Extend foam model with solvent or water

This commit is contained in:
Tor Harald Sandve 2023-05-02 15:42:05 +02:00
parent 0b4a8661fd
commit 43b34d2f60
2 changed files with 112 additions and 30 deletions

View File

@ -75,6 +75,7 @@ class BlackOilFoamModule
static constexpr unsigned foamConcentrationIdx = Indices::foamConcentrationIdx; static constexpr unsigned foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr unsigned contiFoamEqIdx = Indices::contiFoamEqIdx; static constexpr unsigned contiFoamEqIdx = Indices::contiFoamEqIdx;
static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx; static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr unsigned enableFoam = enableFoamV; static constexpr unsigned enableFoam = enableFoamV;
static constexpr bool enableVtkOutput = getPropValue<TypeTag, Properties::EnableVtkOutput>(); static constexpr bool enableVtkOutput = getPropValue<TypeTag, Properties::EnableVtkOutput>();
@ -82,6 +83,8 @@ class BlackOilFoamModule
static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>(); static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
static constexpr unsigned numPhases = FluidSystem::numPhases; static constexpr unsigned numPhases = FluidSystem::numPhases;
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
public: public:
#if HAVE_ECL_INPUT #if HAVE_ECL_INPUT
/*! /*!
@ -104,11 +107,8 @@ public:
return; // foam treatment is supposed to be disabled return; // foam treatment is supposed to be disabled
} }
// Check that only implemented options are used. params_.transport_phase_ = eclState.getInitConfig().getFoamConfig().getTransportPhase();
// We only support the default values of FOAMOPTS (GAS, TAB).
if (eclState.getInitConfig().getFoamConfig().getTransportPhase() != Phase::GAS) {
throw std::runtime_error("In FOAMOPTS, only GAS is allowed for the transport phase.");
}
if (eclState.getInitConfig().getFoamConfig().getMobilityModel() != FoamConfig::MobilityModel::TAB) { if (eclState.getInitConfig().getFoamConfig().getMobilityModel() != FoamConfig::MobilityModel::TAB) {
throw std::runtime_error("In FOAMOPTS, only TAB is allowed for the gas mobility factor reduction model."); throw std::runtime_error("In FOAMOPTS, only TAB is allowed for the gas mobility factor reduction model.");
} }
@ -249,16 +249,27 @@ public:
if constexpr (enableFoam) { if constexpr (enableFoam) {
const auto& fs = intQuants.fluidState(); const auto& fs = intQuants.fluidState();
LhsEval surfaceVolumeFreeGas = LhsEval surfaceVolume = Toolbox::template decay<LhsEval>(intQuants.porosity());
Toolbox::template decay<LhsEval>(fs.saturation(gasPhaseIdx)) if (params_.transport_phase_ == Phase::WATER) {
* Toolbox::template decay<LhsEval>(fs.invB(gasPhaseIdx)) surfaceVolume *= (Toolbox::template decay<LhsEval>(fs.saturation(waterPhaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity()); * Toolbox::template decay<LhsEval>(fs.invB(waterPhaseIdx)));
} else if (params_.transport_phase_ == Phase::GAS) {
surfaceVolume *= (Toolbox::template decay<LhsEval>(fs.saturation(gasPhaseIdx))
* Toolbox::template decay<LhsEval>(fs.invB(gasPhaseIdx)));
} else if (params_.transport_phase_ == Phase::SOLVENT) {
if constexpr (enableSolvent) {
surfaceVolume *= (Toolbox::template decay<LhsEval>( intQuants.solventSaturation())
* Toolbox::template decay<LhsEval>(intQuants.solventInverseFormationVolumeFactor()));
}
} else {
throw std::runtime_error("Transport phase is GAS/WATER/SOLVENT");
}
// Avoid singular matrix if no gas is present. // Avoid singular matrix if no gas is present.
surfaceVolumeFreeGas = max(surfaceVolumeFreeGas, 1e-10); surfaceVolume = max(surfaceVolume, 1e-10);
// Foam/surfactant in gas phase. // Foam/surfactant in free phase.
const LhsEval gasFoam = surfaceVolumeFreeGas const LhsEval freeFoam = surfaceVolume
* Toolbox::template decay<LhsEval>(intQuants.foamConcentration()); * Toolbox::template decay<LhsEval>(intQuants.foamConcentration());
// Adsorbed foam/surfactant. // Adsorbed foam/surfactant.
@ -267,7 +278,7 @@ public:
* Toolbox::template decay<LhsEval>(intQuants.foamRockDensity()) * Toolbox::template decay<LhsEval>(intQuants.foamRockDensity())
* Toolbox::template decay<LhsEval>(intQuants.foamAdsorbed()); * Toolbox::template decay<LhsEval>(intQuants.foamAdsorbed());
LhsEval accumulationFoam = gasFoam + adsorbedFoam; LhsEval accumulationFoam = freeFoam + adsorbedFoam;
storage[contiFoamEqIdx] += accumulationFoam; storage[contiFoamEqIdx] += accumulationFoam;
} }
} }
@ -280,23 +291,67 @@ public:
{ {
if constexpr (enableFoam) { if constexpr (enableFoam) {
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const unsigned upIdx = extQuants.upstreamIndex(FluidSystem::gasPhaseIdx);
const unsigned inIdx = extQuants.interiorIndex(); const unsigned inIdx = extQuants.interiorIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
// The effect of the gas mobility reduction factor is // The effect of the mobility reduction factor is
// incorporated in the mobility, so the oil (if vaporized oil // incorporated in the mobility for the relevant phase,
// is active) and gas fluxes do not need modification here. // so fluxes do not need modification here.
if (upIdx == inIdx) { switch (transportPhase()) {
flux[contiFoamEqIdx] = case Phase::WATER: {
extQuants.volumeFlux(gasPhaseIdx) const unsigned upIdx = extQuants.upstreamIndex(waterPhaseIdx);
*up.fluidState().invB(gasPhaseIdx) const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
*up.foamConcentration(); if (upIdx == inIdx) {
} else { flux[contiFoamEqIdx] =
flux[contiFoamEqIdx] = extQuants.volumeFlux(waterPhaseIdx)
extQuants.volumeFlux(gasPhaseIdx) *up.fluidState().invB(waterPhaseIdx)
*decay<Scalar>(up.fluidState().invB(gasPhaseIdx)) *up.foamConcentration();
*decay<Scalar>(up.foamConcentration()); } else {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(waterPhaseIdx)
*decay<Scalar>(up.fluidState().invB(waterPhaseIdx))
*decay<Scalar>(up.foamConcentration());
}
break;
}
case Phase::GAS: {
const unsigned upIdx = extQuants.upstreamIndex(gasPhaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (upIdx == inIdx) {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(gasPhaseIdx)
*up.fluidState().invB(gasPhaseIdx)
*up.foamConcentration();
} else {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(gasPhaseIdx)
*decay<Scalar>(up.fluidState().invB(gasPhaseIdx))
*decay<Scalar>(up.foamConcentration());
}
break;
}
case Phase::SOLVENT: {
if constexpr (enableSolvent) {
const unsigned upIdx = extQuants.solventUpstreamIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (upIdx == inIdx) {
flux[contiFoamEqIdx] =
extQuants.solventVolumeFlux()
*up.solventInverseFormationVolumeFactor()
*up.foamConcentration();
} else {
flux[contiFoamEqIdx] =
extQuants.solventVolumeFlux()
*decay<Scalar>(up.solventInverseFormationVolumeFactor())
*decay<Scalar>(up.foamConcentration());
}
} else {
throw std::runtime_error("Foam transport phase is SOLVENT but SOLVENT is not activated.");
}
break;
}
default: {
throw std::runtime_error("Foam transport phase must be GAS/WATER/SOLVENT.");
}
} }
} }
} }
@ -382,6 +437,10 @@ public:
return params_.foamCoefficients_[satnumRegionIdx]; return params_.foamCoefficients_[satnumRegionIdx];
} }
static Phase transportPhase() {
return params_.transport_phase_;
}
private: private:
static BlackOilFoamParams<Scalar> params_; static BlackOilFoamParams<Scalar> params_;
}; };
@ -413,6 +472,8 @@ class BlackOilFoamIntensiveQuantities
using FoamModule = BlackOilFoamModule<TypeTag>; using FoamModule = BlackOilFoamModule<TypeTag>;
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() }; enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
static constexpr int foamConcentrationIdx = Indices::foamConcentrationIdx; static constexpr int foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx; static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr unsigned oilPhaseIdx = FluidSystem::oilPhaseIdx; static constexpr unsigned oilPhaseIdx = FluidSystem::oilPhaseIdx;
@ -475,8 +536,28 @@ public:
mobilityReductionFactor = gasMobilityMultiplier.eval(foamConcentration_, /* extrapolate = */ true); mobilityReductionFactor = gasMobilityMultiplier.eval(foamConcentration_, /* extrapolate = */ true);
} }
// adjust gas mobility // adjust mobility
asImp_().mobility_[gasPhaseIdx] *= mobilityReductionFactor; switch (FoamModule::transportPhase()) {
case Phase::WATER: {
asImp_().mobility_[waterPhaseIdx] *= mobilityReductionFactor;
break;
}
case Phase::GAS: {
asImp_().mobility_[gasPhaseIdx] *= mobilityReductionFactor;
break;
}
case Phase::SOLVENT: {
if constexpr (enableSolvent) {
asImp_().solventMobility_ *= mobilityReductionFactor;
} else {
throw std::runtime_error("Foam transport phase is SOLVENT but SOLVENT is not activated.");
}
break;
}
default: {
throw std::runtime_error("Foam transport phase must be GAS/WATER/SOLVENT.");
}
}
foamRockDensity_ = FoamModule::foamRockDensity(elemCtx, dofIdx, timeIdx); foamRockDensity_ = FoamModule::foamRockDensity(elemCtx, dofIdx, timeIdx);

View File

@ -78,6 +78,7 @@ struct BlackOilFoamParams {
std::vector<FoamCoefficients> foamCoefficients_; std::vector<FoamCoefficients> foamCoefficients_;
std::vector<TabulatedFunction> adsorbedFoamTable_; std::vector<TabulatedFunction> adsorbedFoamTable_;
std::vector<TabulatedFunction> gasMobilityMultiplierTable_; std::vector<TabulatedFunction> gasMobilityMultiplierTable_;
Opm::Phase transport_phase_;
}; };
} // namespace Opm } // namespace Opm