Add TPFA-specific linearizer variant.

This commit is contained in:
Atgeirr Flø Rasmussen 2022-06-24 11:51:47 +02:00
parent 323cfbd5f6
commit 4764d174b2
3 changed files with 130 additions and 0 deletions

View File

@ -321,6 +321,10 @@ struct UseVolumetricResidual<TypeTag, TTag::FvBaseDiscretization> { static const
template<class TypeTag>
struct EnableExperiments<TypeTag, TTag::FvBaseDiscretization> { static constexpr bool value = true; };
//! Default to not using the specialized TPFA linearizer.
template<class TypeTag>
struct UseTpfaLinearizer<TypeTag, TTag::FvBaseDiscretization> { static constexpr bool value = false; };
} // namespace Opm::Properties
namespace Opm {

View File

@ -37,6 +37,7 @@
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
#include <opm/material/common/Exceptions.hpp>
#include <opm/grid/utility/SparseTable.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
@ -86,6 +87,8 @@ class FvBaseLinearizer
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using GridCommHandleFactory = GetPropType<TypeTag, Properties::GridCommHandleFactory>;
@ -103,8 +106,11 @@ class FvBaseLinearizer
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
static const bool useTpfaLinearizer = getPropValue<TypeTag, Properties::UseTpfaLinearizer>();
// copying the linearizer is not a good idea
FvBaseLinearizer(const FvBaseLinearizer&);
@ -368,6 +374,26 @@ private:
// create matrix structure based on sparsity pattern
jacobian_->reserve(sparsityPattern);
for (unsigned globI = 0; globI < model.numTotalDof(); globI++) {
sparsityPattern[globI].erase(globI);
}
unsigned numCells = model.numTotalDof();
neighbours_.reserve(numCells, 6 * numCells);
trans_.reserve(numCells, 6 * numCells);
std::vector<double> loctrans;
for (unsigned globI = 0; globI < numCells; globI++) {
const auto& cells = sparsityPattern[globI];
neighbours_.appendRow(cells.begin(), cells.end());
unsigned n = cells.size();
loctrans.resize(n);
short loc = 0;
for (const int& cell : cells) {
loctrans[loc] = problem_().transmissibility(globI, cell);
loc++;
}
trans_.appendRow(loctrans.begin(), loctrans.end());
}
}
// reset the global linear system of equations.
@ -424,9 +450,103 @@ private:
}
}
public:
void setResAndJacobi(VectorBlock& res, MatrixBlock& bMat, const ADVectorBlock& resid) const
{
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
res[eqIdx] = resid[eqIdx].value();
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
// with regard to the focus variable 'pvIdx' of the degree of freedom
// 'focusDofIdx'
bMat[eqIdx][pvIdx] = resid[eqIdx].derivative(pvIdx);
}
}
}
private:
void linearizeGlobalTPFA_()
{
const bool well_local = false;
resetSystem_();
unsigned numCells = model_().numTotalDof();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (unsigned globI = 0; globI < numCells; globI++) {
const auto& neighbours = neighbours_[globI]; // this is a set but should maybe be changed
// accumulation term
double dt = simulator_().timeStepSize();
double volume = model_().dofTotalVolume(globI);
Scalar storefac = volume / dt;
ADVectorBlock adres(0.0);
const IntensiveQuantities* intQuantsInP = model_().cachedIntensiveQuantities(globI, /*timeIdx*/ 0);
assert(intQuantsInP);
const IntensiveQuantities& intQuantsIn = *intQuantsInP;
// intensiveQuantity(globI, 0);
LocalResidual::computeStorage(adres, intQuantsIn, 0);
adres *= storefac;
VectorBlock res(0.0);
MatrixBlock bMat(0.0);
setResAndJacobi(res, bMat, adres);
// first we use it as storage cache
if (model_().newtonMethod().numIterations() == 0) {
model_().updateCachedStorage(globI, /*timeIdx=*/1, res);
}
residual_[globI] -= model_().cachedStorage(globI, 1); //*storefac;
residual_[globI] += res;
jacobian_->addToBlock(globI, globI, bMat);
// wells sources for now (should be moved out)
if (well_local) {
res = 0.0;
bMat = 0.0;
adres = 0.0;
LocalResidual::computeSource(adres, problem_(), globI, 0);
adres *= -volume;
setResAndJacobi(res, bMat, adres);
residual_[globI] += res;
jacobian_->addToBlock(globI, globI, bMat);
}
short loc = 0;
for (const auto& globJ : neighbours) {
assert(globJ != globI);
res = 0.0;
bMat = 0.0;
adres = 0.0;
const IntensiveQuantities* intQuantsExP = model_().cachedIntensiveQuantities(globJ, /*timeIdx*/ 0);
assert(intQuantsExP);
const IntensiveQuantities& intQuantsEx = *intQuantsExP;
unsigned globalFocusDofIdx = globI;
LocalResidual::computeFlux(
adres, problem_(), globalFocusDofIdx, globI, globJ, intQuantsIn, intQuantsEx, 0);
adres *= trans_[globI][loc];
setResAndJacobi(res, bMat, adres);
residual_[globI] += res;
jacobian_->addToBlock(globI, globI, bMat);
bMat *= -1.0;
jacobian_->addToBlock(globJ, globI, bMat);
loc++;
}
}
if (not(well_local)) {
problem_().wellModel().addReseroirSourceTerms(residual_, *jacobian_);
}
// before the first iteration of each time step, we need to update the
// constraints. (i.e., we assume that constraints can be time dependent, but they
// can't depend on the solution.)
}
// linearize the whole system
void linearize_()
{
if (useTpfaLinearizer) {
linearizeGlobalTPFA_();
return;
}
resetSystem_();
// before the first iteration of each time step, we need to update the
@ -595,6 +715,9 @@ private:
LinearizationType linearizationType_;
std::mutex globalMatrixMutex_;
SparseTable<unsigned> neighbours_;
SparseTable<double> trans_;
};
} // namespace Opm

View File

@ -113,6 +113,9 @@ struct LocalLinearizer { using type = UndefinedProperty; };
//! skipped
template<class TypeTag, class MyTypeTag>
struct LinearizeNonLocalElements { using type = UndefinedProperty; };
//! Specify if the specialized TPFA linearizer should be used.
template<class TypeTag, class MyTypeTag>
struct UseTpfaLinearizer { using type = UndefinedProperty; };
//! Linearizes the global non-linear system of equations
template<class TypeTag, class MyTypeTag>