mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
working MP for gpu DILU
This commit is contained in:
parent
1d49eadd15
commit
3d67191d49
@ -83,10 +83,13 @@ GpuDILU<M, X, Y, l>::GpuDILU(const M& A, bool splitMatrix, bool tuneKernels, boo
|
||||
}
|
||||
|
||||
if (m_storeFactorizationAsFloat) {
|
||||
OPM_THROW(std::runtime_error, "Matrix must be split when storing as float.");
|
||||
if (!m_splitMatrix){
|
||||
OPM_THROW(std::runtime_error, "Matrix must be split when storing as float.");
|
||||
}
|
||||
m_gpuMatrixReorderedLowerFloat = std::make_unique<FloatMat>(m_gpuMatrixReorderedLower->getRowIndices(), m_gpuMatrixReorderedLower->getColumnIndices(), blocksize_);
|
||||
m_gpuMatrixReorderedUpperFloat = std::make_unique<FloatMat>(m_gpuMatrixReorderedUpper->getRowIndices(), m_gpuMatrixReorderedUpper->getColumnIndices(), blocksize_);
|
||||
m_gpuMatrixReorderedDiagFloat = std::make_unique<FloatVec>(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize());
|
||||
m_gpuDInvFloat = std::make_unique<FloatVec>(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize());
|
||||
}
|
||||
|
||||
computeDiagAndMoveReorderedData(m_moveThreadBlockSize, m_DILUFactorizationThreadBlockSize);
|
||||
@ -120,17 +123,31 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
|
||||
for (int level = 0; level < m_levelSets.size(); ++level) {
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
if (m_splitMatrix) {
|
||||
detail::DILU::solveLowerLevelSetSplit<field_type, blocksize_>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
d.data(),
|
||||
v.data(),
|
||||
lowerSolveThreadBlockSize);
|
||||
if (m_storeFactorizationAsFloat) {
|
||||
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, float>(
|
||||
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInvFloat->data(),
|
||||
d.data(),
|
||||
v.data(),
|
||||
lowerSolveThreadBlockSize);
|
||||
} else {
|
||||
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, field_type>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
d.data(),
|
||||
v.data(),
|
||||
lowerSolveThreadBlockSize);
|
||||
}
|
||||
} else {
|
||||
detail::DILU::solveLowerLevelSet<field_type, blocksize_>(
|
||||
m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
@ -153,16 +170,29 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
levelStartIdx -= numOfRowsInLevel;
|
||||
if (m_splitMatrix) {
|
||||
detail::DILU::solveUpperLevelSetSplit<field_type, blocksize_>(
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
v.data(),
|
||||
upperSolveThreadBlockSize);
|
||||
if (m_storeFactorizationAsFloat){
|
||||
detail::DILU::solveUpperLevelSetSplit<blocksize_, field_type, float>(
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInvFloat->data(),
|
||||
v.data(),
|
||||
upperSolveThreadBlockSize);
|
||||
} else {
|
||||
detail::DILU::solveUpperLevelSetSplit<blocksize_, field_type, field_type>(
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
v.data(),
|
||||
upperSolveThreadBlockSize);
|
||||
}
|
||||
} else {
|
||||
detail::DILU::solveUpperLevelSet<field_type, blocksize_>(
|
||||
m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
@ -241,20 +271,44 @@ GpuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData(int moveThreadBlockSize, in
|
||||
for (int level = 0; level < m_levelSets.size(); ++level) {
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
if (m_splitMatrix) {
|
||||
detail::DILU::computeDiluDiagonalSplit<field_type, blocksize_>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedDiag->data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
m_gpuNaturalToReorder.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
factorizationBlockSize);
|
||||
if (m_storeFactorizationAsFloat) {
|
||||
detail::DILU::computeDiluDiagonalSplit<blocksize_, field_type, float, true>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedDiag->data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
m_gpuNaturalToReorder.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
m_gpuDInvFloat->data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
factorizationBlockSize);
|
||||
} else {
|
||||
// TODO: should this be field type twice or field type then float in the template?
|
||||
detail::DILU::computeDiluDiagonalSplit<blocksize_, field_type, float, false>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedDiag->data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
m_gpuNaturalToReorder.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
factorizationBlockSize);
|
||||
}
|
||||
} else {
|
||||
detail::DILU::computeDiluDiagonal<field_type, blocksize_>(
|
||||
m_gpuMatrixReordered->getNonZeroValues().data(),
|
||||
|
@ -133,6 +133,7 @@ private:
|
||||
std::unique_ptr<FloatMat> m_gpuMatrixReorderedLowerFloat;
|
||||
std::unique_ptr<FloatMat> m_gpuMatrixReorderedUpperFloat;
|
||||
std::unique_ptr<FloatVec> m_gpuMatrixReorderedDiagFloat;
|
||||
std::unique_ptr<FloatVec> m_gpuDInvFloat;
|
||||
//! row conversion from natural to reordered matrix indices stored on the GPU
|
||||
GpuVector<int> m_gpuNaturalToReorder;
|
||||
//! row conversion from reordered to natural matrix indices stored on the GPU
|
||||
|
@ -159,7 +159,7 @@ mmv(const T* a, const T* b, T* c)
|
||||
// dst -= A*B*C
|
||||
template <class T, int blocksize>
|
||||
__device__ __forceinline__ void
|
||||
mmx2Subtraction(T* A, T* B, T* C, T* dst)
|
||||
mmx2Subtraction(const T* A, const T* B, const T* C, T* dst)
|
||||
{
|
||||
|
||||
T tmp[blocksize * blocksize] = {0};
|
||||
@ -256,6 +256,19 @@ mvMixedGeneral(const MatrixScalar* A, const VectorScalar* b, ResultScalar* c)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: consider merging with existing block operations
|
||||
// mixed precision general version of c += Ab
|
||||
template <int blocksize, class MatrixScalar, class VectorScalar, class ResultScalar, class ComputeScalar>
|
||||
__device__ __forceinline__ void
|
||||
umvMixedGeneral(const MatrixScalar* A, const VectorScalar* b, ResultScalar* c)
|
||||
{
|
||||
for (int i = 0; i < blocksize; ++i) {
|
||||
for (int j = 0; j < blocksize; ++j) {
|
||||
c[i] += ResultScalar(ComputeScalar(A[i * blocksize + j]) * ComputeScalar(b[j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: consider merging with existing block operations
|
||||
// Mixed precision general version of c -= Ab
|
||||
template <int blocksize, class MatrixScalar, class VectorScalar, class ResultScalar, class ComputeScalar>
|
||||
|
@ -59,16 +59,16 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, int blocksize>
|
||||
__global__ void cuSolveLowerLevelSetSplit(T* mat,
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
__global__ void cuSolveLowerLevelSetSplit(MatrixScalar* mat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const T* dInv,
|
||||
const T* d,
|
||||
T* v)
|
||||
const MatrixScalar* dInv,
|
||||
const LinearSolverScalar* d,
|
||||
LinearSolverScalar* v)
|
||||
{
|
||||
const auto reorderedRowIdx = startIdx + (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
if (reorderedRowIdx < rowsInLevelSet + startIdx) {
|
||||
@ -77,7 +77,7 @@ namespace
|
||||
const size_t nnzIdxLim = rowIndices[reorderedRowIdx + 1];
|
||||
const int naturalRowIdx = indexConversion[reorderedRowIdx];
|
||||
|
||||
T rhs[blocksize];
|
||||
LinearSolverScalar rhs[blocksize];
|
||||
for (int i = 0; i < blocksize; i++) {
|
||||
rhs[i] = d[naturalRowIdx * blocksize + i];
|
||||
}
|
||||
@ -85,10 +85,10 @@ namespace
|
||||
// TODO: removce the first condition in the for loop
|
||||
for (int block = nnzIdx; block < nnzIdxLim; ++block) {
|
||||
const int col = colIndices[block];
|
||||
mmv<T, blocksize>(&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
|
||||
mmvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
|
||||
}
|
||||
|
||||
mv<T, blocksize>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
mvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -118,15 +118,15 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, int blocksize>
|
||||
__global__ void cuSolveUpperLevelSetSplit(T* mat,
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
__global__ void cuSolveUpperLevelSetSplit(MatrixScalar* mat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const T* dInv,
|
||||
T* v)
|
||||
const MatrixScalar* dInv,
|
||||
LinearSolverScalar* v)
|
||||
{
|
||||
const auto reorderedRowIdx = startIdx + (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
if (reorderedRowIdx < rowsInLevelSet + startIdx) {
|
||||
@ -134,13 +134,13 @@ namespace
|
||||
const size_t nnzIdxLim = rowIndices[reorderedRowIdx + 1];
|
||||
const int naturalRowIdx = indexConversion[reorderedRowIdx];
|
||||
|
||||
T rhs[blocksize] = {0};
|
||||
LinearSolverScalar rhs[blocksize] = {0};
|
||||
for (int block = nnzIdx; block < nnzIdxLim; ++block) {
|
||||
const int col = colIndices[block];
|
||||
umv<T, blocksize>(&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
|
||||
umvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
|
||||
}
|
||||
|
||||
mmv<T, blocksize>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
mmvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -211,19 +211,24 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, int blocksize>
|
||||
__global__ void cuComputeDiluDiagonalSplit(T* reorderedLowerMat,
|
||||
// TODO: rewrite such that during the factorization there is a dInv of InputScalar type that stores intermediate results
|
||||
// TOOD: The important part is to only cast after that is fully computed
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
__global__ void cuComputeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
int* lowerColIndices,
|
||||
T* reorderedUpperMat,
|
||||
const InputScalar* srcReorderedUpperMat,
|
||||
int* upperRowIndices,
|
||||
int* upperColIndices,
|
||||
T* diagonal,
|
||||
const InputScalar* srcDiagonal,
|
||||
int* reorderedToNatural,
|
||||
int* naturalToReordered,
|
||||
const int startIdx,
|
||||
int rowsInLevelSet,
|
||||
T* dInv)
|
||||
InputScalar* dInv,
|
||||
OutputScalar* dstDiag, // TODO: should this be diag or dInv?
|
||||
OutputScalar* dstLowerMat,
|
||||
OutputScalar* dstUpperMat)
|
||||
{
|
||||
const auto reorderedRowIdx = startIdx + blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (reorderedRowIdx < rowsInLevelSet + startIdx) {
|
||||
@ -231,10 +236,10 @@ namespace
|
||||
const size_t lowerRowStart = lowerRowIndices[reorderedRowIdx];
|
||||
const size_t lowerRowEnd = lowerRowIndices[reorderedRowIdx + 1];
|
||||
|
||||
T dInvTmp[blocksize * blocksize];
|
||||
InputScalar dInvTmp[blocksize * blocksize];
|
||||
for (int i = 0; i < blocksize; ++i) {
|
||||
for (int j = 0; j < blocksize; ++j) {
|
||||
dInvTmp[i * blocksize + j] = diagonal[reorderedRowIdx * blocksize * blocksize + i * blocksize + j];
|
||||
dInvTmp[i * blocksize + j] = srcDiagonal[reorderedRowIdx * blocksize * blocksize + i * blocksize + j];
|
||||
}
|
||||
}
|
||||
|
||||
@ -250,18 +255,28 @@ namespace
|
||||
|
||||
const int symOppositeBlock = symOppositeIdx;
|
||||
|
||||
mmx2Subtraction<T, blocksize>(&reorderedLowerMat[block * blocksize * blocksize],
|
||||
if constexpr (copyResultToOtherMatrix) {
|
||||
// TODO: think long and hard about whether this performs only the wanted memory transfers
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(&srcReorderedLowerMat[block * blocksize * blocksize], &dstLowerMat[block * blocksize * blocksize]);
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(&srcReorderedUpperMat[symOppositeBlock * blocksize * blocksize], &dstUpperMat[symOppositeBlock * blocksize * blocksize]);
|
||||
}
|
||||
|
||||
mmx2Subtraction<InputScalar, blocksize>(&srcReorderedLowerMat[block * blocksize * blocksize],
|
||||
&dInv[col * blocksize * blocksize],
|
||||
&reorderedUpperMat[symOppositeBlock * blocksize * blocksize],
|
||||
&srcReorderedUpperMat[symOppositeBlock * blocksize * blocksize],
|
||||
dInvTmp);
|
||||
}
|
||||
|
||||
invBlockInPlace<T, blocksize>(dInvTmp);
|
||||
invBlockInPlace<InputScalar, blocksize>(dInvTmp);
|
||||
|
||||
for (int i = 0; i < blocksize; ++i) {
|
||||
for (int j = 0; j < blocksize; ++j) {
|
||||
dInv[reorderedRowIdx * blocksize * blocksize + i * blocksize + j] = dInvTmp[i * blocksize + j];
|
||||
}
|
||||
// for (int i = 0; i < blocksize; ++i) {
|
||||
// for (int j = 0; j < blocksize; ++j) {
|
||||
// dInv[reorderedRowIdx * blocksize * blocksize + i * blocksize + j] = dInvTmp[i * blocksize + j];
|
||||
// }
|
||||
// }
|
||||
moveBlock<blocksize, InputScalar, InputScalar>(dInvTmp, &dInv[reorderedRowIdx * blocksize * blocksize]);
|
||||
if constexpr (copyResultToOtherMatrix) {
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(dInvTmp, &dstDiag[reorderedRowIdx * blocksize * blocksize]); // important!
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -289,23 +304,23 @@ solveLowerLevelSet(T* reorderedMat,
|
||||
}
|
||||
|
||||
|
||||
template <class T, int blocksize>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
void
|
||||
solveLowerLevelSetSplit(T* reorderedMat,
|
||||
solveLowerLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const T* dInv,
|
||||
const T* d,
|
||||
T* v,
|
||||
const MatrixScalar* dInv,
|
||||
const LinearSolverScalar* d,
|
||||
LinearSolverScalar* v,
|
||||
int thrBlockSize)
|
||||
{
|
||||
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
|
||||
cuSolveLowerLevelSetSplit<T, blocksize>, thrBlockSize);
|
||||
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>, thrBlockSize);
|
||||
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuSolveLowerLevelSetSplit<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(
|
||||
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar><<<nThreadBlocks, threadBlockSize>>>(
|
||||
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, d, v);
|
||||
}
|
||||
// perform the upper solve for all rows in the same level set
|
||||
@ -328,22 +343,22 @@ solveUpperLevelSet(T* reorderedMat,
|
||||
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
|
||||
}
|
||||
|
||||
template <class T, int blocksize>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
void
|
||||
solveUpperLevelSetSplit(T* reorderedMat,
|
||||
solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const T* dInv,
|
||||
T* v,
|
||||
const MatrixScalar* dInv,
|
||||
LinearSolverScalar* v,
|
||||
int thrBlockSize)
|
||||
{
|
||||
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
|
||||
cuSolveUpperLevelSetSplit<T, blocksize>, thrBlockSize);
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>, thrBlockSize);
|
||||
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuSolveUpperLevelSetSplit<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar><<<nThreadBlocks, threadBlockSize>>>(
|
||||
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
|
||||
}
|
||||
|
||||
@ -376,51 +391,62 @@ computeDiluDiagonal(T* reorderedMat,
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, int blocksize>
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
void
|
||||
computeDiluDiagonalSplit(T* reorderedLowerMat,
|
||||
computeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
int* lowerColIndices,
|
||||
T* reorderedUpperMat,
|
||||
const InputScalar* srcReorderedUpperMat,
|
||||
int* upperRowIndices,
|
||||
int* upperColIndices,
|
||||
T* diagonal,
|
||||
const InputScalar* srcDiagonal,
|
||||
int* reorderedToNatural,
|
||||
int* naturalToReordered,
|
||||
const int startIdx,
|
||||
int rowsInLevelSet,
|
||||
T* dInv,
|
||||
InputScalar* dInv,
|
||||
OutputScalar* dstDiag,
|
||||
OutputScalar* dstLowerMat,
|
||||
OutputScalar* dstUpperMat,
|
||||
int thrBlockSize)
|
||||
{
|
||||
if (blocksize <= 3) {
|
||||
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
|
||||
cuComputeDiluDiagonalSplit<T, blocksize>, thrBlockSize);
|
||||
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, copyResultToOtherMatrix>, thrBlockSize);
|
||||
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuComputeDiluDiagonalSplit<T, blocksize><<<nThreadBlocks, threadBlockSize>>>(reorderedLowerMat,
|
||||
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, copyResultToOtherMatrix><<<nThreadBlocks, threadBlockSize>>>(srcReorderedLowerMat,
|
||||
lowerRowIndices,
|
||||
lowerColIndices,
|
||||
reorderedUpperMat,
|
||||
srcReorderedUpperMat,
|
||||
upperRowIndices,
|
||||
upperColIndices,
|
||||
diagonal,
|
||||
srcDiagonal,
|
||||
reorderedToNatural,
|
||||
naturalToReordered,
|
||||
startIdx,
|
||||
rowsInLevelSet,
|
||||
dInv);
|
||||
dInv,
|
||||
dstDiag,
|
||||
dstLowerMat,
|
||||
dstUpperMat);
|
||||
} else {
|
||||
OPM_THROW(std::invalid_argument, "Inverting diagonal is not implemented for blocksizes > 3");
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: format
|
||||
#define INSTANTIATE_KERNEL_WRAPPERS(T, blocksize) \
|
||||
template void computeDiluDiagonal<T, blocksize>(T*, int*, int*, int*, int*, const int, int, T*, int); \
|
||||
template void computeDiluDiagonalSplit<T, blocksize>( \
|
||||
T*, int*, int*, T*, int*, int*, T*, int*, int*, const int, int, T*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, double, false>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, double*, double*, double*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, float, false>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, float*, float*, float*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, float, true>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, float*, float*, float*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, double, true>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, double*, double*, double*, int); \
|
||||
template void solveUpperLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*, int); \
|
||||
template void solveLowerLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, const T*, T*, int); \
|
||||
template void solveUpperLevelSetSplit<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*, int); \
|
||||
template void solveLowerLevelSetSplit<T, blocksize>(T*, int*, int*, int*, int, int, const T*, const T*, T*, int);
|
||||
template void solveLowerLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, const T*, T*, int);
|
||||
|
||||
INSTANTIATE_KERNEL_WRAPPERS(float, 1);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(float, 2);
|
||||
@ -434,4 +460,30 @@ INSTANTIATE_KERNEL_WRAPPERS(double, 3);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 4);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 5);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 6);
|
||||
|
||||
#define INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, LinearSolverScalar, MatrixScalar) \
|
||||
template void solveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>( \
|
||||
MatrixScalar*, int*, int*, int*, int, int, const MatrixScalar*, LinearSolverScalar*, int); \
|
||||
template void solveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>( \
|
||||
MatrixScalar*, int*, int*, int*, int, int, const MatrixScalar*, const LinearSolverScalar*, LinearSolverScalar*, int);
|
||||
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(1, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(2, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(3, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(4, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(5, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(6, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(1, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(2, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(3, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(4, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(5, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(6, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(1, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(2, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(3, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(4, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(5, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(6, double, float);
|
||||
|
||||
} // namespace Opm::gpuistl::detail::DILU
|
||||
|
@ -71,16 +71,16 @@ void solveLowerLevelSet(T* reorderedMat,
|
||||
* @param d Stores the defect
|
||||
* @param [out] v Will store the results of the lower solve
|
||||
*/
|
||||
template <class T, int blocksize>
|
||||
void solveLowerLevelSetSplit(T* reorderedUpperMat,
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
void solveLowerLevelSetSplit(MatrixScalar* reorderedUpperMat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const T* dInv,
|
||||
const T* d,
|
||||
T* v,
|
||||
const MatrixScalar* dInv,
|
||||
const LinearSolverScalar* d,
|
||||
LinearSolverScalar* v,
|
||||
int threadBlockSize);
|
||||
|
||||
/**
|
||||
@ -124,15 +124,15 @@ void solveUpperLevelSet(T* reorderedMat,
|
||||
* @param [out] v Will store the results of the lower solve. To begin with it should store the output from the lower
|
||||
* solve
|
||||
*/
|
||||
template <class T, int blocksize>
|
||||
void solveUpperLevelSetSplit(T* reorderedUpperMat,
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
void solveUpperLevelSetSplit(MatrixScalar* reorderedUpperMat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const T* dInv,
|
||||
T* v,
|
||||
const MatrixScalar* dInv,
|
||||
LinearSolverScalar* v,
|
||||
int threadBlockSize);
|
||||
|
||||
/**
|
||||
@ -161,7 +161,6 @@ void computeDiluDiagonal(T* reorderedMat,
|
||||
int rowsInLevelSet,
|
||||
T* dInv,
|
||||
int threadBlockSize);
|
||||
template <class T, int blocksize>
|
||||
|
||||
/**
|
||||
* @brief Computes the ILU0 of the diagonal elements of the split reordered matrix and stores it in a reordered vector
|
||||
@ -184,18 +183,22 @@ template <class T, int blocksize>
|
||||
* function
|
||||
* @param [out] dInv The diagonal matrix used by the Diagonal ILU preconditioner
|
||||
*/
|
||||
void computeDiluDiagonalSplit(T* reorderedLowerMat,
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
void computeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
int* lowerColIndices,
|
||||
T* reorderedUpperMat,
|
||||
const InputScalar* srcReorderedUpperMat,
|
||||
int* upperRowIndices,
|
||||
int* upperColIndices,
|
||||
T* diagonal,
|
||||
const InputScalar* srcDiagonal,
|
||||
int* reorderedToNatural,
|
||||
int* naturalToReordered,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
T* dInv,
|
||||
InputScalar* dInv,
|
||||
OutputScalar* dstDiagonal,
|
||||
OutputScalar* dstLowerMat,
|
||||
OutputScalar* dstUpperMat,
|
||||
int threadBlockSize);
|
||||
|
||||
} // namespace Opm::gpuistl::detail::DILU
|
||||
|
Loading…
Reference in New Issue
Block a user