mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #4119 from atgeirr/refactor-boundary-flux
Refactor boundary flux
This commit is contained in:
commit
3bb35b223c
@ -43,6 +43,8 @@
|
||||
#include <dune/common/fmatrix.hh>
|
||||
#include <fmt/format.h>
|
||||
|
||||
#include <array>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
template <class TypeTag>
|
||||
@ -212,8 +214,8 @@ protected:
|
||||
|
||||
public:
|
||||
|
||||
static void volumeAndPhasePressureDifferences(short (&upIdx)[numPhases],
|
||||
short (&dnIdx)[numPhases],
|
||||
static void volumeAndPhasePressureDifferences(std::array<short, numPhases>& upIdx,
|
||||
std::array<short, numPhases>& dnIdx,
|
||||
Evaluation (&volumeFlux)[numPhases],
|
||||
Evaluation (&pressureDifferences)[numPhases],
|
||||
const ElementContext& elemCtx,
|
||||
@ -418,34 +420,75 @@ protected:
|
||||
unsigned timeIdx,
|
||||
const FluidState& exFluidState)
|
||||
{
|
||||
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(scvfIdx);
|
||||
const Scalar faceArea = scvf.area();
|
||||
const Scalar zEx = scvf.integrationPos()[dimWorld - 1];
|
||||
const auto& problem = elemCtx.problem();
|
||||
const unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(0, timeIdx);
|
||||
const auto& intQuantsIn = elemCtx.intensiveQuantities(0, timeIdx);
|
||||
|
||||
calculateBoundaryGradients_(problem,
|
||||
globalSpaceIdx,
|
||||
intQuantsIn,
|
||||
scvfIdx,
|
||||
faceArea,
|
||||
zEx,
|
||||
exFluidState,
|
||||
upIdx_,
|
||||
dnIdx_,
|
||||
volumeFlux_,
|
||||
pressureDifference_);
|
||||
|
||||
// Treating solvent here and not in the static method, since that would require more
|
||||
// extensive refactoring. It means that the TpfaLinearizer will not support bcs for solvent until this is
|
||||
// addressed.
|
||||
if constexpr (enableSolvent) {
|
||||
if (upIdx_[gasPhaseIdx] == 0) {
|
||||
const Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, scvfIdx);
|
||||
const Scalar transModified = trans * Toolbox::value(intQuantsIn.rockCompTransMultiplier());
|
||||
const auto solventFlux = pressureDifference_[gasPhaseIdx] * intQuantsIn.mobility(gasPhaseIdx) * (-transModified/faceArea);
|
||||
asImp_().setSolventVolumeFlux(solventFlux);
|
||||
} else {
|
||||
asImp_().setSolventVolumeFlux(0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Update the required gradients for boundary faces
|
||||
*/
|
||||
template <class Problem, class FluidState, class EvaluationContainer>
|
||||
static void calculateBoundaryGradients_(const Problem& problem,
|
||||
const unsigned globalSpaceIdx,
|
||||
const IntensiveQuantities& intQuantsIn,
|
||||
const unsigned bfIdx,
|
||||
const double faceArea,
|
||||
const double zEx,
|
||||
const FluidState& exFluidState,
|
||||
std::array<short, numPhases>& upIdx,
|
||||
std::array<short, numPhases>& dnIdx,
|
||||
EvaluationContainer& volumeFlux,
|
||||
EvaluationContainer& pressureDifference)
|
||||
{
|
||||
|
||||
bool enableBoundaryMassFlux = problem.nonTrivialBoundaryConditions();
|
||||
if (!enableBoundaryMassFlux)
|
||||
return;
|
||||
|
||||
const auto& stencil = elemCtx.stencil(timeIdx);
|
||||
const auto& scvf = stencil.boundaryFace(scvfIdx);
|
||||
|
||||
unsigned interiorDofIdx = scvf.interiorIndex();
|
||||
|
||||
Scalar trans = problem.transmissibilityBoundary(elemCtx, scvfIdx);
|
||||
Scalar faceArea = scvf.area();
|
||||
Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, bfIdx);
|
||||
|
||||
// estimate the gravity correction: for performance reasons we use a simplified
|
||||
// approach for this flux module that assumes that gravity is constant and always
|
||||
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||||
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
|
||||
|
||||
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
||||
Scalar g = problem.gravity()[dimWorld - 1];
|
||||
|
||||
// this is quite hacky because the dune grid interface does not provide a
|
||||
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
||||
// solution would be to take the Z coordinate of the element centroids, but since
|
||||
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
||||
// here...
|
||||
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
|
||||
Scalar zEx = scvf.integrationPos()[dimWorld - 1];
|
||||
Scalar zIn = problem.dofCenterDepth(globalSpaceIdx);
|
||||
|
||||
// the distances from the DOF's depths. (i.e., the additional depth of the
|
||||
// exterior DOF)
|
||||
@ -465,61 +508,53 @@ protected:
|
||||
Evaluation pressureExterior = exFluidState.pressure(phaseIdx);
|
||||
pressureExterior += rhoAvg*(distZ*g);
|
||||
|
||||
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
|
||||
pressureDifference[phaseIdx] = pressureExterior - pressureInterior;
|
||||
|
||||
// decide the upstream index for the phase. for this we make sure that the
|
||||
// degree of freedom which is regarded upstream if both pressures are equal
|
||||
// is always the same: if the pressure is equal, the DOF with the lower
|
||||
// global index is regarded to be the upstream one.
|
||||
if (pressureDifference_[phaseIdx] > 0.0) {
|
||||
upIdx_[phaseIdx] = -1;
|
||||
dnIdx_[phaseIdx] = interiorDofIdx;
|
||||
const unsigned interiorDofIdx = 0; // Valid only for cell-centered FV.
|
||||
if (pressureDifference[phaseIdx] > 0.0) {
|
||||
upIdx[phaseIdx] = -1;
|
||||
dnIdx[phaseIdx] = interiorDofIdx;
|
||||
}
|
||||
else {
|
||||
upIdx_[phaseIdx] = interiorDofIdx;
|
||||
dnIdx_[phaseIdx] = -1;
|
||||
upIdx[phaseIdx] = interiorDofIdx;
|
||||
dnIdx[phaseIdx] = -1;
|
||||
}
|
||||
|
||||
Evaluation transModified = trans;
|
||||
|
||||
unsigned upstreamIdx = upstreamIndex_(phaseIdx);
|
||||
if (upstreamIdx == interiorDofIdx) {
|
||||
if (upIdx[phaseIdx] == interiorDofIdx) {
|
||||
|
||||
// this is slightly hacky because in the automatic differentiation case, it
|
||||
// only works for the element centered finite volume method. for ebos this
|
||||
// does not matter, though.
|
||||
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
|
||||
const auto& up = intQuantsIn;
|
||||
|
||||
// deal with water induced rock compaction
|
||||
const double transMult = Toolbox::value(up.rockCompTransMultiplier());
|
||||
const Scalar transMult = Toolbox::value(up.rockCompTransMultiplier());
|
||||
transModified *= transMult;
|
||||
|
||||
volumeFlux_[phaseIdx] =
|
||||
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea);
|
||||
|
||||
if (enableSolvent && phaseIdx == gasPhaseIdx)
|
||||
asImp_().setSolventVolumeFlux( pressureDifference_[phaseIdx]*up.solventMobility()*(-transModified/faceArea));
|
||||
volumeFlux[phaseIdx] =
|
||||
pressureDifference[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea);
|
||||
}
|
||||
else {
|
||||
// compute the phase mobility using the material law parameters of the
|
||||
// interior element. TODO: this could probably be done more efficiently
|
||||
const auto& matParams =
|
||||
elemCtx.problem().materialLawParams(elemCtx,
|
||||
interiorDofIdx,
|
||||
/*timeIdx=*/0);
|
||||
const auto& matParams = problem.materialLawParams(globalSpaceIdx);
|
||||
std::array<typename FluidState::Scalar,numPhases> kr;
|
||||
MaterialLaw::relativePermeabilities(kr, matParams, exFluidState);
|
||||
|
||||
const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx);
|
||||
volumeFlux_[phaseIdx] =
|
||||
pressureDifference_[phaseIdx]*mob*(-transModified/faceArea);
|
||||
volumeFlux[phaseIdx] =
|
||||
pressureDifference[phaseIdx]*mob*(-transModified/faceArea);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solvent inflow is not yet supported
|
||||
if (enableSolvent && phaseIdx == gasPhaseIdx)
|
||||
asImp_().setSolventVolumeFlux(0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
protected:
|
||||
|
||||
/*!
|
||||
* \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context
|
||||
@ -545,8 +580,8 @@ private:
|
||||
Evaluation pressureDifference_[numPhases];
|
||||
|
||||
// the local indices of the interior and exterior degrees of freedom
|
||||
short upIdx_[numPhases];
|
||||
short dnIdx_[numPhases];
|
||||
std::array<short, numPhases> upIdx_;
|
||||
std::array<short, numPhases> dnIdx_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -1340,6 +1340,15 @@ public:
|
||||
return transmissibilities_.transmissibilityBoundary(elemIdx, boundaryFaceIdx);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Direct access to a boundary transmissibility.
|
||||
*/
|
||||
Scalar transmissibilityBoundary(const unsigned globalSpaceIdx,
|
||||
const unsigned boundaryFaceIdx) const
|
||||
{
|
||||
return transmissibilities_.transmissibilityBoundary(globalSpaceIdx, boundaryFaceIdx);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
|
||||
*/
|
||||
@ -2048,6 +2057,29 @@ public:
|
||||
return this->rockCompTransMultWc_[tableIdx].eval(effectiveOilPressure, SwDeltaMax, /*extrapolation=*/true);
|
||||
}
|
||||
|
||||
std::pair<bool, RateVector> boundaryCondition(const unsigned int globalSpaceIdx, const int directionId)
|
||||
{
|
||||
if (!nonTrivialBoundaryConditions_) {
|
||||
return { false, RateVector(0.0) };
|
||||
}
|
||||
switch (directionId) {
|
||||
case 0:
|
||||
return { freebcXMinus_[globalSpaceIdx], massratebcXMinus_[globalSpaceIdx] };
|
||||
case 1:
|
||||
return { freebcX_[globalSpaceIdx], massratebcX_[globalSpaceIdx] };
|
||||
case 2:
|
||||
return { freebcYMinus_[globalSpaceIdx], massratebcYMinus_[globalSpaceIdx] };
|
||||
case 3:
|
||||
return { freebcY_[globalSpaceIdx], massratebcY_[globalSpaceIdx] };
|
||||
case 4:
|
||||
return { freebcZMinus_[globalSpaceIdx], massratebcZMinus_[globalSpaceIdx] };
|
||||
case 5:
|
||||
return { freebcZ_[globalSpaceIdx], massratebcZ_[globalSpaceIdx] };
|
||||
default:
|
||||
return { false, RateVector(0.0) };
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
// update the parameters needed for DRSDT and DRVDT
|
||||
void updateCompositionChangeLimits_()
|
||||
|
Loading…
Reference in New Issue
Block a user