From 3f794955938959d90a59bd60899cf3953cd71167 Mon Sep 17 00:00:00 2001 From: Arne Morten Kvarving Date: Mon, 21 Jan 2019 12:41:52 +0100 Subject: [PATCH] convert to unix line endings --- opm/autodiff/AquiferFetkovich.hpp | 764 +++++++++++++++--------------- 1 file changed, 382 insertions(+), 382 deletions(-) diff --git a/opm/autodiff/AquiferFetkovich.hpp b/opm/autodiff/AquiferFetkovich.hpp index c15a07435..2f6a03e5b 100755 --- a/opm/autodiff/AquiferFetkovich.hpp +++ b/opm/autodiff/AquiferFetkovich.hpp @@ -1,387 +1,387 @@ -/* -Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface -Copyright 2017 Statoil ASA. - -This file is part of the Open Porous Media project (OPM). - -OPM is free software: you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation, either version 3 of the License, or -(at your option) any later version. - -OPM is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with OPM. If not, see . -*/ - -#ifndef OPM_AQUIFETP_HEADER_INCLUDED -#define OPM_AQUIFETP_HEADER_INCLUDED - -#include -#include -#include -#include - -#include -#include -#include -#include - -#include -#include -#include - -namespace Opm -{ - - template - class AquiferFetkovich - { - - public: - +/* +Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface +Copyright 2017 Statoil ASA. + +This file is part of the Open Porous Media project (OPM). + +OPM is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +OPM is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with OPM. If not, see . +*/ + +#ifndef OPM_AQUIFETP_HEADER_INCLUDED +#define OPM_AQUIFETP_HEADER_INCLUDED + +#include +#include +#include +#include + +#include +#include +#include +#include + +#include +#include +#include + +namespace Opm +{ + + template + class AquiferFetkovich + { + + public: + typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; - typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; - typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; - typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices; - typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector; - typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities; - enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) }; + typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; + typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; + typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices; + typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector; + typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities; + enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) }; enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) }; - - static const int numEq = BlackoilIndices::numEq; - typedef double Scalar; - - typedef DenseAd::Evaluation Eval; + + static const int numEq = BlackoilIndices::numEq; + typedef double Scalar; + + typedef DenseAd::Evaluation Eval; typedef Opm::BlackOilFluidState FluidState; - - static const auto waterCompIdx = FluidSystem::waterCompIdx; - static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx; - - AquiferFetkovich( const Aquifetp::AQUFETP_data& aqufetp_data, - const Aquancon::AquanconOutput& connection, - const std::unordered_map& cartesian_to_compressed, - const Simulator& ebosSimulator) + + static const auto waterCompIdx = FluidSystem::waterCompIdx; + static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx; + + AquiferFetkovich( const Aquifetp::AQUFETP_data& aqufetp_data, + const Aquancon::AquanconOutput& connection, + const std::unordered_map& cartesian_to_compressed, + const Simulator& ebosSimulator) : ebos_simulator_ (ebosSimulator) - , cartesian_to_compressed_(cartesian_to_compressed) - , aqufetp_data_ (aqufetp_data) - , connection_ (connection) - {} - - void initialSolutionApplied() - { - initQuantities(connection_); - } - - void beginTimeStep() - { - ElementContext elemCtx(ebos_simulator_); - auto elemIt = ebos_simulator_.gridView().template begin<0>(); - const auto& elemEndIt = ebos_simulator_.gridView().template end<0>(); - for (; elemIt != elemEndIt; ++elemIt) { - const auto& elem = *elemIt; - - elemCtx.updatePrimaryStencil(elem); - - int cellIdx = elemCtx.globalSpaceIndex(0, 0); - int idx = cellToConnectionIdx_[cellIdx]; - if (idx < 0) - continue; - - elemCtx.updateIntensiveQuantities(0); - const auto& iq = elemCtx.intensiveQuantities(0, 0); - pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx)); - } - } - - template - void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) - { - unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx); - - int idx = cellToConnectionIdx_[cellIdx]; - if (idx < 0) - return; - - // We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to - // IntensiveQuantities of that particular cell_id - const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx); - // This is the pressure at td + dt - updateCellPressure(pressure_current_,idx,intQuants); - updateCellDensity(idx,intQuants); - calculateInflowRate(idx, context.simulator()); - rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] += - Qai_[idx]/context.dofVolume(spaceIdx, timeIdx); - } - - void endTimeStep() - { - for (const auto& Qai: Qai_) { - W_flux_ += Qai*ebos_simulator_.timeStepSize(); - aquifer_pressure_ = aquiferPressure(); - } - } - private: - const Simulator& ebos_simulator_; - const std::unordered_map& cartesian_to_compressed_; - - // Grid variables - std::vector cell_idx_; - std::vector faceArea_connected_; - - // Quantities at each grid id - std::vector cell_depth_; - std::vector pressure_previous_; - std::vector pressure_current_; - std::vector Qai_; - std::vector rhow_; - std::vector alphai_; - std::vector cellToConnectionIdx_; - - // Variables constants - const Aquifetp::AQUFETP_data aqufetp_data_; - const Aquancon::AquanconOutput connection_; - - Scalar mu_w_; //water viscosity - Scalar Tc_; // Time Constant - Scalar pa0_; // initial aquifer pressure - Scalar aquifer_pressure_; // aquifer pressure - - Eval W_flux_; - - Scalar gravity_() const - { return ebos_simulator_.problem().gravity()[2]; } - - inline void initQuantities(const Aquancon::AquanconOutput& connection) - { - // We reset the cumulative flux at the start of any simulation, so, W_flux = 0 - W_flux_ = 0.; - - // We next get our connections to the aquifer and initialize these quantities using the initialize_connections function - initializeConnections(connection); - - calculateAquiferCondition(); - - pressure_previous_.resize(cell_idx_.size(), 0.); - pressure_current_.resize(cell_idx_.size(), 0.); - Qai_.resize(cell_idx_.size(), 0.0); - } - - inline void updateCellPressure(std::vector& pressure_water, const int idx, const IntensiveQuantities& intQuants) - { - const auto& fs = intQuants.fluidState(); - pressure_water.at(idx) = fs.pressure(waterPhaseIdx); - } - - inline void updateCellPressure(std::vector& pressure_water, const int idx, const IntensiveQuantities& intQuants) - { - const auto& fs = intQuants.fluidState(); - pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value(); - } - - inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants) - { - const auto& fs = intQuants.fluidState(); - rhow_.at(idx) = fs.density(waterPhaseIdx); - } - - inline Scalar dpai(int idx) - { - Scalar dp = aquifer_pressure_ + rhow_.at(idx).value()*gravity_()*(cell_depth_.at(idx) - aqufetp_data_.d0) - pressure_current_.at(idx).value() ; - return dp; - } - // This function implements Eq 5.12 of the EclipseTechnicalDescription - inline Scalar aquiferPressure() - { - Scalar Flux = W_flux_.value(); - Scalar pa_ = pa0_ - Flux / ( aqufetp_data_.C_t * aqufetp_data_.V0 ); - return pa_; - } - // This function implements Eq 5.14 of the EclipseTechnicalDescription - inline void calculateInflowRate(int idx, const Simulator& simulator) - { - Tc_ = ( aqufetp_data_.C_t * aqufetp_data_.V0 ) / aqufetp_data_.J ; - Scalar td_Tc_ = simulator.timeStepSize() / Tc_ ; - Scalar exp_ = (1 - exp(-td_Tc_)) / td_Tc_; - Qai_.at(idx) = alphai_.at(idx) * aqufetp_data_.J * dpai(idx) * exp_; - } - - template - inline const double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid, - const int faceIdx, const int idx, - const Aquancon::AquanconOutput& connection) const - { - // Check now if the face is outside of the reservoir, or if it adjoins an inactive cell - // Do not make the connection if the product of the two cellIdx > 0. This is because the - // face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining) - double faceArea = 0.; - const auto cellNeighbour0 = faceCells(faceIdx,0); - const auto cellNeighbour1 = faceCells(faceIdx,1); - const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx); - const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))? - defaultFaceArea : - *(connection.influx_coeff.at(idx)); - faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea; - if (cellNeighbour1 == 0){ - faceArea = (cellNeighbour0 < 0)? faceArea : 0.; - } - else if (cellNeighbour0 == 0){ - faceArea = (cellNeighbour1 < 0)? faceArea : 0.; - } - return faceArea; - } - - // This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer - inline void initializeConnections(const Aquancon::AquanconOutput& connection) - { - const auto& eclState = ebos_simulator_.vanguard().eclState(); - const auto& ugrid = ebos_simulator_.vanguard().grid(); - const auto& grid = eclState.getInputGrid(); - - cell_idx_ = connection.global_index; - auto globalCellIdx = ugrid.globalCell(); - - assert( cell_idx_ == connection.global_index); - assert( (cell_idx_.size() == connection.influx_coeff.size()) ); - assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) ); - assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) ); - - // We hack the cell depth values for now. We can actually get it from elementcontext pos - cell_depth_.resize(cell_idx_.size(), aqufetp_data_.d0); - alphai_.resize(cell_idx_.size(), 1.0); - faceArea_connected_.resize(cell_idx_.size(),0.0); - - auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid); - auto faceCells = Opm::UgGridHelpers::faceCells(ugrid); - - // Translate the C face tag into the enum used by opm-parser's TransMult class - Opm::FaceDir::DirEnum faceDirection; - - // denom_face_areas is the sum of the areas connected to an aquifer - Scalar denom_face_areas = 0.; - cellToConnectionIdx_.resize(ebos_simulator_.gridView().size(/*codim=*/0), -1); - for (size_t idx = 0; idx < cell_idx_.size(); ++idx) - { - const int cell_index = cartesian_to_compressed_.at(cell_idx_[idx]); - cellToConnectionIdx_[cell_index] = idx; - const auto cellFacesRange = cell2Faces[cell_index]; - for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) - { - // The index of the face in the compressed grid - const int faceIdx = *cellFaceIter; - - // the logically-Cartesian direction of the face - const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter); - - switch(faceTag) - { - case 0: faceDirection = Opm::FaceDir::XMinus; - break; - case 1: faceDirection = Opm::FaceDir::XPlus; - break; - case 2: faceDirection = Opm::FaceDir::YMinus; - break; - case 3: faceDirection = Opm::FaceDir::YPlus; - break; - case 4: faceDirection = Opm::FaceDir::ZMinus; - break; - case 5: faceDirection = Opm::FaceDir::ZPlus; - break; - default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Fetkovich problem. Make sure faceTag is correctly defined"); - } - - if (faceDirection == connection.reservoir_face_dir.at(idx)) - { - faceArea_connected_.at(idx) = getFaceArea(faceCells, ugrid, faceIdx, idx, connection); - denom_face_areas += ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) ); - } - } - auto cellCenter = grid.getCellCenter(cell_idx_.at(idx)); - cell_depth_.at(idx) = cellCenter[2]; - } - - const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon()); - for (size_t idx = 0; idx < cell_idx_.size(); ++idx) - { - alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero - 0. - : ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) )/denom_face_areas; - } - } - - inline void calculateAquiferCondition() - { - int pvttableIdx = aqufetp_data_.pvttableID - 1; - rhow_.resize(cell_idx_.size(),0.); - if (!aqufetp_data_.p0) - { - pa0_ = calculateReservoirEquilibrium(); - } - else - { - pa0_ = *(aqufetp_data_.p0); - } - aquifer_pressure_ = pa0_ ; - // use the thermodynamic state of the first active cell as a - // reference. there might be better ways to do this... - ElementContext elemCtx(ebos_simulator_); - auto elemIt = ebos_simulator_.gridView().template begin(); - elemCtx.updatePrimaryStencil(*elemIt); - elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); - const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); - - // Initialize a FluidState object first - FluidState fs_aquifer; - // We use the temperature of the first cell connected to the aquifer - // Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs - fs_aquifer.assign( iq0.fluidState() ); - Eval temperature_aq, pa0_mean; - temperature_aq = fs_aquifer.temperature(0); - pa0_mean = pa0_; - - Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean); - - mu_w_ = mu_w_aquifer.value(); - } - - inline Scalar calculateReservoirEquilibrium() - { - // Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices - std::vector pw_aquifer; - Scalar water_pressure_reservoir; - - ElementContext elemCtx(ebos_simulator_); - const auto& gridView = ebos_simulator_.gridView(); - auto elemIt = gridView.template begin(); - const auto& elemEndIt = gridView.template end(); - for (; elemIt != elemEndIt; ++elemIt) { - const auto& elem = *elemIt; - elemCtx.updatePrimaryStencil(elem); - - size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); - int idx = cellToConnectionIdx_[cellIdx]; - if (idx < 0) - continue; - - elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); - const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); - const auto& fs = iq0.fluidState(); - - water_pressure_reservoir = fs.pressure(waterPhaseIdx).value(); - rhow_[idx] = fs.density(waterPhaseIdx); - pw_aquifer.push_back( (water_pressure_reservoir - rhow_[idx].value()*gravity_()*(cell_depth_[idx] - aqufetp_data_.d0))*alphai_[idx] ); - } - - // We take the average of the calculated equilibrium pressures. - Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size(); - return aquifer_pres_avg; - } - }; //Class AquiferFetkovich - } // namespace Opm - - #endif + , cartesian_to_compressed_(cartesian_to_compressed) + , aqufetp_data_ (aqufetp_data) + , connection_ (connection) + {} + + void initialSolutionApplied() + { + initQuantities(connection_); + } + + void beginTimeStep() + { + ElementContext elemCtx(ebos_simulator_); + auto elemIt = ebos_simulator_.gridView().template begin<0>(); + const auto& elemEndIt = ebos_simulator_.gridView().template end<0>(); + for (; elemIt != elemEndIt; ++elemIt) { + const auto& elem = *elemIt; + + elemCtx.updatePrimaryStencil(elem); + + int cellIdx = elemCtx.globalSpaceIndex(0, 0); + int idx = cellToConnectionIdx_[cellIdx]; + if (idx < 0) + continue; + + elemCtx.updateIntensiveQuantities(0); + const auto& iq = elemCtx.intensiveQuantities(0, 0); + pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx)); + } + } + + template + void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) + { + unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx); + + int idx = cellToConnectionIdx_[cellIdx]; + if (idx < 0) + return; + + // We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to + // IntensiveQuantities of that particular cell_id + const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx); + // This is the pressure at td + dt + updateCellPressure(pressure_current_,idx,intQuants); + updateCellDensity(idx,intQuants); + calculateInflowRate(idx, context.simulator()); + rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] += + Qai_[idx]/context.dofVolume(spaceIdx, timeIdx); + } + + void endTimeStep() + { + for (const auto& Qai: Qai_) { + W_flux_ += Qai*ebos_simulator_.timeStepSize(); + aquifer_pressure_ = aquiferPressure(); + } + } + private: + const Simulator& ebos_simulator_; + const std::unordered_map& cartesian_to_compressed_; + + // Grid variables + std::vector cell_idx_; + std::vector faceArea_connected_; + + // Quantities at each grid id + std::vector cell_depth_; + std::vector pressure_previous_; + std::vector pressure_current_; + std::vector Qai_; + std::vector rhow_; + std::vector alphai_; + std::vector cellToConnectionIdx_; + + // Variables constants + const Aquifetp::AQUFETP_data aqufetp_data_; + const Aquancon::AquanconOutput connection_; + + Scalar mu_w_; //water viscosity + Scalar Tc_; // Time Constant + Scalar pa0_; // initial aquifer pressure + Scalar aquifer_pressure_; // aquifer pressure + + Eval W_flux_; + + Scalar gravity_() const + { return ebos_simulator_.problem().gravity()[2]; } + + inline void initQuantities(const Aquancon::AquanconOutput& connection) + { + // We reset the cumulative flux at the start of any simulation, so, W_flux = 0 + W_flux_ = 0.; + + // We next get our connections to the aquifer and initialize these quantities using the initialize_connections function + initializeConnections(connection); + + calculateAquiferCondition(); + + pressure_previous_.resize(cell_idx_.size(), 0.); + pressure_current_.resize(cell_idx_.size(), 0.); + Qai_.resize(cell_idx_.size(), 0.0); + } + + inline void updateCellPressure(std::vector& pressure_water, const int idx, const IntensiveQuantities& intQuants) + { + const auto& fs = intQuants.fluidState(); + pressure_water.at(idx) = fs.pressure(waterPhaseIdx); + } + + inline void updateCellPressure(std::vector& pressure_water, const int idx, const IntensiveQuantities& intQuants) + { + const auto& fs = intQuants.fluidState(); + pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value(); + } + + inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants) + { + const auto& fs = intQuants.fluidState(); + rhow_.at(idx) = fs.density(waterPhaseIdx); + } + + inline Scalar dpai(int idx) + { + Scalar dp = aquifer_pressure_ + rhow_.at(idx).value()*gravity_()*(cell_depth_.at(idx) - aqufetp_data_.d0) - pressure_current_.at(idx).value() ; + return dp; + } + // This function implements Eq 5.12 of the EclipseTechnicalDescription + inline Scalar aquiferPressure() + { + Scalar Flux = W_flux_.value(); + Scalar pa_ = pa0_ - Flux / ( aqufetp_data_.C_t * aqufetp_data_.V0 ); + return pa_; + } + // This function implements Eq 5.14 of the EclipseTechnicalDescription + inline void calculateInflowRate(int idx, const Simulator& simulator) + { + Tc_ = ( aqufetp_data_.C_t * aqufetp_data_.V0 ) / aqufetp_data_.J ; + Scalar td_Tc_ = simulator.timeStepSize() / Tc_ ; + Scalar exp_ = (1 - exp(-td_Tc_)) / td_Tc_; + Qai_.at(idx) = alphai_.at(idx) * aqufetp_data_.J * dpai(idx) * exp_; + } + + template + inline const double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid, + const int faceIdx, const int idx, + const Aquancon::AquanconOutput& connection) const + { + // Check now if the face is outside of the reservoir, or if it adjoins an inactive cell + // Do not make the connection if the product of the two cellIdx > 0. This is because the + // face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining) + double faceArea = 0.; + const auto cellNeighbour0 = faceCells(faceIdx,0); + const auto cellNeighbour1 = faceCells(faceIdx,1); + const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx); + const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))? + defaultFaceArea : + *(connection.influx_coeff.at(idx)); + faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea; + if (cellNeighbour1 == 0){ + faceArea = (cellNeighbour0 < 0)? faceArea : 0.; + } + else if (cellNeighbour0 == 0){ + faceArea = (cellNeighbour1 < 0)? faceArea : 0.; + } + return faceArea; + } + + // This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer + inline void initializeConnections(const Aquancon::AquanconOutput& connection) + { + const auto& eclState = ebos_simulator_.vanguard().eclState(); + const auto& ugrid = ebos_simulator_.vanguard().grid(); + const auto& grid = eclState.getInputGrid(); + + cell_idx_ = connection.global_index; + auto globalCellIdx = ugrid.globalCell(); + + assert( cell_idx_ == connection.global_index); + assert( (cell_idx_.size() == connection.influx_coeff.size()) ); + assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) ); + assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) ); + + // We hack the cell depth values for now. We can actually get it from elementcontext pos + cell_depth_.resize(cell_idx_.size(), aqufetp_data_.d0); + alphai_.resize(cell_idx_.size(), 1.0); + faceArea_connected_.resize(cell_idx_.size(),0.0); + + auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid); + auto faceCells = Opm::UgGridHelpers::faceCells(ugrid); + + // Translate the C face tag into the enum used by opm-parser's TransMult class + Opm::FaceDir::DirEnum faceDirection; + + // denom_face_areas is the sum of the areas connected to an aquifer + Scalar denom_face_areas = 0.; + cellToConnectionIdx_.resize(ebos_simulator_.gridView().size(/*codim=*/0), -1); + for (size_t idx = 0; idx < cell_idx_.size(); ++idx) + { + const int cell_index = cartesian_to_compressed_.at(cell_idx_[idx]); + cellToConnectionIdx_[cell_index] = idx; + const auto cellFacesRange = cell2Faces[cell_index]; + for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter) + { + // The index of the face in the compressed grid + const int faceIdx = *cellFaceIter; + + // the logically-Cartesian direction of the face + const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter); + + switch(faceTag) + { + case 0: faceDirection = Opm::FaceDir::XMinus; + break; + case 1: faceDirection = Opm::FaceDir::XPlus; + break; + case 2: faceDirection = Opm::FaceDir::YMinus; + break; + case 3: faceDirection = Opm::FaceDir::YPlus; + break; + case 4: faceDirection = Opm::FaceDir::ZMinus; + break; + case 5: faceDirection = Opm::FaceDir::ZPlus; + break; + default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Fetkovich problem. Make sure faceTag is correctly defined"); + } + + if (faceDirection == connection.reservoir_face_dir.at(idx)) + { + faceArea_connected_.at(idx) = getFaceArea(faceCells, ugrid, faceIdx, idx, connection); + denom_face_areas += ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) ); + } + } + auto cellCenter = grid.getCellCenter(cell_idx_.at(idx)); + cell_depth_.at(idx) = cellCenter[2]; + } + + const double eps_sqrt = std::sqrt(std::numeric_limits::epsilon()); + for (size_t idx = 0; idx < cell_idx_.size(); ++idx) + { + alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero + 0. + : ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) )/denom_face_areas; + } + } + + inline void calculateAquiferCondition() + { + int pvttableIdx = aqufetp_data_.pvttableID - 1; + rhow_.resize(cell_idx_.size(),0.); + if (!aqufetp_data_.p0) + { + pa0_ = calculateReservoirEquilibrium(); + } + else + { + pa0_ = *(aqufetp_data_.p0); + } + aquifer_pressure_ = pa0_ ; + // use the thermodynamic state of the first active cell as a + // reference. there might be better ways to do this... + ElementContext elemCtx(ebos_simulator_); + auto elemIt = ebos_simulator_.gridView().template begin(); + elemCtx.updatePrimaryStencil(*elemIt); + elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); + const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); + + // Initialize a FluidState object first + FluidState fs_aquifer; + // We use the temperature of the first cell connected to the aquifer + // Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs + fs_aquifer.assign( iq0.fluidState() ); + Eval temperature_aq, pa0_mean; + temperature_aq = fs_aquifer.temperature(0); + pa0_mean = pa0_; + + Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean); + + mu_w_ = mu_w_aquifer.value(); + } + + inline Scalar calculateReservoirEquilibrium() + { + // Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices + std::vector pw_aquifer; + Scalar water_pressure_reservoir; + + ElementContext elemCtx(ebos_simulator_); + const auto& gridView = ebos_simulator_.gridView(); + auto elemIt = gridView.template begin(); + const auto& elemEndIt = gridView.template end(); + for (; elemIt != elemEndIt; ++elemIt) { + const auto& elem = *elemIt; + elemCtx.updatePrimaryStencil(elem); + + size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); + int idx = cellToConnectionIdx_[cellIdx]; + if (idx < 0) + continue; + + elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); + const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); + const auto& fs = iq0.fluidState(); + + water_pressure_reservoir = fs.pressure(waterPhaseIdx).value(); + rhow_[idx] = fs.density(waterPhaseIdx); + pw_aquifer.push_back( (water_pressure_reservoir - rhow_[idx].value()*gravity_()*(cell_depth_[idx] - aqufetp_data_.d0))*alphai_[idx] ); + } + + // We take the average of the calculated equilibrium pressures. + Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size(); + return aquifer_pres_avg; + } + }; //Class AquiferFetkovich + } // namespace Opm + + #endif