordered by wells, // from dqs which are ordered by phase, the simplest is to compute @@ -1054,15 +1232,14 @@ namespace { { const int canonicalPhaseIdx = canph_[ actph ]; - std::vector cond; - classifyCondition(state, cond); + const std::vector cond = phaseCondition(); const ADB tr_mult = transMult(state.pressure); - const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.rs, cond, cells_); + const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.rs, state.rv,cond, cells_); rq_[ actph ].mob = tr_mult * kr / mu; - const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.rs, cond, cells_); + const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.rs, state.rv,cond, cells_); ADB& head = rq_[ actph ].head; @@ -1115,6 +1292,7 @@ namespace { FullyImplicitBlackoilSolver::fluidViscosity(const int phase, const ADB& p , const ADB& rs , + const ADB& rv , const std::vector& cond, const std::vector& cells) const { @@ -1125,7 +1303,7 @@ namespace { return fluid_.muOil(p, rs, cond, cells); } case Gas: - return fluid_.muGas(p, cells); + return fluid_.muGas(p, rv, cond, cells); default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } @@ -1139,6 +1317,7 @@ namespace { FullyImplicitBlackoilSolver::fluidReciprocFVF(const int phase, const ADB& p , const ADB& rs , + const ADB& rv , const std::vector& cond, const std::vector& cells) const { @@ -1149,7 +1328,7 @@ namespace { return fluid_.bOil(p, rs, cond, cells); } case Gas: - return fluid_.bGas(p, cells); + return fluid_.bGas(p, rv, cond, cells); default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } @@ -1163,16 +1342,21 @@ namespace { FullyImplicitBlackoilSolver::fluidDensity(const int phase, const ADB& p , const ADB& rs , + const ADB& rv , const std::vector& cond, const std::vector& cells) const { const double* rhos = fluid_.surfaceDensity(); - ADB b = fluidReciprocFVF(phase, p, rs, cond, cells); + ADB b = fluidReciprocFVF(phase, p, rs, rv, cond, cells); ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b; if (phase == Oil && active_[Gas]) { // It is correct to index into rhos with canonical phase indices. rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b; } + if (phase == Gas && active_[Oil]) { + // It is correct to index into rhos with canonical phase indices. + rho += V::Constant(p.size(), 1, rhos[Oil]) * rv * b; + } return rho; } @@ -1181,10 +1365,10 @@ namespace { V - FullyImplicitBlackoilSolver::fluidRsMax(const V& p, + FullyImplicitBlackoilSolver::fluidRsSat(const V& p, const std::vector& cells) const { - return fluid_.rsMax(p, cells); + return fluid_.rsSat(p, cells); } @@ -1192,16 +1376,32 @@ namespace { ADB - FullyImplicitBlackoilSolver::fluidRsMax(const ADB& p, + FullyImplicitBlackoilSolver::fluidRsSat(const ADB& p, const std::vector& cells) const { - return fluid_.rsMax(p, cells); + return fluid_.rsSat(p, cells); + } + + V + FullyImplicitBlackoilSolver::fluidRvSat(const V& p, + const std::vector& cells) const + { + return fluid_.rvSat(p, cells); } + ADB + FullyImplicitBlackoilSolver::fluidRvSat(const ADB& p, + const std::vector& cells) const + { + return fluid_.rvSat(p, cells); + } + + + ADB FullyImplicitBlackoilSolver::poroMult(const ADB& p) const { @@ -1253,6 +1453,7 @@ namespace { } + /* void FullyImplicitBlackoilSolver:: classifyCondition(const SolutionState& state, @@ -1291,7 +1492,43 @@ namespace { if (so[c] > 0) { cond[c].setFreeOil(); } } } + } */ + + + void + FullyImplicitBlackoilSolver::classifyCondition(const BlackoilState& state) + { + const int nc = grid_.number_of_cells; + const int np = state.numPhases(); + + const PhaseUsage& pu = fluid_.phaseUsage(); + const DataBlock s = Eigen::Map(& state.saturation()[0], nc, np); + if (active_[ Gas ]) { + // Oil/Gas or Water/Oil/Gas system + const V so = s.col(pu.phase_pos[ Oil ]); + const V sg = s.col(pu.phase_pos[ Gas ]); + + for (V::Index c = 0, e = sg.size(); c != e; ++c) { + if (so[c] > 0) { phaseCondition_[c].setFreeOil (); } + if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); } + if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); } + } + } + else { + // Water/Oil system + assert (active_[ Water ]); + + const V so = s.col(pu.phase_pos[ Oil ]); + + + for (V::Index c = 0, e = so.size(); c != e; ++c) { + phaseCondition_[c].setFreeWater(); + + if (so[c] > 0) { phaseCondition_[c].setFreeOil(); } + } + } + + } - } // namespace Opm diff --git a/opm/autodiff/FullyImplicitBlackoilSolver.hpp b/opm/autodiff/FullyImplicitBlackoilSolver.hpp index 042b2cb39..733b933fa 100644 --- a/opm/autodiff/FullyImplicitBlackoilSolver.hpp +++ b/opm/autodiff/FullyImplicitBlackoilSolver.hpp @@ -102,8 +102,9 @@ namespace Opm { ADB pressure; std::vector saturation; ADB rs; + ADB rv; ADB qs; - ADB bhp; + ADB bhp; }; struct WellOps { @@ -133,6 +134,7 @@ namespace Opm { const M grav_; std::vector rq_; + std::vector phaseCondition_; // The mass_balance vector has one element for each active phase, // each of which has size equal to the number of cells. @@ -166,7 +168,7 @@ namespace Opm { void updateState(const V& dx, BlackoilState& state, - WellState& well_state) const; + WellState& well_state); std::vector computePressures(const SolutionState& state) const; @@ -193,6 +195,7 @@ namespace Opm { fluidViscosity(const int phase, const ADB& p , const ADB& rs , + const ADB& rv , const std::vector& cond, const std::vector& cells) const; @@ -200,6 +203,7 @@ namespace Opm { fluidReciprocFVF(const int phase, const ADB& p , const ADB& rs , + const ADB& rv , const std::vector& cond, const std::vector& cells) const; @@ -207,15 +211,24 @@ namespace Opm { fluidDensity(const int phase, const ADB& p , const ADB& rs , + const ADB& rv , const std::vector& cond, const std::vector& cells) const; V - fluidRsMax(const V& p, + fluidRsSat(const V& p, const std::vector& cells) const; ADB - fluidRsMax(const ADB& p, + fluidRsSat(const ADB& p, + const std::vector& cells) const; + + V + fluidRvSat(const V& p, + const std::vector& cells) const; + + ADB + fluidRvSat(const ADB& p, const std::vector& cells) const; ADB @@ -227,6 +240,14 @@ namespace Opm { void classifyCondition(const SolutionState& state, std::vector& cond ) const; + + const std::vector + phaseCondition() const {return phaseCondition_;} + + void + classifyCondition(const BlackoilState& state); + + }; } // namespace Opm