mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-29 04:23:48 -06:00
Merge pull request #975 from totto82/clean_up_2p
Use templates to avoid hardcoded typedef
This commit is contained in:
commit
45fed6d591
@ -130,8 +130,9 @@ namespace Opm {
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
||||
|
||||
typedef double Scalar;
|
||||
typedef Dune::FieldVector<Scalar, 3 > VectorBlockType;
|
||||
typedef Dune::FieldMatrix<Scalar, 3, 3 > MatrixBlockType;
|
||||
static const int blocksize = 3;
|
||||
typedef Dune::FieldVector<Scalar, blocksize > VectorBlockType;
|
||||
typedef Dune::FieldMatrix<Scalar, blocksize, blocksize > MatrixBlockType;
|
||||
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
||||
typedef Dune::BlockVector<VectorBlockType> BVector;
|
||||
|
||||
|
@ -44,10 +44,6 @@ namespace Opm {
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
|
||||
typedef double Scalar;
|
||||
typedef Dune::FieldVector<Scalar, 3 > VectorBlockType;
|
||||
typedef Dune::BlockVector<VectorBlockType> BVector;
|
||||
|
||||
// Available relaxation scheme types.
|
||||
enum RelaxType { DAMPEN, SOR };
|
||||
|
||||
@ -163,6 +159,9 @@ namespace Opm {
|
||||
/// Apply a stabilization to dx, depending on dxOld and relaxation parameters.
|
||||
void stabilizeNonlinearUpdate(V& dx, V& dxOld, const double omega) const;
|
||||
|
||||
/// Apply a stabilization to dx, depending on dxOld and relaxation parameters.
|
||||
/// Implemention for Dune block vectors.
|
||||
template <class BVector>
|
||||
void stabilizeNonlinearUpdate(BVector& dx, BVector& dxOld, const double omega) const;
|
||||
|
||||
/// The greatest relaxation factor (i.e. smallest factor) allowed.
|
||||
|
@ -279,6 +279,7 @@ namespace Opm
|
||||
}
|
||||
|
||||
template <class PhysicalModel>
|
||||
template <class BVector>
|
||||
void
|
||||
NonlinearSolver<PhysicalModel>::stabilizeNonlinearUpdate(BVector& dx, BVector& dxOld, const double omega) const
|
||||
{
|
||||
|
@ -36,7 +36,6 @@ namespace detail {
|
||||
|
||||
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef DenseAd::Evaluation<double, /*size=*/6> EvalWell;
|
||||
|
||||
|
||||
/**
|
||||
@ -49,6 +48,7 @@ inline double zeroIfNan(const double& value) {
|
||||
/**
|
||||
* Returns zero if input value is NaN
|
||||
*/
|
||||
template <class EvalWell>
|
||||
inline double zeroIfNan(const EvalWell& value) {
|
||||
return (std::isnan(value.value())) ? 0.0 : value.value();
|
||||
}
|
||||
|
@ -89,38 +89,6 @@ VFPInjProperties::ADB VFPInjProperties::bhp(const std::vector<int>& table_id,
|
||||
|
||||
|
||||
|
||||
VFPInjProperties::EvalWell VFPInjProperties::bhp(const int table_id,
|
||||
const EvalWell& aqua,
|
||||
const EvalWell& liquid,
|
||||
const EvalWell& vapour,
|
||||
const double& thp) const {
|
||||
|
||||
//Get the table
|
||||
const VFPInjTable* table = detail::getTable(m_tables, table_id);
|
||||
EvalWell bhp = 0.0;
|
||||
|
||||
//Find interpolation variables
|
||||
EvalWell flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
|
||||
//Compute the BHP for each well independently
|
||||
if (table != nullptr) {
|
||||
//First, find the values to interpolate between
|
||||
//Value of FLO is negative in OPM for producers, but positive in VFP table
|
||||
auto flo_i = detail::findInterpData(flo.value(), table->getFloAxis());
|
||||
auto thp_i = detail::findInterpData( thp, table->getTHPAxis()); // assume constant
|
||||
|
||||
detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i);
|
||||
|
||||
bhp = bhp_val.dflo * flo;
|
||||
bhp.setValue(bhp_val.value); // thp is assumed constant i.e.
|
||||
}
|
||||
else {
|
||||
bhp.setValue(-1e100); //Signal that this value has not been calculated properly, due to "missing" table
|
||||
}
|
||||
return bhp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
VFPInjProperties::ADB VFPInjProperties::bhp(const std::vector<int>& table_id,
|
||||
const ADB& aqua,
|
||||
|
@ -25,6 +25,7 @@
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/material/densead/Math.hpp>
|
||||
#include <opm/material/densead/Evaluation.hpp>
|
||||
#include <opm/autodiff/VFPHelpers.hpp>
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
@ -93,12 +94,53 @@ public:
|
||||
const ADB& vapour,
|
||||
const ADB& thp) const;
|
||||
|
||||
typedef DenseAd::Evaluation<double, /*size=*/6> EvalWell;
|
||||
/**
|
||||
* Linear interpolation of bhp as a function of the input parameters given as
|
||||
* Evaluation
|
||||
* Each entry corresponds typically to one well.
|
||||
* @param table_id Table number to use. A negative entry (e.g., -1)
|
||||
* will indicate that no table is used, and the corresponding
|
||||
* BHP will be calculated as a constant -1e100.
|
||||
* @param aqua Water phase
|
||||
* @param liquid Oil phase
|
||||
* @param vapour Gas phase
|
||||
* @param thp Tubing head pressure
|
||||
*
|
||||
* @return The bottom hole pressure, interpolated/extrapolated linearly using
|
||||
* the above parameters from the values in the input table, for each entry in the
|
||||
* input ADB objects.
|
||||
*/
|
||||
template <class EvalWell>
|
||||
EvalWell bhp(const int table_id,
|
||||
const EvalWell& aqua,
|
||||
const EvalWell& liquid,
|
||||
const EvalWell& vapour,
|
||||
const double& thp) const;
|
||||
const EvalWell& aqua,
|
||||
const EvalWell& liquid,
|
||||
const EvalWell& vapour,
|
||||
const double& thp) const {
|
||||
|
||||
//Get the table
|
||||
const VFPInjTable* table = detail::getTable(m_tables, table_id);
|
||||
EvalWell bhp = 0.0;
|
||||
|
||||
//Find interpolation variables
|
||||
EvalWell flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
|
||||
//Compute the BHP for each well independently
|
||||
if (table != nullptr) {
|
||||
//First, find the values to interpolate between
|
||||
//Value of FLO is negative in OPM for producers, but positive in VFP table
|
||||
auto flo_i = detail::findInterpData(flo.value(), table->getFloAxis());
|
||||
auto thp_i = detail::findInterpData( thp, table->getTHPAxis()); // assume constant
|
||||
|
||||
detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i);
|
||||
|
||||
bhp = bhp_val.dflo * flo;
|
||||
bhp.setValue(bhp_val.value); // thp is assumed constant i.e.
|
||||
}
|
||||
else {
|
||||
bhp.setValue(-1e100); //Signal that this value has not been calculated properly, due to "missing" table
|
||||
}
|
||||
return bhp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Linear interpolation of bhp as a function of the input parameters
|
||||
|
@ -75,45 +75,6 @@ VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
||||
}
|
||||
|
||||
|
||||
VFPProdProperties::EvalWell VFPProdProperties::bhp(const int table_id,
|
||||
const EvalWell& aqua,
|
||||
const EvalWell& liquid,
|
||||
const EvalWell& vapour,
|
||||
const double& thp,
|
||||
const double& alq) const {
|
||||
|
||||
//Get the table
|
||||
const VFPProdTable* table = detail::getTable(m_tables, table_id);
|
||||
EvalWell bhp = 0.0;
|
||||
|
||||
//Find interpolation variables
|
||||
EvalWell flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
EvalWell wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
|
||||
EvalWell gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
|
||||
|
||||
//Compute the BHP for each well independently
|
||||
if (table != nullptr) {
|
||||
//First, find the values to interpolate between
|
||||
//Value of FLO is negative in OPM for producers, but positive in VFP table
|
||||
auto flo_i = detail::findInterpData(-flo.value(), table->getFloAxis());
|
||||
auto thp_i = detail::findInterpData( thp, table->getTHPAxis()); // assume constant
|
||||
auto wfr_i = detail::findInterpData( wfr.value(), table->getWFRAxis());
|
||||
auto gfr_i = detail::findInterpData( gfr.value(), table->getGFRAxis());
|
||||
auto alq_i = detail::findInterpData( alq, table->getALQAxis()); //assume constant
|
||||
|
||||
detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
||||
|
||||
bhp = (bhp_val.dwfr * wfr) + (bhp_val.dgfr * gfr) - (bhp_val.dflo * flo);
|
||||
bhp.setValue(bhp_val.value);
|
||||
}
|
||||
else {
|
||||
bhp.setValue(-1e100); //Signal that this value has not been calculated properly, due to "missing" table
|
||||
}
|
||||
return bhp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
|
||||
const ADB& aqua,
|
||||
const ADB& liquid,
|
||||
|
@ -25,6 +25,7 @@
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/material/densead/Math.hpp>
|
||||
#include <opm/material/densead/Evaluation.hpp>
|
||||
#include <opm/autodiff/VFPHelpers.hpp>
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
@ -102,13 +103,60 @@ public:
|
||||
const ADB& alq) const;
|
||||
|
||||
|
||||
typedef DenseAd::Evaluation<double, /*size=*/6> EvalWell;
|
||||
/**
|
||||
* Linear interpolation of bhp as a function of the input parameters given as
|
||||
* Evalutions
|
||||
* Each entry corresponds typically to one well.
|
||||
* @param table_id Table number to use. A negative entry (e.g., -1)
|
||||
* will indicate that no table is used, and the corresponding
|
||||
* BHP will be calculated as a constant -1e100.
|
||||
* @param aqua Water phase
|
||||
* @param liquid Oil phase
|
||||
* @param vapour Gas phase
|
||||
* @param thp Tubing head pressure
|
||||
* @param alq Artificial lift or other parameter
|
||||
*
|
||||
* @return The bottom hole pressure, interpolated/extrapolated linearly using
|
||||
* the above parameters from the values in the input table, for each entry in the
|
||||
* input ADB objects.
|
||||
*/
|
||||
template <class EvalWell>
|
||||
EvalWell bhp(const int table_id,
|
||||
const EvalWell& aqua,
|
||||
const EvalWell& liquid,
|
||||
const EvalWell& vapour,
|
||||
const double& thp,
|
||||
const double& alq) const;
|
||||
const EvalWell& aqua,
|
||||
const EvalWell& liquid,
|
||||
const EvalWell& vapour,
|
||||
const double& thp,
|
||||
const double& alq) const {
|
||||
|
||||
//Get the table
|
||||
const VFPProdTable* table = detail::getTable(m_tables, table_id);
|
||||
EvalWell bhp = 0.0;
|
||||
|
||||
//Find interpolation variables
|
||||
EvalWell flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
|
||||
EvalWell wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
|
||||
EvalWell gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
|
||||
|
||||
//Compute the BHP for each well independently
|
||||
if (table != nullptr) {
|
||||
//First, find the values to interpolate between
|
||||
//Value of FLO is negative in OPM for producers, but positive in VFP table
|
||||
auto flo_i = detail::findInterpData(-flo.value(), table->getFloAxis());
|
||||
auto thp_i = detail::findInterpData( thp, table->getTHPAxis()); // assume constant
|
||||
auto wfr_i = detail::findInterpData( wfr.value(), table->getWFRAxis());
|
||||
auto gfr_i = detail::findInterpData( gfr.value(), table->getGFRAxis());
|
||||
auto alq_i = detail::findInterpData( alq, table->getALQAxis()); //assume constant
|
||||
|
||||
detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
||||
|
||||
bhp = (bhp_val.dwfr * wfr) + (bhp_val.dgfr * gfr) - (bhp_val.dflo * flo);
|
||||
bhp.setValue(bhp_val.value);
|
||||
}
|
||||
else {
|
||||
bhp.setValue(-1e100); //Signal that this value has not been calculated properly, due to "missing" table
|
||||
}
|
||||
return bhp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Linear interpolation of bhp as a function of the input parameters
|
||||
|
Loading…
Reference in New Issue
Block a user