diff --git a/opm/autodiff/AquiferFetkovich.hpp b/opm/autodiff/AquiferFetkovich.hpp
index c15a07435..2f6a03e5b 100755
--- a/opm/autodiff/AquiferFetkovich.hpp
+++ b/opm/autodiff/AquiferFetkovich.hpp
@@ -1,387 +1,387 @@
-/*
-Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
-Copyright 2017 Statoil ASA.
-
-This file is part of the Open Porous Media project (OPM).
-
-OPM is free software: you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation, either version 3 of the License, or
-(at your option) any later version.
-
-OPM is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with OPM. If not, see .
-*/
-
-#ifndef OPM_AQUIFETP_HEADER_INCLUDED
-#define OPM_AQUIFETP_HEADER_INCLUDED
-
-#include
-#include
-#include
-#include
-
-#include
-#include
-#include
-#include
-
-#include
-#include
-#include
-
-namespace Opm
-{
-
- template
- class AquiferFetkovich
- {
-
- public:
-
+/*
+Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
+Copyright 2017 Statoil ASA.
+
+This file is part of the Open Porous Media project (OPM).
+
+OPM is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+OPM is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with OPM. If not, see .
+*/
+
+#ifndef OPM_AQUIFETP_HEADER_INCLUDED
+#define OPM_AQUIFETP_HEADER_INCLUDED
+
+#include
+#include
+#include
+#include
+
+#include
+#include
+#include
+#include
+
+#include
+#include
+#include
+
+namespace Opm
+{
+
+ template
+ class AquiferFetkovich
+ {
+
+ public:
+
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
- typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
- typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
- typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
- typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
- typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
- enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
+ typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
+ typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
+ typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
+ typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
+ typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
+ enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
-
- static const int numEq = BlackoilIndices::numEq;
- typedef double Scalar;
-
- typedef DenseAd::Evaluation Eval;
+
+ static const int numEq = BlackoilIndices::numEq;
+ typedef double Scalar;
+
+ typedef DenseAd::Evaluation Eval;
typedef Opm::BlackOilFluidState FluidState;
-
- static const auto waterCompIdx = FluidSystem::waterCompIdx;
- static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
-
- AquiferFetkovich( const Aquifetp::AQUFETP_data& aqufetp_data,
- const Aquancon::AquanconOutput& connection,
- const std::unordered_map& cartesian_to_compressed,
- const Simulator& ebosSimulator)
+
+ static const auto waterCompIdx = FluidSystem::waterCompIdx;
+ static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
+
+ AquiferFetkovich( const Aquifetp::AQUFETP_data& aqufetp_data,
+ const Aquancon::AquanconOutput& connection,
+ const std::unordered_map& cartesian_to_compressed,
+ const Simulator& ebosSimulator)
: ebos_simulator_ (ebosSimulator)
- , cartesian_to_compressed_(cartesian_to_compressed)
- , aqufetp_data_ (aqufetp_data)
- , connection_ (connection)
- {}
-
- void initialSolutionApplied()
- {
- initQuantities(connection_);
- }
-
- void beginTimeStep()
- {
- ElementContext elemCtx(ebos_simulator_);
- auto elemIt = ebos_simulator_.gridView().template begin<0>();
- const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
- for (; elemIt != elemEndIt; ++elemIt) {
- const auto& elem = *elemIt;
-
- elemCtx.updatePrimaryStencil(elem);
-
- int cellIdx = elemCtx.globalSpaceIndex(0, 0);
- int idx = cellToConnectionIdx_[cellIdx];
- if (idx < 0)
- continue;
-
- elemCtx.updateIntensiveQuantities(0);
- const auto& iq = elemCtx.intensiveQuantities(0, 0);
- pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
- }
- }
-
- template
- void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
- {
- unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
-
- int idx = cellToConnectionIdx_[cellIdx];
- if (idx < 0)
- return;
-
- // We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
- // IntensiveQuantities of that particular cell_id
- const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
- // This is the pressure at td + dt
- updateCellPressure(pressure_current_,idx,intQuants);
- updateCellDensity(idx,intQuants);
- calculateInflowRate(idx, context.simulator());
- rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
- Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
- }
-
- void endTimeStep()
- {
- for (const auto& Qai: Qai_) {
- W_flux_ += Qai*ebos_simulator_.timeStepSize();
- aquifer_pressure_ = aquiferPressure();
- }
- }
- private:
- const Simulator& ebos_simulator_;
- const std::unordered_map& cartesian_to_compressed_;
-
- // Grid variables
- std::vector cell_idx_;
- std::vector faceArea_connected_;
-
- // Quantities at each grid id
- std::vector cell_depth_;
- std::vector pressure_previous_;
- std::vector pressure_current_;
- std::vector Qai_;
- std::vector rhow_;
- std::vector alphai_;
- std::vector cellToConnectionIdx_;
-
- // Variables constants
- const Aquifetp::AQUFETP_data aqufetp_data_;
- const Aquancon::AquanconOutput connection_;
-
- Scalar mu_w_; //water viscosity
- Scalar Tc_; // Time Constant
- Scalar pa0_; // initial aquifer pressure
- Scalar aquifer_pressure_; // aquifer pressure
-
- Eval W_flux_;
-
- Scalar gravity_() const
- { return ebos_simulator_.problem().gravity()[2]; }
-
- inline void initQuantities(const Aquancon::AquanconOutput& connection)
- {
- // We reset the cumulative flux at the start of any simulation, so, W_flux = 0
- W_flux_ = 0.;
-
- // We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
- initializeConnections(connection);
-
- calculateAquiferCondition();
-
- pressure_previous_.resize(cell_idx_.size(), 0.);
- pressure_current_.resize(cell_idx_.size(), 0.);
- Qai_.resize(cell_idx_.size(), 0.0);
- }
-
- inline void updateCellPressure(std::vector& pressure_water, const int idx, const IntensiveQuantities& intQuants)
- {
- const auto& fs = intQuants.fluidState();
- pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
- }
-
- inline void updateCellPressure(std::vector& pressure_water, const int idx, const IntensiveQuantities& intQuants)
- {
- const auto& fs = intQuants.fluidState();
- pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
- }
-
- inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
- {
- const auto& fs = intQuants.fluidState();
- rhow_.at(idx) = fs.density(waterPhaseIdx);
- }
-
- inline Scalar dpai(int idx)
- {
- Scalar dp = aquifer_pressure_ + rhow_.at(idx).value()*gravity_()*(cell_depth_.at(idx) - aqufetp_data_.d0) - pressure_current_.at(idx).value() ;
- return dp;
- }
- // This function implements Eq 5.12 of the EclipseTechnicalDescription
- inline Scalar aquiferPressure()
- {
- Scalar Flux = W_flux_.value();
- Scalar pa_ = pa0_ - Flux / ( aqufetp_data_.C_t * aqufetp_data_.V0 );
- return pa_;
- }
- // This function implements Eq 5.14 of the EclipseTechnicalDescription
- inline void calculateInflowRate(int idx, const Simulator& simulator)
- {
- Tc_ = ( aqufetp_data_.C_t * aqufetp_data_.V0 ) / aqufetp_data_.J ;
- Scalar td_Tc_ = simulator.timeStepSize() / Tc_ ;
- Scalar exp_ = (1 - exp(-td_Tc_)) / td_Tc_;
- Qai_.at(idx) = alphai_.at(idx) * aqufetp_data_.J * dpai(idx) * exp_;
- }
-
- template
- inline const double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid,
- const int faceIdx, const int idx,
- const Aquancon::AquanconOutput& connection) const
- {
- // Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
- // Do not make the connection if the product of the two cellIdx > 0. This is because the
- // face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
- double faceArea = 0.;
- const auto cellNeighbour0 = faceCells(faceIdx,0);
- const auto cellNeighbour1 = faceCells(faceIdx,1);
- const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
- const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))?
- defaultFaceArea :
- *(connection.influx_coeff.at(idx));
- faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea;
- if (cellNeighbour1 == 0){
- faceArea = (cellNeighbour0 < 0)? faceArea : 0.;
- }
- else if (cellNeighbour0 == 0){
- faceArea = (cellNeighbour1 < 0)? faceArea : 0.;
- }
- return faceArea;
- }
-
- // This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
- inline void initializeConnections(const Aquancon::AquanconOutput& connection)
- {
- const auto& eclState = ebos_simulator_.vanguard().eclState();
- const auto& ugrid = ebos_simulator_.vanguard().grid();
- const auto& grid = eclState.getInputGrid();
-
- cell_idx_ = connection.global_index;
- auto globalCellIdx = ugrid.globalCell();
-
- assert( cell_idx_ == connection.global_index);
- assert( (cell_idx_.size() == connection.influx_coeff.size()) );
- assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
- assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
-
- // We hack the cell depth values for now. We can actually get it from elementcontext pos
- cell_depth_.resize(cell_idx_.size(), aqufetp_data_.d0);
- alphai_.resize(cell_idx_.size(), 1.0);
- faceArea_connected_.resize(cell_idx_.size(),0.0);
-
- auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
- auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
-
- // Translate the C face tag into the enum used by opm-parser's TransMult class
- Opm::FaceDir::DirEnum faceDirection;
-
- // denom_face_areas is the sum of the areas connected to an aquifer
- Scalar denom_face_areas = 0.;
- cellToConnectionIdx_.resize(ebos_simulator_.gridView().size(/*codim=*/0), -1);
- for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
- {
- const int cell_index = cartesian_to_compressed_.at(cell_idx_[idx]);
- cellToConnectionIdx_[cell_index] = idx;
- const auto cellFacesRange = cell2Faces[cell_index];
- for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
- {
- // The index of the face in the compressed grid
- const int faceIdx = *cellFaceIter;
-
- // the logically-Cartesian direction of the face
- const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
-
- switch(faceTag)
- {
- case 0: faceDirection = Opm::FaceDir::XMinus;
- break;
- case 1: faceDirection = Opm::FaceDir::XPlus;
- break;
- case 2: faceDirection = Opm::FaceDir::YMinus;
- break;
- case 3: faceDirection = Opm::FaceDir::YPlus;
- break;
- case 4: faceDirection = Opm::FaceDir::ZMinus;
- break;
- case 5: faceDirection = Opm::FaceDir::ZPlus;
- break;
- default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Fetkovich problem. Make sure faceTag is correctly defined");
- }
-
- if (faceDirection == connection.reservoir_face_dir.at(idx))
- {
- faceArea_connected_.at(idx) = getFaceArea(faceCells, ugrid, faceIdx, idx, connection);
- denom_face_areas += ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) );
- }
- }
- auto cellCenter = grid.getCellCenter(cell_idx_.at(idx));
- cell_depth_.at(idx) = cellCenter[2];
- }
-
- const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon());
- for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
- {
- alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero
- 0.
- : ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) )/denom_face_areas;
- }
- }
-
- inline void calculateAquiferCondition()
- {
- int pvttableIdx = aqufetp_data_.pvttableID - 1;
- rhow_.resize(cell_idx_.size(),0.);
- if (!aqufetp_data_.p0)
- {
- pa0_ = calculateReservoirEquilibrium();
- }
- else
- {
- pa0_ = *(aqufetp_data_.p0);
- }
- aquifer_pressure_ = pa0_ ;
- // use the thermodynamic state of the first active cell as a
- // reference. there might be better ways to do this...
- ElementContext elemCtx(ebos_simulator_);
- auto elemIt = ebos_simulator_.gridView().template begin*codim=*/0>();
- elemCtx.updatePrimaryStencil(*elemIt);
- elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
- const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
-
- // Initialize a FluidState object first
- FluidState fs_aquifer;
- // We use the temperature of the first cell connected to the aquifer
- // Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
- fs_aquifer.assign( iq0.fluidState() );
- Eval temperature_aq, pa0_mean;
- temperature_aq = fs_aquifer.temperature(0);
- pa0_mean = pa0_;
-
- Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
-
- mu_w_ = mu_w_aquifer.value();
- }
-
- inline Scalar calculateReservoirEquilibrium()
- {
- // Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
- std::vector pw_aquifer;
- Scalar water_pressure_reservoir;
-
- ElementContext elemCtx(ebos_simulator_);
- const auto& gridView = ebos_simulator_.gridView();
- auto elemIt = gridView.template begin*codim=*/0>();
- const auto& elemEndIt = gridView.template end*codim=*/0>();
- for (; elemIt != elemEndIt; ++elemIt) {
- const auto& elem = *elemIt;
- elemCtx.updatePrimaryStencil(elem);
-
- size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
- int idx = cellToConnectionIdx_[cellIdx];
- if (idx < 0)
- continue;
-
- elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
- const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
- const auto& fs = iq0.fluidState();
-
- water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
- rhow_[idx] = fs.density(waterPhaseIdx);
- pw_aquifer.push_back( (water_pressure_reservoir - rhow_[idx].value()*gravity_()*(cell_depth_[idx] - aqufetp_data_.d0))*alphai_[idx] );
- }
-
- // We take the average of the calculated equilibrium pressures.
- Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size();
- return aquifer_pres_avg;
- }
- }; //Class AquiferFetkovich
- } // namespace Opm
-
- #endif
+ , cartesian_to_compressed_(cartesian_to_compressed)
+ , aqufetp_data_ (aqufetp_data)
+ , connection_ (connection)
+ {}
+
+ void initialSolutionApplied()
+ {
+ initQuantities(connection_);
+ }
+
+ void beginTimeStep()
+ {
+ ElementContext elemCtx(ebos_simulator_);
+ auto elemIt = ebos_simulator_.gridView().template begin<0>();
+ const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
+ for (; elemIt != elemEndIt; ++elemIt) {
+ const auto& elem = *elemIt;
+
+ elemCtx.updatePrimaryStencil(elem);
+
+ int cellIdx = elemCtx.globalSpaceIndex(0, 0);
+ int idx = cellToConnectionIdx_[cellIdx];
+ if (idx < 0)
+ continue;
+
+ elemCtx.updateIntensiveQuantities(0);
+ const auto& iq = elemCtx.intensiveQuantities(0, 0);
+ pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
+ }
+ }
+
+ template
+ void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
+ {
+ unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
+
+ int idx = cellToConnectionIdx_[cellIdx];
+ if (idx < 0)
+ return;
+
+ // We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
+ // IntensiveQuantities of that particular cell_id
+ const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
+ // This is the pressure at td + dt
+ updateCellPressure(pressure_current_,idx,intQuants);
+ updateCellDensity(idx,intQuants);
+ calculateInflowRate(idx, context.simulator());
+ rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
+ Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
+ }
+
+ void endTimeStep()
+ {
+ for (const auto& Qai: Qai_) {
+ W_flux_ += Qai*ebos_simulator_.timeStepSize();
+ aquifer_pressure_ = aquiferPressure();
+ }
+ }
+ private:
+ const Simulator& ebos_simulator_;
+ const std::unordered_map& cartesian_to_compressed_;
+
+ // Grid variables
+ std::vector cell_idx_;
+ std::vector faceArea_connected_;
+
+ // Quantities at each grid id
+ std::vector cell_depth_;
+ std::vector pressure_previous_;
+ std::vector pressure_current_;
+ std::vector Qai_;
+ std::vector rhow_;
+ std::vector alphai_;
+ std::vector cellToConnectionIdx_;
+
+ // Variables constants
+ const Aquifetp::AQUFETP_data aqufetp_data_;
+ const Aquancon::AquanconOutput connection_;
+
+ Scalar mu_w_; //water viscosity
+ Scalar Tc_; // Time Constant
+ Scalar pa0_; // initial aquifer pressure
+ Scalar aquifer_pressure_; // aquifer pressure
+
+ Eval W_flux_;
+
+ Scalar gravity_() const
+ { return ebos_simulator_.problem().gravity()[2]; }
+
+ inline void initQuantities(const Aquancon::AquanconOutput& connection)
+ {
+ // We reset the cumulative flux at the start of any simulation, so, W_flux = 0
+ W_flux_ = 0.;
+
+ // We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
+ initializeConnections(connection);
+
+ calculateAquiferCondition();
+
+ pressure_previous_.resize(cell_idx_.size(), 0.);
+ pressure_current_.resize(cell_idx_.size(), 0.);
+ Qai_.resize(cell_idx_.size(), 0.0);
+ }
+
+ inline void updateCellPressure(std::vector& pressure_water, const int idx, const IntensiveQuantities& intQuants)
+ {
+ const auto& fs = intQuants.fluidState();
+ pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
+ }
+
+ inline void updateCellPressure(std::vector& pressure_water, const int idx, const IntensiveQuantities& intQuants)
+ {
+ const auto& fs = intQuants.fluidState();
+ pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
+ }
+
+ inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
+ {
+ const auto& fs = intQuants.fluidState();
+ rhow_.at(idx) = fs.density(waterPhaseIdx);
+ }
+
+ inline Scalar dpai(int idx)
+ {
+ Scalar dp = aquifer_pressure_ + rhow_.at(idx).value()*gravity_()*(cell_depth_.at(idx) - aqufetp_data_.d0) - pressure_current_.at(idx).value() ;
+ return dp;
+ }
+ // This function implements Eq 5.12 of the EclipseTechnicalDescription
+ inline Scalar aquiferPressure()
+ {
+ Scalar Flux = W_flux_.value();
+ Scalar pa_ = pa0_ - Flux / ( aqufetp_data_.C_t * aqufetp_data_.V0 );
+ return pa_;
+ }
+ // This function implements Eq 5.14 of the EclipseTechnicalDescription
+ inline void calculateInflowRate(int idx, const Simulator& simulator)
+ {
+ Tc_ = ( aqufetp_data_.C_t * aqufetp_data_.V0 ) / aqufetp_data_.J ;
+ Scalar td_Tc_ = simulator.timeStepSize() / Tc_ ;
+ Scalar exp_ = (1 - exp(-td_Tc_)) / td_Tc_;
+ Qai_.at(idx) = alphai_.at(idx) * aqufetp_data_.J * dpai(idx) * exp_;
+ }
+
+ template
+ inline const double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid,
+ const int faceIdx, const int idx,
+ const Aquancon::AquanconOutput& connection) const
+ {
+ // Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
+ // Do not make the connection if the product of the two cellIdx > 0. This is because the
+ // face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
+ double faceArea = 0.;
+ const auto cellNeighbour0 = faceCells(faceIdx,0);
+ const auto cellNeighbour1 = faceCells(faceIdx,1);
+ const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
+ const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))?
+ defaultFaceArea :
+ *(connection.influx_coeff.at(idx));
+ faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea;
+ if (cellNeighbour1 == 0){
+ faceArea = (cellNeighbour0 < 0)? faceArea : 0.;
+ }
+ else if (cellNeighbour0 == 0){
+ faceArea = (cellNeighbour1 < 0)? faceArea : 0.;
+ }
+ return faceArea;
+ }
+
+ // This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
+ inline void initializeConnections(const Aquancon::AquanconOutput& connection)
+ {
+ const auto& eclState = ebos_simulator_.vanguard().eclState();
+ const auto& ugrid = ebos_simulator_.vanguard().grid();
+ const auto& grid = eclState.getInputGrid();
+
+ cell_idx_ = connection.global_index;
+ auto globalCellIdx = ugrid.globalCell();
+
+ assert( cell_idx_ == connection.global_index);
+ assert( (cell_idx_.size() == connection.influx_coeff.size()) );
+ assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
+ assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
+
+ // We hack the cell depth values for now. We can actually get it from elementcontext pos
+ cell_depth_.resize(cell_idx_.size(), aqufetp_data_.d0);
+ alphai_.resize(cell_idx_.size(), 1.0);
+ faceArea_connected_.resize(cell_idx_.size(),0.0);
+
+ auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
+ auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
+
+ // Translate the C face tag into the enum used by opm-parser's TransMult class
+ Opm::FaceDir::DirEnum faceDirection;
+
+ // denom_face_areas is the sum of the areas connected to an aquifer
+ Scalar denom_face_areas = 0.;
+ cellToConnectionIdx_.resize(ebos_simulator_.gridView().size(/*codim=*/0), -1);
+ for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
+ {
+ const int cell_index = cartesian_to_compressed_.at(cell_idx_[idx]);
+ cellToConnectionIdx_[cell_index] = idx;
+ const auto cellFacesRange = cell2Faces[cell_index];
+ for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
+ {
+ // The index of the face in the compressed grid
+ const int faceIdx = *cellFaceIter;
+
+ // the logically-Cartesian direction of the face
+ const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
+
+ switch(faceTag)
+ {
+ case 0: faceDirection = Opm::FaceDir::XMinus;
+ break;
+ case 1: faceDirection = Opm::FaceDir::XPlus;
+ break;
+ case 2: faceDirection = Opm::FaceDir::YMinus;
+ break;
+ case 3: faceDirection = Opm::FaceDir::YPlus;
+ break;
+ case 4: faceDirection = Opm::FaceDir::ZMinus;
+ break;
+ case 5: faceDirection = Opm::FaceDir::ZPlus;
+ break;
+ default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Fetkovich problem. Make sure faceTag is correctly defined");
+ }
+
+ if (faceDirection == connection.reservoir_face_dir.at(idx))
+ {
+ faceArea_connected_.at(idx) = getFaceArea(faceCells, ugrid, faceIdx, idx, connection);
+ denom_face_areas += ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) );
+ }
+ }
+ auto cellCenter = grid.getCellCenter(cell_idx_.at(idx));
+ cell_depth_.at(idx) = cellCenter[2];
+ }
+
+ const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon());
+ for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
+ {
+ alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero
+ 0.
+ : ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) )/denom_face_areas;
+ }
+ }
+
+ inline void calculateAquiferCondition()
+ {
+ int pvttableIdx = aqufetp_data_.pvttableID - 1;
+ rhow_.resize(cell_idx_.size(),0.);
+ if (!aqufetp_data_.p0)
+ {
+ pa0_ = calculateReservoirEquilibrium();
+ }
+ else
+ {
+ pa0_ = *(aqufetp_data_.p0);
+ }
+ aquifer_pressure_ = pa0_ ;
+ // use the thermodynamic state of the first active cell as a
+ // reference. there might be better ways to do this...
+ ElementContext elemCtx(ebos_simulator_);
+ auto elemIt = ebos_simulator_.gridView().template begin*codim=*/0>();
+ elemCtx.updatePrimaryStencil(*elemIt);
+ elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
+ const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
+
+ // Initialize a FluidState object first
+ FluidState fs_aquifer;
+ // We use the temperature of the first cell connected to the aquifer
+ // Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
+ fs_aquifer.assign( iq0.fluidState() );
+ Eval temperature_aq, pa0_mean;
+ temperature_aq = fs_aquifer.temperature(0);
+ pa0_mean = pa0_;
+
+ Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
+
+ mu_w_ = mu_w_aquifer.value();
+ }
+
+ inline Scalar calculateReservoirEquilibrium()
+ {
+ // Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
+ std::vector pw_aquifer;
+ Scalar water_pressure_reservoir;
+
+ ElementContext elemCtx(ebos_simulator_);
+ const auto& gridView = ebos_simulator_.gridView();
+ auto elemIt = gridView.template begin*codim=*/0>();
+ const auto& elemEndIt = gridView.template end*codim=*/0>();
+ for (; elemIt != elemEndIt; ++elemIt) {
+ const auto& elem = *elemIt;
+ elemCtx.updatePrimaryStencil(elem);
+
+ size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
+ int idx = cellToConnectionIdx_[cellIdx];
+ if (idx < 0)
+ continue;
+
+ elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
+ const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
+ const auto& fs = iq0.fluidState();
+
+ water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
+ rhow_[idx] = fs.density(waterPhaseIdx);
+ pw_aquifer.push_back( (water_pressure_reservoir - rhow_[idx].value()*gravity_()*(cell_depth_[idx] - aqufetp_data_.d0))*alphai_[idx] );
+ }
+
+ // We take the average of the calculated equilibrium pressures.
+ Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size();
+ return aquifer_pres_avg;
+ }
+ }; //Class AquiferFetkovich
+ } // namespace Opm
+
+ #endif