Merge pull request #471 from dr-robertk/PR/ParallelDebugOutput

ParallelDebugOutput: make the output in ecl format work in parallel.
This commit is contained in:
Atgeirr Flø Rasmussen
2015-09-16 12:48:49 +02:00
6 changed files with 639 additions and 79 deletions

View File

@@ -135,6 +135,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/autodiff/NewtonSolver.hpp
opm/autodiff/NewtonSolver_impl.hpp
opm/autodiff/LinearisedBlackoilResidual.hpp
opm/autodiff/ParallelDebugOutput.hpp
opm/autodiff/RateConverter.hpp
opm/autodiff/RedistributeDataHandles.hpp
opm/autodiff/SimulatorBase.hpp

View File

@@ -251,7 +251,6 @@ try
}
const PhaseUsage pu = Opm::phaseUsageFromDeck(deck);
Opm::BlackoilOutputWriter outputWriter(grid, param, eclipseState, pu );
std::vector<int> compressedToCartesianIdx;
Opm::createGlobalCellArray(grid, compressedToCartesianIdx);
@@ -343,17 +342,14 @@ try
// and initilialize new properties and states for it.
if( mpi_size > 1 )
{
if( param.getDefault("output_matlab", false) || param.getDefault("output_ecl", true) )
{
std::cerr << "We only support vtk output during parallel runs. \n"
<< "Please use \"output_matlab=false output_ecl=false\" to deactivate the \n"
<< "other outputs!" << std::endl;
return EXIT_FAILURE;
}
Opm::distributeGridAndData( grid, eclipseState, state, new_props, geoprops, parallel_information, use_local_perm );
}
// create output writer after grid is distributed, otherwise the parallel output
// won't work correctly since we need to create a mapping from the distributed to
// the global view
Opm::BlackoilOutputWriter outputWriter(grid, param, eclipseState, pu );
// Solver for Newton iterations.
std::unique_ptr<NewtonIterationBlackoilInterface> fis_solver;
if (param.getDefault("use_interleaved", true)) {

View File

@@ -0,0 +1,553 @@
/*
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_PARALLELDEBUGOUTPUT_HEADER_INCLUDED
#define OPM_PARALLELDEBUGOUTPUT_HEADER_INCLUDED
#include <opm/core/grid.h>
#include <opm/core/simulator/SimulatorState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#if HAVE_DUNE_CORNERPOINT
#include <dune/grid/common/p2pcommunicator.hh>
#endif
namespace Opm
{
class ParallelDebugOutputInterface
{
protected:
ParallelDebugOutputInterface () {}
public:
virtual ~ParallelDebugOutputInterface() {}
// gather solution to rank 0 for EclipseWriter
virtual bool collectToIORank( const SimulatorState& localReservoirState,
const WellState& localWellState ) = 0;
virtual const SimulatorState& globalReservoirState() const = 0 ;
virtual const WellState& globalWellState() const = 0 ;
virtual bool isIORank() const = 0;
virtual int numCells() const = 0 ;
virtual const int* globalCell() const = 0;
};
template <class GridImpl>
class ParallelDebugOutput : public ParallelDebugOutputInterface
{
protected:
const GridImpl& grid_;
const SimulatorState* globalState_;
const WellState* wellState_;
public:
ParallelDebugOutput ( const GridImpl& grid,
Opm::EclipseStateConstPtr eclipseState,
const int )
: grid_( grid ) {}
// gather solution to rank 0 for EclipseWriter
virtual bool collectToIORank( const SimulatorState& localReservoirState,
const WellState& localWellState )
{
globalState_ = &localReservoirState;
wellState_ = &localWellState;
return true ;
}
virtual const SimulatorState& globalReservoirState() const { return *globalState_; }
virtual const WellState& globalWellState() const { return *wellState_; }
virtual bool isIORank () const { return true; }
virtual int numCells() const { return grid_.number_of_cells; }
virtual const int* globalCell() const { return grid_.global_cell; }
};
#if HAVE_DUNE_CORNERPOINT
template <>
class ParallelDebugOutput< Dune::CpGrid> : public ParallelDebugOutputInterface
{
public:
typedef Dune::CpGrid Grid;
typedef typename Grid :: CollectiveCommunication CollectiveCommunication;
// global id
class GlobalCellIndex
{
int globalId_;
int localIndex_;
bool isInterior_;
public:
GlobalCellIndex() : globalId_(-1), localIndex_(-1), isInterior_(true) {}
void setGhost() { isInterior_ = false; }
void setId( const int globalId ) { globalId_ = globalId; }
void setIndex( const int localIndex ) { localIndex_ = localIndex; }
int localIndex () const { return localIndex_; }
int id () const { return globalId_; }
bool isInterior() const { return isInterior_; }
};
typedef typename Dune::PersistentContainer< Grid, GlobalCellIndex > GlobalIndexContainer;
static const int dimension = Grid :: dimension ;
typedef typename Grid :: LeafGridView GridView;
typedef GridView AllGridView;
typedef Dune :: Point2PointCommunicator< Dune :: SimpleMessageBuffer > P2PCommunicatorType;
typedef typename P2PCommunicatorType :: MessageBufferType MessageBufferType;
typedef std::vector< GlobalCellIndex > LocalIndexMapType;
typedef std::vector<int> IndexMapType;
typedef std::vector< IndexMapType > IndexMapStorageType;
class DistributeIndexMapping : public P2PCommunicatorType::DataHandleInterface
{
protected:
const std::vector<int>& distributedGlobalIndex_;
IndexMapType& localIndexMap_;
IndexMapStorageType& indexMaps_;
std::map< const int, const int > globalPosition_;
std::set< int > checkPosition_;
public:
DistributeIndexMapping( const std::vector<int>& globalIndex,
const std::vector<int>& distributedGlobalIndex,
IndexMapType& localIndexMap,
IndexMapStorageType& indexMaps )
: distributedGlobalIndex_( distributedGlobalIndex ),
localIndexMap_( localIndexMap ),
indexMaps_( indexMaps ),
globalPosition_()
{
const size_t size = globalIndex.size();
// create mapping globalIndex --> localIndex
for ( size_t index = 0; index < size; ++index )
{
globalPosition_.insert( std::make_pair( globalIndex[ index ], index ) );
}
if( ! indexMaps_.empty() )
{
// for the ioRank create a localIndex to index in global state map
IndexMapType& indexMap = indexMaps_.back();
const size_t localSize = localIndexMap_.size();
indexMap.resize( localSize );
for( size_t i=0; i<localSize; ++i )
{
const int id = distributedGlobalIndex_[ localIndexMap_[ i ] ];
indexMap[ i ] = id ;
#ifndef NDEBUG
assert( checkPosition_.find( id ) == checkPosition_.end() );
checkPosition_.insert( id );
#endif
}
}
}
void pack( const int link, MessageBufferType& buffer )
{
// we should only get one link
assert( link == 0 );
// pack all interior global cell id's
const int size = localIndexMap_.size();
buffer.write( size );
for( int index = 0; index < size; ++index )
{
const int globalIdx = distributedGlobalIndex_[ localIndexMap_[ index ] ];
buffer.write( globalIdx );
}
}
void unpack( const int link, MessageBufferType& buffer )
{
// get index map for current link
IndexMapType& indexMap = indexMaps_[ link ];
assert( ! globalPosition_.empty() );
// unpack all interior global cell id's
int numCells = 0;
buffer.read( numCells );
indexMap.resize( numCells );
for( int index = 0; index < numCells; ++index )
{
int globalId = -1;
buffer.read( globalId );
assert( globalPosition_.find( globalId ) != globalPosition_.end() );
indexMap[ index ] = globalPosition_[ globalId ];
#ifndef NDEBUG
assert( checkPosition_.find( globalId ) == checkPosition_.end() );
checkPosition_.insert( globalId );
#endif
}
}
};
enum { ioRank = 0 };
ParallelDebugOutput( const Dune::CpGrid& otherGrid,
Opm::EclipseStateConstPtr eclipseState,
const int numPhases )
: toIORankComm_( otherGrid.comm() ),
isIORank_( otherGrid.comm().rank() == ioRank )
{
const CollectiveCommunication& comm = otherGrid.comm();
std::set< int > send, recv;
// the I/O rank receives from all other ranks
if( isIORank() )
{
Dune::CpGrid globalGrid( otherGrid );
globalGrid.switchToGlobalView();
// initialize global state with correct sizes
globalReservoirState_.init( globalGrid.numCells(), globalGrid.numFaces(), numPhases );
// TODO init well state
// Create wells and well state.
WellsManager wells_manager(eclipseState,
0,
Opm::UgGridHelpers::numCells( globalGrid ),
Opm::UgGridHelpers::globalCell( globalGrid ),
Opm::UgGridHelpers::cartDims( globalGrid ),
Opm::UgGridHelpers::dimensions( globalGrid ),
Opm::UgGridHelpers::cell2Faces( globalGrid ),
Opm::UgGridHelpers::beginFaceCentroids( globalGrid ),
0,
false);
const Wells* wells = wells_manager.c_wells();
globalWellState_.init(wells, globalReservoirState_, globalWellState_ );
// copy global cartesian index
globalIndex_ = globalGrid.globalCell();
unsigned int count = 0;
auto gridView = globalGrid.leafGridView();
for( auto it = gridView.template begin< 0 >(),
end = gridView.template end< 0 >(); it != end; ++it, ++count )
{
}
assert( count == globalIndex_.size() );
for(int i=0; i<comm.size(); ++i)
{
if( i != ioRank )
{
recv.insert( i );
}
}
}
else // all other simply send to the I/O rank
{
send.insert( ioRank );
}
localIndexMap_.clear();
localIndexMap_.reserve( otherGrid.size( 0 ) );
unsigned int index = 0;
auto localView = otherGrid.leafGridView();
for( auto it = localView.template begin< 0 >(),
end = localView.template end< 0 >(); it != end; ++it, ++index )
{
const auto element = *it ;
// only store interior element for collection
if( element.partitionType() == Dune :: InteriorEntity )
{
localIndexMap_.push_back( index );
}
}
// insert send and recv linkage to communicator
toIORankComm_.insertRequest( send, recv );
if( isIORank() )
{
// need an index map for each rank
indexMaps_.clear();
indexMaps_.resize( comm.size() );
}
// distribute global id's to io rank for later association of dof's
DistributeIndexMapping distIndexMapping( globalIndex_, otherGrid.globalCell(), localIndexMap_, indexMaps_ );
toIORankComm_.exchange( distIndexMapping );
}
class PackUnPackSimulatorState : public P2PCommunicatorType::DataHandleInterface
{
const SimulatorState& localState_;
SimulatorState& globalState_;
const WellState& localWellState_;
WellState& globalWellState_;
const IndexMapType& localIndexMap_;
const IndexMapStorageType& indexMaps_;
public:
PackUnPackSimulatorState( const SimulatorState& localState,
SimulatorState& globalState,
const WellState& localWellState,
WellState& globalWellState,
const IndexMapType& localIndexMap,
const IndexMapStorageType& indexMaps,
const bool isIORank )
: localState_( localState ),
globalState_( globalState ),
localWellState_( localWellState ),
globalWellState_( globalWellState ),
localIndexMap_( localIndexMap ),
indexMaps_( indexMaps )
{
if( isIORank )
{
// add missing data to global state
for( size_t i=globalState_.cellData().size();
i<localState.cellData().size(); ++i )
{
const size_t components = localState.cellData()[ i ].size() / localState.numCells();
assert( components * localState.numCells() == localState.cellData()[ i ].size() );
globalState_.registerCellData( localState.cellDataNames()[ i ], components );
}
MessageBufferType buffer;
pack( 0, buffer );
// the last index map is the local one
doUnpack( indexMaps.back(), buffer );
}
}
// pack all data associated with link
void pack( const int link, MessageBufferType& buffer )
{
// we should only get one link
assert( link == 0 );
// write all cell data registered in local state
const size_t numCells = localState_.numCells();
const size_t numCellData = localState_.cellData().size();
for( size_t d=0; d<numCellData; ++d )
{
const std::vector< double >& data = localState_.cellData()[ d ];
const size_t stride = data.size() / numCells ;
assert( numCells * stride == data.size() );
for( size_t i=0; i<stride; ++i )
{
// write all data from local state to buffer
write( buffer, localIndexMap_, data, i, stride );
}
}
// write all data from local well state to buffer
writeWells( buffer );
}
void doUnpack( const IndexMapType& indexMap, MessageBufferType& buffer )
{
// read all cell data registered in local state
const size_t numCells = globalState_.numCells();
const size_t numCellData = globalState_.cellData().size();
for( size_t d=0; d<numCellData; ++d )
{
std::vector< double >& data = globalState_.cellData()[ d ];
const size_t stride = data.size() / numCells ;
assert( numCells * stride == data.size() );
for( size_t i=0; i<stride; ++i )
{
// write all data from local state to buffer
read( buffer, indexMap, data, i, stride );
}
}
// read well data from buffer
readWells( buffer );
}
// unpack all data associated with link
void unpack( const int link, MessageBufferType& buffer )
{
doUnpack( indexMaps_[ link ], buffer );
}
protected:
template <class Vector>
void write( MessageBufferType& buffer, const IndexMapType& localIndexMap,
const Vector& vector,
const unsigned int offset = 0, const unsigned int stride = 1 ) const
{
unsigned int size = localIndexMap.size();
buffer.write( size );
assert( vector.size() >= stride * size );
for( unsigned int i=0; i<size; ++i )
{
const unsigned int index = localIndexMap[ i ] * stride + offset;
buffer.write( vector[ index ] );
}
}
template <class Vector>
void read( MessageBufferType& buffer,
const IndexMapType& indexMap,
Vector& vector,
const unsigned int offset = 0, const unsigned int stride = 1 ) const
{
unsigned int size = 0;
buffer.read( size );
assert( size == indexMap.size() );
for( unsigned int i=0; i<size; ++i )
{
const unsigned int index = indexMap[ i ] * stride + offset;
buffer.read( vector[ index ] );
}
}
void writeString( MessageBufferType& buffer, const std::string& s) const
{
const int size = s.size();
buffer.write( size );
for( int i=0; i<size; ++i )
{
buffer.write( s[ i ] );
}
}
void readString( MessageBufferType& buffer, std::string& s) const
{
int size = -1;
buffer.read( size );
s.resize( size );
for( int i=0; i<size; ++i )
{
buffer.read( s[ i ] );
}
}
void writeWells( MessageBufferType& buffer ) const
{
int nWells = localWellState_.wellMap().size();
buffer.write( nWells );
auto end = localWellState_.wellMap().end();
for( auto it = localWellState_.wellMap().begin(); it != end; ++it )
{
const std::string& name = it->first;
const int wellIdx = it->second[ 0 ];
// write well name
writeString( buffer, name );
// write well data
buffer.write( localWellState_.bhp()[ wellIdx ] );
buffer.write( localWellState_.thp()[ wellIdx ] );
const int wellRateIdx = wellIdx * localWellState_.numPhases();
for( int np=0; np<localWellState_.numPhases(); ++np )
buffer.write( localWellState_.wellRates()[ wellRateIdx + np ] );
// TODO: perfRates and perfPress, need to figure out the index
// mapping there.
}
}
void readWells( MessageBufferType& buffer )
{
int nWells = -1;
buffer.read( nWells );
// unpack all wells that have been sent
std::string name ;
for( int well = 0; well < nWells ; ++well )
{
// read well name for local identification
readString( buffer, name );
// unpack values
auto it = globalWellState_.wellMap().find( name );
if( it == globalWellState_.wellMap().end() )
{
OPM_THROW(std::logic_error,"global state does not contain well " << name );
}
const int wellIdx = it->second[ 0 ];
buffer.read( globalWellState_.bhp()[ wellIdx ] );
buffer.read( globalWellState_.thp()[ wellIdx ] );
const int wellRateIdx = wellIdx * globalWellState_.numPhases();
for( int np=0; np<globalWellState_.numPhases(); ++np )
buffer.read( globalWellState_.wellRates()[ wellRateIdx + np ] );
// TODO: perfRates and perfPress, need to figure out the index
// mapping there.
}
}
};
// gather solution to rank 0 for EclipseWriter
bool collectToIORank( const SimulatorState& localReservoirState,
const WellState& localWellState )
{
PackUnPackSimulatorState packUnpack( localReservoirState, globalReservoirState_,
localWellState, globalWellState_,
localIndexMap_, indexMaps_, isIORank() );
//toIORankComm_.exchangeCached( packUnpack );
toIORankComm_.exchange( packUnpack );
#ifndef NDEBUG
// mkae sure every process is on the same page
toIORankComm_.barrier();
#endif
return isIORank();
}
const SimulatorState& globalReservoirState() const { return globalReservoirState_; }
const WellState& globalWellState() const { return globalWellState_; }
bool isIORank() const
{
return isIORank_;
}
int numCells () const { return globalIndex_.size(); }
const int* globalCell () const
{
assert( ! globalIndex_.empty() );
return globalIndex_.data();
}
protected:
P2PCommunicatorType toIORankComm_;
IndexMapType globalIndex_;
IndexMapType localIndexMap_;
IndexMapStorageType indexMaps_;
//BlackoilState globalReservoirState_;
SimulatorState globalReservoirState_;
// this needs to be revised
WellStateFullyImplicitBlackoil globalWellState_;
// true if we are on I/O rank
const bool isIORank_;
};
#endif // #if HAVE_DUNE_CORNERPOINT
} // end namespace Opm
#endif

View File

@@ -235,22 +235,36 @@ namespace Opm
void
BlackoilOutputWriter::
writeTimeStep(const SimulatorTimerInterface& timer,
const SimulatorState& state,
const WellState& wellState,
const SimulatorState& localState,
const WellState& localWellState,
bool substep)
{
// VTK output
// VTK output (is parallel if grid is parallel)
if( vtkWriter_ ) {
vtkWriter_->writeTimeStep( timer, state, wellState , false );
vtkWriter_->writeTimeStep( timer, localState, localWellState, false );
}
if( parallelOutput_ )
{
// collect all solutions to I/O rank
const bool isIORank = parallelOutput_->collectToIORank( localState, localWellState );
if( isIORank )
{
const SimulatorState& state = parallelOutput_->globalReservoirState();
const WellState& wellState = parallelOutput_->globalWellState();
//std::cout << "number of wells" << wellState.bhp().size() << std::endl;
// Matlab output
if( matlabWriter_ ) {
matlabWriter_->writeTimeStep( timer, state, wellState , false );
matlabWriter_->writeTimeStep( timer, state, wellState, substep );
}
// ECL output
if ( eclWriter_ ) {
eclWriter_->writeTimeStep(timer, state, wellState, substep);
eclWriter_->writeTimeStep(timer, state, wellState, substep );
}
// write backup file
if( backupfile_ )
{
@@ -266,11 +280,18 @@ namespace Opm
// write resport step number
backupfile_.write( (const char *) &reportStep, sizeof(int) );
try {
const BlackoilState& boState = dynamic_cast< const BlackoilState& > (state);
backupfile_ << boState;
const WellStateFullyImplicitBlackoil& boWellState = static_cast< const WellStateFullyImplicitBlackoil& > (wellState);
backupfile_ << boWellState;
}
catch ( const std::bad_cast& e )
{
}
/*
const WellStateFullyImplicitBlackoil* boWellState =
dynamic_cast< const WellStateFullyImplicitBlackoil* > (&wellState);
@@ -284,6 +305,8 @@ namespace Opm
}
}
}
}
}
void
BlackoilOutputWriter::

View File

@@ -31,6 +31,7 @@
#include <opm/core/io/eclipse/EclipseWriter.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/ParallelDebugOutput.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
@@ -214,8 +215,10 @@ namespace Opm
const int desiredReportStep);
protected:
// Parameters for output.
const bool output_;
std::unique_ptr< ParallelDebugOutputInterface > parallelOutput_;
// Parameters for output.
const std::string outputDir_;
const int output_interval_;
@@ -241,21 +244,24 @@ namespace Opm
Opm::EclipseStateConstPtr eclipseState,
const Opm::PhaseUsage &phaseUsage )
: output_( param.getDefault("output", true) ),
parallelOutput_( output_ ? new ParallelDebugOutput< Grid >( grid, eclipseState, phaseUsage.num_phases ) : 0 ),
outputDir_( output_ ? param.getDefault("output_dir", std::string("output")) : "." ),
output_interval_( output_ ? param.getDefault("output_interval", 1): 0 ),
lastBackupReportStep_( -1 ),
vtkWriter_( output_ && param.getDefault("output_vtk",false) ?
new BlackoilVTKWriter< Grid >( grid, outputDir_ ) : 0 ),
matlabWriter_( output_ && param.getDefault("output_matlab", false) ?
matlabWriter_( output_ && parallelOutput_->isIORank() &&
param.getDefault("output_matlab", false) ?
new BlackoilMatlabWriter< Grid >( grid, outputDir_ ) : 0 ),
eclWriter_( output_ && param.getDefault("output_ecl", true) ?
eclWriter_( output_ && parallelOutput_->isIORank() &&
param.getDefault("output_ecl", true) ?
new EclipseWriter(param, eclipseState, phaseUsage,
Opm::UgGridHelpers::numCells( grid ),
Opm::UgGridHelpers::globalCell( grid ) )
parallelOutput_->numCells(),
parallelOutput_->globalCell() )
: 0 )
{
// For output.
if (output_) {
if (output_ && parallelOutput_->isIORank() ) {
// Ensure that output dir exists
boost::filesystem::path fpath(outputDir_);
try {

View File

@@ -43,12 +43,14 @@ namespace Opm
{
typedef WellState BaseType;
public:
typedef std::array< int, 3 > mapentry_t;
typedef std::map< std::string, mapentry_t > WellMapType;
typedef BaseType :: WellMapType WellMapType;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
@@ -57,7 +59,7 @@ namespace Opm
void init(const Wells* wells, const State& state, const PrevState& prevState)
{
// clear old name mapping
wellMap_.clear();
wellMap().clear();
if (wells == 0) {
return;
@@ -79,18 +81,12 @@ namespace Opm
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
std::string name( wells->name[ w ] );
assert( name.size() > 0 );
mapentry_t& wellMapEntry = wellMap_[name];
wellMapEntry[ 0 ] = w;
wellMapEntry[ 1 ] = wells->well_connpos[w];
// also store the number of perforations in this well
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
wellMapEntry[ 2 ] = num_perf_this_well;
if (well_controls_well_is_stopped(ctrl)) {
// Shut well: perfphaserates_ are all zero.
} else {
// also store the number of perforations in this well
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
// Open well: Initialize perfphaserates_ to well
// rates divided by the number of perforations.
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
@@ -185,21 +181,6 @@ namespace Opm
std::vector<int>& currentControls() { return current_controls_; }
const std::vector<int>& currentControls() const { return current_controls_; }
/// The number of wells present.
int numWells() const
{
return bhp().size();
}
/// The number of phases present.
int numPhases() const
{
return wellRates().size() / numWells();
}
const WellMapType& wellMap() const { return wellMap_; }
WellMapType& wellMap() { return wellMap_; }
private:
std::vector<double> perfphaserates_;
std::vector<int> current_controls_;