mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Moved implementation of class ImpesTPFAAD to separate file.
Also cleaned up header usage in ImpesTPFAAD.hpp, making some new inclusions necessary in test program.
This commit is contained in:
parent
abc23b8009
commit
3e8bb53730
@ -28,6 +28,7 @@
|
||||
list (APPEND MAIN_SOURCE_FILES
|
||||
opm/autodiff/BlackoilPropsAd.cpp
|
||||
opm/autodiff/BlackoilPropsAdInterface.cpp
|
||||
opm/autodiff/ImpesTPFAAD.cpp
|
||||
opm/autodiff/SimulatorIncompTwophaseAdfi.cpp
|
||||
opm/autodiff/TransportSolverTwophaseAd.cpp
|
||||
)
|
||||
|
@ -20,8 +20,6 @@
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#define HACK_INCOMPRESSIBLE_GRAVITY 0
|
||||
|
||||
#include <opm/autodiff/GeoProps.hpp>
|
||||
#include <opm/autodiff/ImpesTPFAAD.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAd.hpp>
|
||||
@ -36,10 +34,11 @@
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/simulator/initState.hpp>
|
||||
|
||||
#include <opm/core/wells.h>
|
||||
// #include <opm/core/WellsManager.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
|
486
opm/autodiff/ImpesTPFAAD.cpp
Normal file
486
opm/autodiff/ImpesTPFAAD.cpp
Normal file
@ -0,0 +1,486 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/autodiff/ImpesTPFAAD.hpp>
|
||||
#include <opm/autodiff/GeoProps.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
|
||||
namespace {
|
||||
std::vector<int>
|
||||
buildAllCells(const int nc)
|
||||
{
|
||||
std::vector<int> all_cells(nc);
|
||||
|
||||
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
||||
|
||||
return all_cells;
|
||||
}
|
||||
|
||||
template <class GeoProps>
|
||||
AutoDiff::ForwardBlock<double>::M
|
||||
gravityOperator(const UnstructuredGrid& grid,
|
||||
const HelperOps& ops ,
|
||||
const GeoProps& geo )
|
||||
{
|
||||
const int nc = grid.number_of_cells;
|
||||
|
||||
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
|
||||
for (int c = 0, i = 0; c < nc; ++c) {
|
||||
for (; i < grid.cell_facepos[c + 1]; ++i) {
|
||||
const int f = grid.cell_faces[ i ];
|
||||
const int p = 0 + (grid.face_cells[2*f + 0] != c);
|
||||
|
||||
f2hf[2*f + p] = i;
|
||||
}
|
||||
}
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double>::V V;
|
||||
typedef AutoDiff::ForwardBlock<double>::M M;
|
||||
|
||||
const V& gpot = geo.gravityPotential();
|
||||
const V& trans = geo.transmissibility();
|
||||
|
||||
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
||||
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> grav; grav.reserve(2 * ni);
|
||||
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
||||
const int f = ops.internal_faces[ i ];
|
||||
const int c1 = grid.face_cells[2*f + 0];
|
||||
const int c2 = grid.face_cells[2*f + 1];
|
||||
|
||||
assert ((c1 >= 0) && (c2 >= 0));
|
||||
|
||||
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
||||
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
||||
const double t = trans[ f ];
|
||||
|
||||
grav.push_back(Tri(i, c1, t * dG1));
|
||||
grav.push_back(Tri(i, c2, - t * dG2));
|
||||
}
|
||||
|
||||
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
||||
|
||||
return G;
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
namespace Opm {
|
||||
|
||||
// Repeated from inside ImpesTPFAAD for convenience.
|
||||
typedef AutoDiff::ForwardBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
|
||||
|
||||
ImpesTPFAAD::ImpesTPFAAD(const UnstructuredGrid& grid,
|
||||
const BlackoilPropsAdInterface& fluid,
|
||||
const DerivedGeology& geo,
|
||||
const Wells& wells,
|
||||
const LinearSolverInterface& linsolver)
|
||||
: grid_ (grid)
|
||||
, fluid_ (fluid)
|
||||
, geo_ (geo)
|
||||
, wells_ (wells)
|
||||
, linsolver_(linsolver)
|
||||
// , pdepfdata_(grid.number_of_cells, fluid)
|
||||
, ops_ (grid)
|
||||
, grav_ (gravityOperator(grid_, ops_, geo_))
|
||||
, cell_residual_ (ADB::null())
|
||||
, well_flow_residual_ ()
|
||||
, well_residual_ (ADB::null())
|
||||
, total_residual_ (ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
void
|
||||
ImpesTPFAAD::solve(const double dt,
|
||||
BlackoilState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
well_flow_residual_.resize(np, ADB::null());
|
||||
|
||||
// Compute relperms once and for all (since saturations are explicit).
|
||||
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
||||
ASSERT(np == 2);
|
||||
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
||||
// Compute relperms for wells. This must be revisited for crossflow.
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
DataBlock well_s(nperf, np);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = &wells_.comp_frac[np*w];
|
||||
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
|
||||
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
|
||||
}
|
||||
}
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
||||
|
||||
const double atol = 1.0e-15;
|
||||
const double rtol = 5.0e-10;
|
||||
const int maxit = 15;
|
||||
|
||||
assemble(dt, state, well_state);
|
||||
|
||||
const double r0 = residualNorm();
|
||||
int it = 0;
|
||||
bool resTooLarge = r0 > atol;
|
||||
while (resTooLarge && (it < maxit)) {
|
||||
solveJacobianSystem(state, well_state);
|
||||
|
||||
assemble(dt, state, well_state);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
resTooLarge = (r > atol) && (r > rtol*r0);
|
||||
|
||||
it += 1;
|
||||
}
|
||||
|
||||
if (resTooLarge) {
|
||||
THROW("Failed to compute converged pressure solution");
|
||||
}
|
||||
else {
|
||||
computeFluxes(state);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
ImpesTPFAAD::assemble(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state)
|
||||
{
|
||||
|
||||
const V& pv = geo_.poreVolume();
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
|
||||
const std::vector<int> cells = buildAllCells(nc);
|
||||
|
||||
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
|
||||
const DataBlock qall = DataBlock::Zero(nc, np);
|
||||
const V delta_t = dt * V::Ones(nc, 1);
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
||||
|
||||
// Initialize AD variables: p (cell pressures), qs (well rates) and bhp (well bhp).
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V qs0 = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np, 1);
|
||||
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
std::vector<V> vars0 = { p0, qs0, bhp0 };
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
const ADB& p = vars[0];
|
||||
const ADB& qs = vars[1];
|
||||
const ADB& bhp = vars[2];
|
||||
std::vector<int> bpat = p.blockPattern();
|
||||
|
||||
// Compute T_ij * (p_i - p_j) and use for upwinding.
|
||||
const ADB nkgradp = transi * (ops_.ngrad * p);
|
||||
const UpwindSelector<double> upwind(grid_, ops_, nkgradp.value());
|
||||
|
||||
// Extract variables for perforation cell pressures
|
||||
// and corresponding perforation well pressures.
|
||||
const ADB p_perfcell = subset(p, well_cells);
|
||||
// Construct matrix to map wells->perforations.
|
||||
M well_to_perf(well_cells.size(), nw);
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> w2p;
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
||||
w2p.emplace_back(perf, w, 1.0);
|
||||
}
|
||||
}
|
||||
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
||||
const M perf_to_well = well_to_perf.transpose();
|
||||
// Construct pressure difference vector for wells.
|
||||
const V well_perf_dp = V::Zero(well_cells.size()); // No gravity yet!
|
||||
// Finally construct well perforation pressures and well flows.
|
||||
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp;
|
||||
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
|
||||
const Selector<double> cell_to_well_selector(nkgradp_well.value());
|
||||
|
||||
cell_residual_ = ADB::constant(pv, bpat);
|
||||
well_residual_ = ADB::constant(V::Zero(nw,1), bpat);
|
||||
ADB divcontrib_sum = ADB::constant(V::Zero(nc,1), bpat);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
const ADB cell_b = fluidFvf(phase, p, cells);
|
||||
const ADB cell_rho = fluidRho(phase, p, cells);
|
||||
const ADB well_b = fluidFvf(phase, p_perfwell, well_cells);
|
||||
const V kr = fluidKr(phase);
|
||||
// Explicitly not asking for derivatives of viscosity,
|
||||
// since they are not available yet.
|
||||
const V mu = fluidMu(phase, p.value(), cells);
|
||||
const V cell_mob = kr / mu;
|
||||
const V face_mob = upwind.select(cell_mob);
|
||||
const V well_kr = fluidKrWell(phase);
|
||||
const V well_mu = fluidMu(phase, p_perfwell.value(), well_cells);
|
||||
const V well_mob = well_kr / well_mu;
|
||||
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
||||
const ADB flux = face_mob * (nkgradp + (grav_ * cell_rho));
|
||||
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
|
||||
const ADB face_b = upwind.select(cell_b);
|
||||
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
|
||||
const V z0 = z0all.block(0, phase, nc, 1);
|
||||
const V q = qall .block(0, phase, nc, 1);
|
||||
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
|
||||
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b)
|
||||
+ well_contrib);
|
||||
const V qcontrib = delta_t * q;
|
||||
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
|
||||
const ADB component_contrib = pvcontrib + qcontrib;
|
||||
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
|
||||
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
|
||||
const ADB well_rates = perf_to_well * (perf_flux*perf_b);
|
||||
std::vector<int> well_flow_res_phase_idx(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
well_flow_res_phase_idx[w] = w + phase*nw;
|
||||
}
|
||||
well_flow_residual_[phase] = well_rates - subset(qs, well_flow_res_phase_idx);
|
||||
}
|
||||
cell_residual_ = cell_residual_ + divcontrib_sum;
|
||||
// Handling BHP and SURFACE_RATE wells.
|
||||
V bhp_targets(nw,1);
|
||||
V rate_targets(nw,1);
|
||||
M rate_distr(nw, np*nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const WellControls* wc = wells_.ctrls[w];
|
||||
if (wc->type[wc->current] == BHP) {
|
||||
bhp_targets[w] = wc->target[wc->current];
|
||||
rate_targets[w] = -1e100;
|
||||
} else if (wc->type[wc->current] == SURFACE_RATE) {
|
||||
bhp_targets[w] = -1e100;
|
||||
rate_targets[w] = wc->target[wc->current];
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
rate_distr.insert(w, phase*nw + w) = wc->distr[phase];
|
||||
}
|
||||
} else {
|
||||
THROW("Can only handle BHP and SURFACE_RATE type controls.");
|
||||
}
|
||||
}
|
||||
const ADB bhp_residual = bhp - bhp_targets;
|
||||
const ADB rate_residual = rate_distr * qs - rate_targets;
|
||||
// Choose bhp residual for positive bhp targets.
|
||||
Selector<double> bhp_selector(bhp_targets);
|
||||
well_residual_ = bhp_selector.select(bhp_residual, rate_residual);
|
||||
|
||||
ASSERT(np == 2);
|
||||
const ADB well_flow_res = vertcat(well_flow_residual_[0], well_flow_residual_[1]);
|
||||
const ADB well_res = vertcat(well_flow_res, well_residual_);
|
||||
total_residual_ = collapseJacs(vertcat(cell_residual_, well_res));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
ImpesTPFAAD::solveJacobianSystem(BlackoilState& state,
|
||||
WellState& well_state) const
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual_.derivative()[0];
|
||||
|
||||
V dx(total_residual_.size());
|
||||
Opm::LinearSolverInterface::LinearSolverReport rep
|
||||
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
||||
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
||||
total_residual_.value().data(), dx.data());
|
||||
if (!rep.converged) {
|
||||
THROW("ImpesTPFAAD::solve(): Linear solver convergence failure.");
|
||||
}
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V dp = subset(dx, buildAllCells(nc));
|
||||
const V p = p0 - dp;
|
||||
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
||||
const V qs0 = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np, 1);
|
||||
std::vector<int> qs_dofs(np*nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
qs_dofs[w*np + phase] = nc + w*np + phase;
|
||||
}
|
||||
}
|
||||
const V dqs = subset(dx, qs_dofs);
|
||||
const V qs = qs0 - dqs;
|
||||
std::copy(&qs[0], &qs[0] + np*nw, well_state.wellRates().begin());
|
||||
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
std::vector<int> bhp_dofs(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
bhp_dofs[w] = nc + np*nw + w;
|
||||
}
|
||||
ASSERT(bhp_dofs.back() + 1 == total_residual_.size());
|
||||
const V dbhp = subset(dx, bhp_dofs);
|
||||
const V bhp = bhp0 - dbhp;
|
||||
std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
double
|
||||
ImpesTPFAAD::residualNorm() const
|
||||
{
|
||||
return total_residual_.value().matrix().norm();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
ImpesTPFAAD::computeFluxes(BlackoilState& state) const
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
const std::vector<int> cells = buildAllCells(nc);
|
||||
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const ADB p = ADB::constant(p0, cell_residual_.blockPattern());
|
||||
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
const V nkgradp = transi * (ops_.ngrad * p0.matrix()).array();
|
||||
|
||||
V flux = V::Zero(ops_.internal_faces.size(), 1);
|
||||
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
const ADB cell_rho = fluidRho(phase, p, cells);
|
||||
const V head = nkgradp + (grav_ * cell_rho.value().matrix()).array();
|
||||
const UpwindSelector<double> upwind(grid_, ops_, head);
|
||||
const V kr = fluidKr(phase);
|
||||
const V mu = fluidMu(phase, p.value(), cells);
|
||||
const V mf = upwind.select(kr / mu);
|
||||
|
||||
flux += mf * head;
|
||||
}
|
||||
V all_flux = superset(flux, ops_.internal_faces, grid_.number_of_faces);
|
||||
std::copy(all_flux.data(), all_flux.data() + grid_.number_of_faces, state.faceflux().data());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidMu(const int phase, const V& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
V dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB ImpesTPFAAD::fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB ImpesTPFAAD::fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.bWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.bOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.bGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB ImpesTPFAAD::fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
const double* rhos = fluid_.surfaceDensity();
|
||||
ADB b = fluidFvf(phase, p, cells);
|
||||
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
||||
return rho;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidKr(const int phase) const
|
||||
{
|
||||
return kr_[phase];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidKrWell(const int phase) const
|
||||
{
|
||||
return well_kr_[phase];
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -25,168 +25,44 @@
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
#include <iterator>
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace {
|
||||
std::vector<int>
|
||||
buildAllCells(const int nc)
|
||||
{
|
||||
std::vector<int> all_cells(nc);
|
||||
|
||||
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
||||
|
||||
return all_cells;
|
||||
}
|
||||
|
||||
template <class GeoProps>
|
||||
AutoDiff::ForwardBlock<double>::M
|
||||
gravityOperator(const UnstructuredGrid& grid,
|
||||
const HelperOps& ops ,
|
||||
const GeoProps& geo )
|
||||
{
|
||||
const int nc = grid.number_of_cells;
|
||||
|
||||
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
|
||||
for (int c = 0, i = 0; c < nc; ++c) {
|
||||
for (; i < grid.cell_facepos[c + 1]; ++i) {
|
||||
const int f = grid.cell_faces[ i ];
|
||||
const int p = 0 + (grid.face_cells[2*f + 0] != c);
|
||||
|
||||
f2hf[2*f + p] = i;
|
||||
}
|
||||
}
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double>::V V;
|
||||
typedef AutoDiff::ForwardBlock<double>::M M;
|
||||
|
||||
const V& gpot = geo.gravityPotential();
|
||||
const V& trans = geo.transmissibility();
|
||||
|
||||
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
||||
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> grav; grav.reserve(2 * ni);
|
||||
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
||||
const int f = ops.internal_faces[ i ];
|
||||
const int c1 = grid.face_cells[2*f + 0];
|
||||
const int c2 = grid.face_cells[2*f + 1];
|
||||
|
||||
assert ((c1 >= 0) && (c2 >= 0));
|
||||
|
||||
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
||||
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
||||
const double t = trans[ f ];
|
||||
|
||||
grav.push_back(Tri(i, c1, t * dG1));
|
||||
grav.push_back(Tri(i, c2, - t * dG2));
|
||||
}
|
||||
|
||||
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
||||
|
||||
return G;
|
||||
}
|
||||
}
|
||||
struct Wells;
|
||||
|
||||
namespace Opm {
|
||||
|
||||
class DerivedGeology;
|
||||
class LinearSolverInterface;
|
||||
class BlackoilState;
|
||||
class WellState;
|
||||
|
||||
class ImpesTPFAAD {
|
||||
/// Class for solving black-oil impes problems.
|
||||
/// Current known limitations:
|
||||
/// - pressure solve only
|
||||
/// - no miscibility
|
||||
/// - no gravity in wells or crossflow
|
||||
class ImpesTPFAAD
|
||||
{
|
||||
public:
|
||||
/// Construct impes solver.
|
||||
ImpesTPFAAD(const UnstructuredGrid& grid,
|
||||
const BlackoilPropsAdInterface& fluid,
|
||||
const DerivedGeology& geo,
|
||||
const Wells& wells,
|
||||
const LinearSolverInterface& linsolver)
|
||||
: grid_ (grid)
|
||||
, fluid_ (fluid)
|
||||
, geo_ (geo)
|
||||
, wells_ (wells)
|
||||
, linsolver_(linsolver)
|
||||
// , pdepfdata_(grid.number_of_cells, fluid)
|
||||
, ops_ (grid)
|
||||
, grav_ (gravityOperator(grid_, ops_, geo_))
|
||||
, cell_residual_ (ADB::null())
|
||||
, well_flow_residual_ ()
|
||||
, well_residual_ (ADB::null())
|
||||
, total_residual_ (ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
void
|
||||
solve(const double dt,
|
||||
BlackoilState& state,
|
||||
WellState& well_state)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
well_flow_residual_.resize(np, ADB::null());
|
||||
|
||||
// Compute relperms once and for all (since saturations are explicit).
|
||||
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
||||
ASSERT(np == 2);
|
||||
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
||||
// Compute relperms for wells. This must be revisited for crossflow.
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
DataBlock well_s(nperf, np);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = &wells_.comp_frac[np*w];
|
||||
for (int j = wells_.well_connpos[w]; j < wells_.well_connpos[w+1]; ++j) {
|
||||
well_s.row(j) = Eigen::Map<const DataBlock>(comp_frac, 1, np);
|
||||
}
|
||||
}
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
||||
|
||||
const double atol = 1.0e-15;
|
||||
const double rtol = 5.0e-10;
|
||||
const int maxit = 15;
|
||||
|
||||
assemble(dt, state, well_state);
|
||||
|
||||
const double r0 = residualNorm();
|
||||
int it = 0;
|
||||
bool resTooLarge = r0 > atol;
|
||||
while (resTooLarge && (it < maxit)) {
|
||||
solveJacobianSystem(state, well_state);
|
||||
|
||||
assemble(dt, state, well_state);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
resTooLarge = (r > atol) && (r > rtol*r0);
|
||||
|
||||
it += 1;
|
||||
}
|
||||
|
||||
if (resTooLarge) {
|
||||
THROW("Failed to compute converged pressure solution");
|
||||
}
|
||||
else {
|
||||
computeFluxes(state);
|
||||
}
|
||||
}
|
||||
const LinearSolverInterface& linsolver);
|
||||
|
||||
/// Solve forward in time.
|
||||
/// Currently this will only modify
|
||||
/// state.pressure(), state.faceflux(), well_state.bhp()
|
||||
/// and well_state.wellRates().
|
||||
void solve(const double dt,
|
||||
BlackoilState& state,
|
||||
WellState& well_state);
|
||||
private:
|
||||
// Disallow copying and assignment
|
||||
ImpesTPFAAD(const ImpesTPFAAD& rhs);
|
||||
ImpesTPFAAD& operator=(const ImpesTPFAAD& rhs);
|
||||
|
||||
// Types
|
||||
typedef AutoDiff::ForwardBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
@ -194,7 +70,11 @@ namespace Opm {
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
enum { Water = BlackoilPropsAdInterface::Water,
|
||||
Oil = BlackoilPropsAdInterface::Oil,
|
||||
Gas = BlackoilPropsAdInterface::Gas };
|
||||
|
||||
// Data
|
||||
const UnstructuredGrid& grid_;
|
||||
const BlackoilPropsAdInterface& fluid_;
|
||||
const DerivedGeology& geo_ ;
|
||||
@ -209,327 +89,25 @@ namespace Opm {
|
||||
std::vector<V> kr_;
|
||||
std::vector<V> well_kr_;
|
||||
|
||||
enum { Water = BlackoilPropsAdInterface::Water,
|
||||
Oil = BlackoilPropsAdInterface::Oil,
|
||||
Gas = BlackoilPropsAdInterface::Gas };
|
||||
|
||||
|
||||
void
|
||||
assemble(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state)
|
||||
{
|
||||
|
||||
const V& pv = geo_.poreVolume();
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
|
||||
const std::vector<int> cells = buildAllCells(nc);
|
||||
|
||||
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
|
||||
const DataBlock qall = DataBlock::Zero(nc, np);
|
||||
const V delta_t = dt * V::Ones(nc, 1);
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
const V transw = Eigen::Map<const V>(wells_.WI, nperf, 1);
|
||||
|
||||
// Initialize AD variables: p (cell pressures), qs (well rates) and bhp (well bhp).
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V qs0 = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np, 1);
|
||||
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
std::vector<V> vars0 = { p0, qs0, bhp0 };
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
const ADB& p = vars[0];
|
||||
const ADB& qs = vars[1];
|
||||
const ADB& bhp = vars[2];
|
||||
std::vector<int> bpat = p.blockPattern();
|
||||
|
||||
// Compute T_ij * (p_i - p_j) and use for upwinding.
|
||||
const ADB nkgradp = transi * (ops_.ngrad * p);
|
||||
const UpwindSelector<double> upwind(grid_, ops_, nkgradp.value());
|
||||
|
||||
// Extract variables for perforation cell pressures
|
||||
// and corresponding perforation well pressures.
|
||||
const ADB p_perfcell = subset(p, well_cells);
|
||||
// Construct matrix to map wells->perforations.
|
||||
M well_to_perf(well_cells.size(), nw);
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> w2p;
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
||||
w2p.emplace_back(perf, w, 1.0);
|
||||
}
|
||||
}
|
||||
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
||||
const M perf_to_well = well_to_perf.transpose();
|
||||
// Construct pressure difference vector for wells.
|
||||
const V well_perf_dp = V::Zero(well_cells.size()); // No gravity yet!
|
||||
// Finally construct well perforation pressures and well flows.
|
||||
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp;
|
||||
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
|
||||
const Selector<double> cell_to_well_selector(nkgradp_well.value());
|
||||
|
||||
cell_residual_ = ADB::constant(pv, bpat);
|
||||
well_residual_ = ADB::constant(V::Zero(nw,1), bpat);
|
||||
ADB divcontrib_sum = ADB::constant(V::Zero(nc,1), bpat);
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
const ADB cell_b = fluidFvf(phase, p, cells);
|
||||
const ADB cell_rho = fluidRho(phase, p, cells);
|
||||
const ADB well_b = fluidFvf(phase, p_perfwell, well_cells);
|
||||
const V kr = fluidKr(phase);
|
||||
// Explicitly not asking for derivatives of viscosity,
|
||||
// since they are not available yet.
|
||||
const V mu = fluidMu(phase, p.value(), cells);
|
||||
const V cell_mob = kr / mu;
|
||||
const V face_mob = upwind.select(cell_mob);
|
||||
const V well_kr = fluidKrWell(phase);
|
||||
const V well_mu = fluidMu(phase, p_perfwell.value(), well_cells);
|
||||
const V well_mob = well_kr / well_mu;
|
||||
const V perf_mob = cell_to_well_selector.select(subset(cell_mob, well_cells), well_mob);
|
||||
const ADB flux = face_mob * (nkgradp + (grav_ * cell_rho));
|
||||
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
|
||||
const ADB face_b = upwind.select(cell_b);
|
||||
const ADB perf_b = cell_to_well_selector.select(subset(cell_b, well_cells), well_b);
|
||||
const V z0 = z0all.block(0, phase, nc, 1);
|
||||
const V q = qall .block(0, phase, nc, 1);
|
||||
const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
|
||||
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b)
|
||||
+ well_contrib);
|
||||
const V qcontrib = delta_t * q;
|
||||
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
|
||||
const ADB component_contrib = pvcontrib + qcontrib;
|
||||
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
|
||||
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
|
||||
const ADB well_rates = perf_to_well * (perf_flux*perf_b);
|
||||
std::vector<int> well_flow_res_phase_idx(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
well_flow_res_phase_idx[w] = w + phase*nw;
|
||||
}
|
||||
well_flow_residual_[phase] = well_rates - subset(qs, well_flow_res_phase_idx);
|
||||
}
|
||||
cell_residual_ = cell_residual_ + divcontrib_sum;
|
||||
// Handling BHP and SURFACE_RATE wells.
|
||||
V bhp_targets(nw,1);
|
||||
V rate_targets(nw,1);
|
||||
M rate_distr(nw, np*nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const WellControls* wc = wells_.ctrls[w];
|
||||
if (wc->type[wc->current] == BHP) {
|
||||
bhp_targets[w] = wc->target[wc->current];
|
||||
rate_targets[w] = -1e100;
|
||||
} else if (wc->type[wc->current] == SURFACE_RATE) {
|
||||
bhp_targets[w] = -1e100;
|
||||
rate_targets[w] = wc->target[wc->current];
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
rate_distr.insert(w, phase*nw + w) = wc->distr[phase];
|
||||
}
|
||||
} else {
|
||||
THROW("Can only handle BHP and SURFACE_RATE type controls.");
|
||||
}
|
||||
}
|
||||
const ADB bhp_residual = bhp - bhp_targets;
|
||||
const ADB rate_residual = rate_distr * qs - rate_targets;
|
||||
// Choose bhp residual for positive bhp targets.
|
||||
Selector<double> bhp_selector(bhp_targets);
|
||||
well_residual_ = bhp_selector.select(bhp_residual, rate_residual);
|
||||
|
||||
ASSERT(np == 2);
|
||||
const ADB well_flow_res = vertcat(well_flow_residual_[0], well_flow_residual_[1]);
|
||||
const ADB well_res = vertcat(well_flow_res, well_residual_);
|
||||
total_residual_ = collapseJacs(vertcat(cell_residual_, well_res));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
solveJacobianSystem(BlackoilState& state,
|
||||
WellState& well_state) const
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual_.derivative()[0];
|
||||
|
||||
#if HACK_INCOMPRESSIBLE_GRAVITY
|
||||
matr.coeffRef(0, 0) *= 2;
|
||||
#endif
|
||||
|
||||
V dx(total_residual_.size());
|
||||
Opm::LinearSolverInterface::LinearSolverReport rep
|
||||
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
||||
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
||||
total_residual_.value().data(), dx.data());
|
||||
if (!rep.converged) {
|
||||
THROW("ImpesTPFAAD::solve(): Linear solver convergence failure.");
|
||||
}
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const V dp = subset(dx, buildAllCells(nc));
|
||||
const V p = p0 - dp;
|
||||
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
||||
const V qs0 = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np, 1);
|
||||
std::vector<int> qs_dofs(np*nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
qs_dofs[w*np + phase] = nc + w*np + phase;
|
||||
}
|
||||
}
|
||||
const V dqs = subset(dx, qs_dofs);
|
||||
const V qs = qs0 - dqs;
|
||||
std::copy(&qs[0], &qs[0] + np*nw, well_state.wellRates().begin());
|
||||
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
||||
std::vector<int> bhp_dofs(nw);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
bhp_dofs[w] = nc + np*nw + w;
|
||||
}
|
||||
ASSERT(bhp_dofs.back() + 1 == total_residual_.size());
|
||||
const V dbhp = subset(dx, bhp_dofs);
|
||||
const V bhp = bhp0 - dbhp;
|
||||
std::copy(&bhp[0], &bhp[0] + nw, well_state.bhp().begin());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
double
|
||||
residualNorm() const
|
||||
{
|
||||
return total_residual_.value().matrix().norm();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void
|
||||
computeFluxes(BlackoilState& state) const
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = state.numPhases();
|
||||
|
||||
const std::vector<int> cells = buildAllCells(nc);
|
||||
|
||||
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
||||
const ADB p = ADB::constant(p0, cell_residual_.blockPattern());
|
||||
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
const V nkgradp = transi * (ops_.ngrad * p0.matrix()).array();
|
||||
|
||||
V flux = V::Zero(ops_.internal_faces.size(), 1);
|
||||
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
const ADB cell_rho = fluidRho(phase, p, cells);
|
||||
const V head = nkgradp + (grav_ * cell_rho.value().matrix()).array();
|
||||
const UpwindSelector<double> upwind(grid_, ops_, head);
|
||||
const V kr = fluidKr(phase);
|
||||
const V mu = fluidMu(phase, p.value(), cells);
|
||||
const V mf = upwind.select(kr / mu);
|
||||
|
||||
flux += mf * head;
|
||||
}
|
||||
V all_flux = superset(flux, ops_.internal_faces, grid_.number_of_faces);
|
||||
std::copy(all_flux.data(), all_flux.data() + grid_.number_of_faces, state.faceflux().data());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V fluidMu(const int phase, const V& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
V dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.bWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.bOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.bGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
ADB fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const
|
||||
{
|
||||
const double* rhos = fluid_.surfaceDensity();
|
||||
ADB b = fluidFvf(phase, p, cells);
|
||||
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
||||
return rho;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V fluidKr(const int phase) const
|
||||
{
|
||||
return kr_[phase];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V fluidKrWell(const int phase) const
|
||||
{
|
||||
return well_kr_[phase];
|
||||
}
|
||||
|
||||
// Methods for assembling and solving.
|
||||
void assemble(const double dt,
|
||||
const BlackoilState& state,
|
||||
const WellState& well_state);
|
||||
void solveJacobianSystem(BlackoilState& state,
|
||||
WellState& well_state) const;
|
||||
double residualNorm() const;
|
||||
void computeFluxes(BlackoilState& state) const;
|
||||
|
||||
// Fluid interface forwarding calls to correct methods of fluid_.
|
||||
V fluidMu(const int phase, const V& p, const std::vector<int>& cells) const;
|
||||
ADB fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const;
|
||||
ADB fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const;
|
||||
ADB fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const;
|
||||
V fluidKr(const int phase) const;
|
||||
V fluidKrWell(const int phase) const;
|
||||
};
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif /* OPM_IMPESTPFAAD_HEADER_INCLUDED */
|
||||
|
Loading…
Reference in New Issue
Block a user