mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Refactor Aquifer datastructures to follow opm-common
- Replace use of Base:: with this-> in derived classes - Add AquiferInterface::size() utility functions - Remove AquiferInterface::cell_idx_ member
This commit is contained in:
parent
76682497e8
commit
3a7f5799af
@ -49,19 +49,19 @@ public:
|
||||
|
||||
using Base::waterCompIdx;
|
||||
using Base::waterPhaseIdx;
|
||||
AquiferCarterTracy(const Aquancon::AquanconOutput& connection,
|
||||
AquiferCarterTracy(const std::vector<Aquancon::AquancCell>& connections,
|
||||
const std::unordered_map<int, int>& cartesian_to_compressed,
|
||||
const Simulator& ebosSimulator,
|
||||
const AquiferCT::AQUCT_data& aquct_data)
|
||||
: Base(connection, cartesian_to_compressed, ebosSimulator)
|
||||
: Base(aquct_data.aquiferID, connections, cartesian_to_compressed, ebosSimulator)
|
||||
, aquct_data_(aquct_data)
|
||||
{
|
||||
}
|
||||
|
||||
void endTimeStep() override
|
||||
{
|
||||
for (const auto& Qai : Base::Qai_) {
|
||||
Base::W_flux_ += Qai * Base::ebos_simulator_.timeStepSize();
|
||||
for (const auto& q : this->Qai_) {
|
||||
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
|
||||
}
|
||||
}
|
||||
|
||||
@ -75,17 +75,16 @@ protected:
|
||||
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
|
||||
inline void initializeConnections() override
|
||||
{
|
||||
const auto& eclState = Base::ebos_simulator_.vanguard().eclState();
|
||||
const auto& ugrid = Base::ebos_simulator_.vanguard().grid();
|
||||
const auto& eclState = this->ebos_simulator_.vanguard().eclState();
|
||||
const auto& ugrid = this->ebos_simulator_.vanguard().grid();
|
||||
const auto& grid = eclState.getInputGrid();
|
||||
|
||||
Base::cell_idx_ = this->connection_.global_index;
|
||||
auto globalCellIdx = ugrid.globalCell();
|
||||
|
||||
// We hack the cell depth values for now. We can actually get it from elementcontext pos
|
||||
Base::cell_depth_.resize(Base::cell_idx_.size(), aquct_data_.d0);
|
||||
Base::alphai_.resize(Base::cell_idx_.size(), 1.0);
|
||||
Base::faceArea_connected_.resize(Base::cell_idx_.size(), 0.0);
|
||||
this->cell_depth_.resize(this->size(), aquct_data_.d0);
|
||||
this->alphai_.resize(this->size(), 1.0);
|
||||
this->faceArea_connected_.resize(this->size(), 0.0);
|
||||
|
||||
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
|
||||
auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
|
||||
@ -95,10 +94,10 @@ protected:
|
||||
|
||||
// denom_face_areas is the sum of the areas connected to an aquifer
|
||||
Scalar denom_face_areas = 0.;
|
||||
Base::cellToConnectionIdx_.resize(Base::ebos_simulator_.gridView().size(/*codim=*/0), -1);
|
||||
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) {
|
||||
const int cell_index = Base::cartesian_to_compressed_.at(Base::cell_idx_[idx]);
|
||||
Base::cellToConnectionIdx_[cell_index] = idx;
|
||||
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
|
||||
for (size_t idx = 0; idx < this->size(); ++idx) {
|
||||
const int cell_index = this->cartesian_to_compressed_.at(this->connections_[idx].global_index);
|
||||
this->cellToConnectionIdx_[cell_index] = idx;
|
||||
|
||||
const auto cellFacesRange = cell2Faces[cell_index];
|
||||
for (auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) {
|
||||
@ -132,21 +131,21 @@ protected:
|
||||
"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
|
||||
}
|
||||
|
||||
if (faceDirection == this->connection_.reservoir_face_dir.at(idx)) {
|
||||
Base::faceArea_connected_.at(idx) = Base::getFaceArea(faceCells, ugrid, faceIdx, idx);
|
||||
denom_face_areas += (this->connection_.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx));
|
||||
if (faceDirection == this->connections_[idx].face_dir) {
|
||||
this->faceArea_connected_.at(idx) = this->getFaceArea(faceCells, ugrid, faceIdx, idx);
|
||||
denom_face_areas += (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx));
|
||||
}
|
||||
}
|
||||
auto cellCenter = grid.getCellCenter(Base::cell_idx_.at(idx));
|
||||
Base::cell_depth_.at(idx) = cellCenter[2];
|
||||
auto cellCenter = grid.getCellCenter(this->connections_[idx].global_index);
|
||||
this->cell_depth_.at(idx) = cellCenter[2];
|
||||
}
|
||||
|
||||
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
|
||||
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) {
|
||||
Base::alphai_.at(idx) = (denom_face_areas < eps_sqrt)
|
||||
for (size_t idx = 0; idx < this->size(); ++idx) {
|
||||
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
|
||||
? // Prevent no connection NaNs due to division by zero
|
||||
0.
|
||||
: (this->connection_.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx)) / denom_face_areas;
|
||||
: (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx)) / denom_face_areas;
|
||||
}
|
||||
}
|
||||
|
||||
@ -165,22 +164,22 @@ protected:
|
||||
|
||||
inline Scalar dpai(int idx)
|
||||
{
|
||||
Scalar dp = Base::pa0_
|
||||
+ Base::rhow_.at(idx).value() * Base::gravity_() * (Base::cell_depth_.at(idx) - aquct_data_.d0)
|
||||
- Base::pressure_previous_.at(idx);
|
||||
Scalar dp = this->pa0_
|
||||
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - aquct_data_.d0)
|
||||
- this->pressure_previous_.at(idx);
|
||||
return dp;
|
||||
}
|
||||
|
||||
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
|
||||
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const Simulator& simulator)
|
||||
{
|
||||
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / Base::Tc_;
|
||||
const Scalar td = simulator.time() / Base::Tc_;
|
||||
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_;
|
||||
const Scalar td = simulator.time() / this->Tc_;
|
||||
Scalar PItdprime = 0.;
|
||||
Scalar PItd = 0.;
|
||||
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
|
||||
a = 1.0 / Base::Tc_ * ((beta_ * dpai(idx)) - (Base::W_flux_.value() * PItdprime)) / (PItd - td * PItdprime);
|
||||
b = beta_ / (Base::Tc_ * (PItd - td * PItdprime));
|
||||
a = 1.0 / this->Tc_ * ((beta_ * dpai(idx)) - (this->W_flux_.value() * PItdprime)) / (PItd - td * PItdprime);
|
||||
b = beta_ / (this->Tc_ * (PItd - td * PItdprime));
|
||||
}
|
||||
|
||||
// This function implements Eq 5.7 of the EclipseTechnicalDescription
|
||||
@ -188,8 +187,8 @@ protected:
|
||||
{
|
||||
Scalar a, b;
|
||||
calculateEqnConstants(a, b, idx, simulator);
|
||||
Base::Qai_.at(idx)
|
||||
= Base::alphai_.at(idx) * (a - b * (Base::pressure_current_.at(idx) - Base::pressure_previous_.at(idx)));
|
||||
this->Qai_.at(idx)
|
||||
= this->alphai_.at(idx) * (a - b * (this->pressure_current_.at(idx) - this->pressure_previous_.at(idx)));
|
||||
}
|
||||
|
||||
inline void calculateAquiferConstants() override
|
||||
@ -198,7 +197,7 @@ protected:
|
||||
beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t
|
||||
* aquct_data_.r_o * aquct_data_.r_o;
|
||||
// We calculate the time constant
|
||||
Base::Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
|
||||
this->Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
|
||||
/ (aquct_data_.k_a * aquct_data_.c1);
|
||||
}
|
||||
|
||||
@ -206,17 +205,17 @@ protected:
|
||||
{
|
||||
|
||||
int pvttableIdx = aquct_data_.pvttableID - 1;
|
||||
Base::rhow_.resize(Base::cell_idx_.size(), 0.);
|
||||
this->rhow_.resize(this->size(), 0.);
|
||||
if (!aquct_data_.p0.first) {
|
||||
Base::pa0_ = calculateReservoirEquilibrium();
|
||||
this->pa0_ = calculateReservoirEquilibrium();
|
||||
} else {
|
||||
Base::pa0_ = aquct_data_.p0.second;
|
||||
this->pa0_ = aquct_data_.p0.second;
|
||||
}
|
||||
|
||||
// use the thermodynamic state of the first active cell as a
|
||||
// reference. there might be better ways to do this...
|
||||
ElementContext elemCtx(Base::ebos_simulator_);
|
||||
auto elemIt = Base::ebos_simulator_.gridView().template begin</*codim=*/0>();
|
||||
ElementContext elemCtx(this->ebos_simulator_);
|
||||
auto elemIt = this->ebos_simulator_.gridView().template begin</*codim=*/0>();
|
||||
elemCtx.updatePrimaryStencil(*elemIt);
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
||||
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
@ -227,7 +226,7 @@ protected:
|
||||
fs_aquifer.assign(iq0.fluidState());
|
||||
Eval temperature_aq, pa0_mean;
|
||||
temperature_aq = fs_aquifer.temperature(0);
|
||||
pa0_mean = Base::pa0_;
|
||||
pa0_mean = this->pa0_;
|
||||
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
|
||||
mu_w_ = mu_w_aquifer.value();
|
||||
}
|
||||
@ -240,8 +239,8 @@ protected:
|
||||
std::vector<Scalar> pw_aquifer;
|
||||
Scalar water_pressure_reservoir;
|
||||
|
||||
ElementContext elemCtx(Base::ebos_simulator_);
|
||||
const auto& gridView = Base::ebos_simulator_.gridView();
|
||||
ElementContext elemCtx(this->ebos_simulator_);
|
||||
const auto& gridView = this->ebos_simulator_.gridView();
|
||||
auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
@ -249,7 +248,7 @@ protected:
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
|
||||
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
int idx = Base::cellToConnectionIdx_[cellIdx];
|
||||
int idx = this->cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
continue;
|
||||
|
||||
@ -258,11 +257,11 @@ protected:
|
||||
const auto& fs = iq0.fluidState();
|
||||
|
||||
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
|
||||
Base::rhow_[idx] = fs.density(waterPhaseIdx);
|
||||
this->rhow_[idx] = fs.density(waterPhaseIdx);
|
||||
pw_aquifer.push_back(
|
||||
(water_pressure_reservoir
|
||||
- Base::rhow_[idx].value() * Base::gravity_() * (Base::cell_depth_[idx] - aquct_data_.d0))
|
||||
* Base::alphai_[idx]);
|
||||
- this->rhow_[idx].value() * this->gravity_() * (this->cell_depth_[idx] - aquct_data_.d0))
|
||||
* this->alphai_[idx]);
|
||||
}
|
||||
|
||||
// We take the average of the calculated equilibrium pressures.
|
||||
|
@ -51,19 +51,19 @@ public:
|
||||
using Base::waterCompIdx;
|
||||
using Base::waterPhaseIdx;
|
||||
|
||||
AquiferFetkovich(const Aquancon::AquanconOutput& connection,
|
||||
AquiferFetkovich(const std::vector<Aquancon::AquancCell>& connections,
|
||||
const std::unordered_map<int, int>& cartesian_to_compressed,
|
||||
const Simulator& ebosSimulator,
|
||||
const Aquifetp::AQUFETP_data& aqufetp_data)
|
||||
: Base(connection, cartesian_to_compressed, ebosSimulator)
|
||||
: Base(aqufetp_data.aquiferID, connections, cartesian_to_compressed, ebosSimulator)
|
||||
, aqufetp_data_(aqufetp_data)
|
||||
{
|
||||
}
|
||||
|
||||
void endTimeStep() override
|
||||
{
|
||||
for (const auto& Qai : Base::Qai_) {
|
||||
Base::W_flux_ += Qai * Base::ebos_simulator_.timeStepSize();
|
||||
for (const auto& q : this->Qai_) {
|
||||
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
|
||||
aquifer_pressure_ = aquiferPressure();
|
||||
}
|
||||
}
|
||||
@ -76,18 +76,17 @@ protected:
|
||||
|
||||
inline void initializeConnections() override
|
||||
{
|
||||
const auto& eclState = Base::ebos_simulator_.vanguard().eclState();
|
||||
const auto& ugrid = Base::ebos_simulator_.vanguard().grid();
|
||||
const auto& eclState = this->ebos_simulator_.vanguard().eclState();
|
||||
const auto& ugrid = this->ebos_simulator_.vanguard().grid();
|
||||
const auto& grid = eclState.getInputGrid();
|
||||
|
||||
Base::cell_idx_ = this->connection_.global_index;
|
||||
auto globalCellIdx = ugrid.globalCell();
|
||||
|
||||
|
||||
// We hack the cell depth values for now. We can actually get it from elementcontext pos
|
||||
Base::cell_depth_.resize(Base::cell_idx_.size(), aqufetp_data_.d0);
|
||||
Base::alphai_.resize(Base::cell_idx_.size(), 1.0);
|
||||
Base::faceArea_connected_.resize(Base::cell_idx_.size(), 0.0);
|
||||
this->cell_depth_.resize(this->size(), aqufetp_data_.d0);
|
||||
this->alphai_.resize(this->size(), 1.0);
|
||||
this->faceArea_connected_.resize(this->size(), 0.0);
|
||||
|
||||
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
|
||||
auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
|
||||
@ -97,14 +96,16 @@ protected:
|
||||
|
||||
// denom_face_areas is the sum of the areas connected to an aquifer
|
||||
Scalar denom_face_areas = 0.;
|
||||
Base::cellToConnectionIdx_.resize(Base::ebos_simulator_.gridView().size(/*codim=*/0), -1);
|
||||
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) {
|
||||
const int cell_index = Base::cartesian_to_compressed_.at(Base::cell_idx_[idx]);
|
||||
Base::cellToConnectionIdx_[cell_index] = idx;
|
||||
const auto cellCenter = grid.getCellCenter(Base::cell_idx_.at(idx));
|
||||
Base::cell_depth_.at(idx) = cellCenter[2];
|
||||
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
|
||||
for (size_t idx = 0; idx < this->size(); ++idx) {
|
||||
const auto global_index = this->connections_[idx].global_index;
|
||||
const int cell_index = this->cartesian_to_compressed_.at(global_index);
|
||||
|
||||
if (!this->connection_.influx_coeff[idx]) { // influx_coeff is defaulted
|
||||
this->cellToConnectionIdx_[cell_index] = idx;
|
||||
const auto cellCenter = grid.getCellCenter(global_index);
|
||||
this->cell_depth_.at(idx) = cellCenter[2];
|
||||
|
||||
if (!this->connections_[idx].influx_coeff.first) { // influx_coeff is defaulted
|
||||
const auto cellFacesRange = cell2Faces[cell_index];
|
||||
for (auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) {
|
||||
// The index of the face in the compressed grid
|
||||
@ -137,24 +138,23 @@ protected:
|
||||
"Initialization of Aquifer problem. Make sure faceTag is correctly defined");
|
||||
}
|
||||
|
||||
if (faceDirection == this->connection_.reservoir_face_dir.at(idx)) {
|
||||
Base::faceArea_connected_.at(idx)
|
||||
= Base::getFaceArea(faceCells, ugrid, faceIdx, idx);
|
||||
if (faceDirection == this->connections_[idx].face_dir) {
|
||||
this->faceArea_connected_[idx] = this->getFaceArea(faceCells, ugrid, faceIdx, idx);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
Base::faceArea_connected_.at(idx) = *this->connection_.influx_coeff[idx];
|
||||
this->faceArea_connected_.at(idx) = this->connections_[idx].influx_coeff.second;
|
||||
}
|
||||
denom_face_areas += (this->connection_.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx));
|
||||
denom_face_areas += (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx));
|
||||
}
|
||||
|
||||
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
|
||||
for (size_t idx = 0; idx < Base::cell_idx_.size(); ++idx) {
|
||||
Base::alphai_.at(idx) = (denom_face_areas < eps_sqrt)
|
||||
for (size_t idx = 0; idx < this->size(); ++idx) {
|
||||
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
|
||||
? // Prevent no connection NaNs due to division by zero
|
||||
0.
|
||||
: (this->connection_.influx_multiplier.at(idx) * Base::faceArea_connected_.at(idx)) / denom_face_areas;
|
||||
: (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx)) / denom_face_areas;
|
||||
}
|
||||
}
|
||||
|
||||
@ -170,45 +170,45 @@ protected:
|
||||
|
||||
inline Eval dpai(int idx)
|
||||
{
|
||||
const Eval dp = aquifer_pressure_ - Base::pressure_current_.at(idx)
|
||||
+ Base::rhow_[idx] * Base::gravity_() * (Base::cell_depth_[idx] - aqufetp_data_.d0);
|
||||
const Eval dp = aquifer_pressure_ - this->pressure_current_.at(idx)
|
||||
+ this->rhow_[idx] * this->gravity_() * (this->cell_depth_[idx] - aqufetp_data_.d0);
|
||||
return dp;
|
||||
}
|
||||
|
||||
// This function implements Eq 5.12 of the EclipseTechnicalDescription
|
||||
inline Scalar aquiferPressure()
|
||||
{
|
||||
Scalar Flux = Base::W_flux_.value();
|
||||
Scalar pa_ = Base::pa0_ - Flux / (aqufetp_data_.C_t * aqufetp_data_.V0);
|
||||
Scalar Flux = this->W_flux_.value();
|
||||
Scalar pa_ = this->pa0_ - Flux / (aqufetp_data_.C_t * aqufetp_data_.V0);
|
||||
return pa_;
|
||||
}
|
||||
|
||||
inline void calculateAquiferConstants() override
|
||||
{
|
||||
Base::Tc_ = (aqufetp_data_.C_t * aqufetp_data_.V0) / aqufetp_data_.J;
|
||||
this->Tc_ = (aqufetp_data_.C_t * aqufetp_data_.V0) / aqufetp_data_.J;
|
||||
}
|
||||
// This function implements Eq 5.14 of the EclipseTechnicalDescription
|
||||
inline void calculateInflowRate(int idx, const Simulator& simulator) override
|
||||
{
|
||||
const Scalar td_Tc_ = simulator.timeStepSize() / Base::Tc_;
|
||||
const Scalar td_Tc_ = simulator.timeStepSize() / this->Tc_;
|
||||
const Scalar coef = (1 - exp(-td_Tc_)) / td_Tc_;
|
||||
Base::Qai_.at(idx) = Base::alphai_[idx] * aqufetp_data_.J * dpai(idx) * coef;
|
||||
this->Qai_.at(idx) = this->alphai_[idx] * aqufetp_data_.J * dpai(idx) * coef;
|
||||
}
|
||||
|
||||
inline void calculateAquiferCondition() override
|
||||
{
|
||||
Base::rhow_.resize(Base::cell_idx_.size(), 0.);
|
||||
this->rhow_.resize(this->size(), 0.);
|
||||
|
||||
if (this->solution_set_from_restart_) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (!aqufetp_data_.p0.first) {
|
||||
Base::pa0_ = calculateReservoirEquilibrium();
|
||||
this->pa0_ = calculateReservoirEquilibrium();
|
||||
} else {
|
||||
Base::pa0_ = aqufetp_data_.p0.second;
|
||||
this->pa0_ = aqufetp_data_.p0.second;
|
||||
}
|
||||
aquifer_pressure_ = Base::pa0_;
|
||||
aquifer_pressure_ = this->pa0_;
|
||||
}
|
||||
|
||||
inline Scalar calculateReservoirEquilibrium() override
|
||||
@ -217,15 +217,15 @@ protected:
|
||||
std::vector<Scalar> pw_aquifer;
|
||||
Scalar water_pressure_reservoir;
|
||||
|
||||
ElementContext elemCtx(Base::ebos_simulator_);
|
||||
const auto& gridView = Base::ebos_simulator_.gridView();
|
||||
ElementContext elemCtx(this->ebos_simulator_);
|
||||
const auto& gridView = this->ebos_simulator_.gridView();
|
||||
auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const auto& elem = *elemIt;
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
int idx = Base::cellToConnectionIdx_[cellIdx];
|
||||
int idx = this->cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
continue;
|
||||
|
||||
@ -234,11 +234,11 @@ protected:
|
||||
const auto& fs = iq0.fluidState();
|
||||
|
||||
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
|
||||
Base::rhow_[idx] = fs.density(waterPhaseIdx);
|
||||
this->rhow_[idx] = fs.density(waterPhaseIdx);
|
||||
pw_aquifer.push_back(
|
||||
(water_pressure_reservoir
|
||||
- Base::rhow_[idx].value() * Base::gravity_() * (Base::cell_depth_[idx] - aqufetp_data_.d0))
|
||||
* Base::alphai_[idx]);
|
||||
- this->rhow_[idx].value() * this->gravity_() * (this->cell_depth_[idx] - aqufetp_data_.d0))
|
||||
* this->alphai_[idx]);
|
||||
}
|
||||
|
||||
// We take the average of the calculated equilibrium pressures.
|
||||
|
@ -73,16 +73,15 @@ public:
|
||||
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
||||
|
||||
// Constructor
|
||||
AquiferInterface(const Aquancon::AquanconOutput& connection,
|
||||
AquiferInterface(int aqID,
|
||||
const std::vector<Aquancon::AquancCell>& connections,
|
||||
const std::unordered_map<int, int>& cartesian_to_compressed,
|
||||
const Simulator& ebosSimulator)
|
||||
: connection_(connection)
|
||||
: aquiferID(aqID)
|
||||
, connections_(connections)
|
||||
, ebos_simulator_(ebosSimulator)
|
||||
, cartesian_to_compressed_(cartesian_to_compressed)
|
||||
{
|
||||
assert(this->connection_.influx_coeff.size() == this->connection_.global_index.size());
|
||||
assert(this->connection_.influx_coeff.size() == this->connection_.influx_multiplier.size());
|
||||
assert(this->connection_.influx_multiplier.size() == this->connection_.reservoir_face_dir.size());
|
||||
}
|
||||
|
||||
// Deconstructor
|
||||
@ -94,16 +93,13 @@ public:
|
||||
{
|
||||
auto xaqPos
|
||||
= std::find_if(aquiferSoln.begin(), aquiferSoln.end(), [this](const data::AquiferData& xaq) -> bool {
|
||||
return xaq.aquiferID == this->connection_.aquiferID;
|
||||
return xaq.aquiferID == this->aquiferID;
|
||||
});
|
||||
|
||||
if (xaqPos == aquiferSoln.end()) {
|
||||
// No restart value applies to this aquifer. Nothing to do.
|
||||
if (xaqPos == aquiferSoln.end())
|
||||
return;
|
||||
}
|
||||
|
||||
this->assignRestartData(*xaqPos);
|
||||
|
||||
this->W_flux_ = xaqPos->volume;
|
||||
this->pa0_ = xaqPos->initPressure;
|
||||
this->solution_set_from_restart_ = true;
|
||||
@ -155,6 +151,12 @@ public:
|
||||
+= Qai_[idx] / context.dofVolume(spaceIdx, timeIdx);
|
||||
}
|
||||
|
||||
|
||||
std::size_t size() const {
|
||||
return this->connections_.size();
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
inline Scalar gravity_() const
|
||||
{
|
||||
@ -174,9 +176,9 @@ protected:
|
||||
calculateAquiferCondition();
|
||||
calculateAquiferConstants();
|
||||
|
||||
pressure_previous_.resize(cell_idx_.size(), 0.);
|
||||
pressure_current_.resize(cell_idx_.size(), 0.);
|
||||
Qai_.resize(cell_idx_.size(), 0.0);
|
||||
pressure_previous_.resize(this->connections_.size(), 0.);
|
||||
pressure_current_.resize(this->connections_.size(), 0.);
|
||||
Qai_.resize(this->connections_.size(), 0.0);
|
||||
}
|
||||
|
||||
inline void
|
||||
@ -214,7 +216,7 @@ protected:
|
||||
const auto cellNeighbour1 = faceCells(faceIdx, 1);
|
||||
const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
|
||||
const auto calculatedFaceArea
|
||||
= (!this->connection_.influx_coeff.at(idx)) ? defaultFaceArea : *(this->connection_.influx_coeff.at(idx));
|
||||
= (!this->connections_[idx].influx_coeff.first) ? defaultFaceArea : this->connections_[idx].influx_coeff.second;
|
||||
faceArea = (cellNeighbour0 * cellNeighbour1 > 0) ? 0. : calculatedFaceArea;
|
||||
if (cellNeighbour1 == 0) {
|
||||
faceArea = (cellNeighbour0 < 0) ? faceArea : 0.;
|
||||
@ -226,12 +228,12 @@ protected:
|
||||
|
||||
virtual void endTimeStep() = 0;
|
||||
|
||||
const Aquancon::AquanconOutput connection_;
|
||||
const int aquiferID;
|
||||
const std::vector<Aquancon::AquancCell> connections_;
|
||||
const Simulator& ebos_simulator_;
|
||||
const std::unordered_map<int, int> cartesian_to_compressed_;
|
||||
|
||||
// Grid variables
|
||||
std::vector<size_t> cell_idx_;
|
||||
std::vector<Scalar> faceArea_connected_;
|
||||
std::vector<int> cellToConnectionIdx_;
|
||||
// Quantities at each grid id
|
||||
|
@ -158,20 +158,15 @@ BlackoilAquiferModel<TypeTag>::init()
|
||||
const AquiferCT aquiferct = AquiferCT(eclState.getTableManager(), deck);
|
||||
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
|
||||
|
||||
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.data();
|
||||
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
|
||||
|
||||
assert(aquifersData.size() == aquifer_connection.size());
|
||||
const auto& ugrid = simulator_.vanguard().grid();
|
||||
const auto& gridView = simulator_.gridView();
|
||||
const int number_of_cells = gridView.size(0);
|
||||
|
||||
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells, Opm::UgGridHelpers::globalCell(ugrid));
|
||||
|
||||
for (size_t i = 0; i < aquifersData.size(); ++i) {
|
||||
aquifers_CarterTracy.push_back(AquiferCarterTracy<TypeTag>(
|
||||
aquifer_connection[i], cartesian_to_compressed_, this->simulator_, aquifersData[i]));
|
||||
}
|
||||
for (const auto& aquifer : aquiferct)
|
||||
aquifers_CarterTracy.push_back(AquiferCarterTracy<TypeTag>(aquifer_connect[aquifer.aquiferID], cartesian_to_compressed_, this->simulator_, aquifer));
|
||||
|
||||
}
|
||||
if (comm.rank() == 0)
|
||||
has = deck.hasKeyword("AQUFETP");
|
||||
@ -188,20 +183,15 @@ BlackoilAquiferModel<TypeTag>::init()
|
||||
const Aquifetp aquifetp = Aquifetp(deck);
|
||||
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
|
||||
|
||||
std::vector<Aquifetp::AQUFETP_data> aquifersData = aquifetp.data();
|
||||
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
|
||||
|
||||
assert(aquifersData.size() == aquifer_connection.size());
|
||||
const auto& ugrid = simulator_.vanguard().grid();
|
||||
const auto& gridView = simulator_.gridView();
|
||||
const int number_of_cells = gridView.size(0);
|
||||
|
||||
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells, Opm::UgGridHelpers::globalCell(ugrid));
|
||||
|
||||
for (size_t i = 0; i < aquifersData.size(); ++i) {
|
||||
aquifers_Fetkovich.push_back(AquiferFetkovich<TypeTag>(
|
||||
aquifer_connection[i], cartesian_to_compressed_, this->simulator_, aquifersData[i]));
|
||||
}
|
||||
for (const auto& aquifer : aquifetp)
|
||||
aquifers_Fetkovich.push_back(AquiferFetkovich<TypeTag>(aquifer_connect[aquifer.aquiferID], cartesian_to_compressed_, this->simulator_, aquifer));
|
||||
|
||||
}
|
||||
}
|
||||
template <typename TypeTag>
|
||||
|
Loading…
Reference in New Issue
Block a user