mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
New implementation of AutoDiffMatrix, some tests.
Compiles and tests successfully, but test coverage very limited. New approach based on relatively primitive run-time switching instead of trying to use inheritance.
This commit is contained in:
committed by
babrodtk
parent
6a5a48e728
commit
47e7dbe943
@@ -26,100 +26,150 @@
|
||||
#define BOOST_TEST_MODULE AutoDiffMatrixTest
|
||||
|
||||
#include <opm/autodiff/AutoDiffMatrix.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
using namespace Opm::AutoDiffMatrix;
|
||||
using std::make_shared;
|
||||
typedef Eigen::SparseMatrix<double> Sp;
|
||||
typedef Opm::AutoDiffMatrix Mat;
|
||||
using namespace Opm;
|
||||
|
||||
namespace {
|
||||
template <typename Scalar>
|
||||
bool
|
||||
operator ==(const Eigen::SparseMatrix<Scalar>& A,
|
||||
const Eigen::SparseMatrix<Scalar>& B)
|
||||
{
|
||||
// Two SparseMatrices are equal if
|
||||
// 0) They have the same ordering (enforced by equal types)
|
||||
// 1) They have the same outer and inner dimensions
|
||||
// 2) They have the same number of non-zero elements
|
||||
// 3) They have the same sparsity structure
|
||||
// 4) The non-zero elements are equal
|
||||
bool
|
||||
operator ==(const Eigen::SparseMatrix<double>& A,
|
||||
const Eigen::SparseMatrix<double>& B)
|
||||
{
|
||||
// Two SparseMatrices are equal if
|
||||
// 0) They have the same ordering (enforced by equal types)
|
||||
// 1) They have the same outer and inner dimensions
|
||||
// 2) They have the same number of non-zero elements
|
||||
// 3) They have the same sparsity structure
|
||||
// 4) The non-zero elements are equal
|
||||
|
||||
// 1) Outer and inner dimensions
|
||||
bool eq = (A.outerSize() == B.outerSize());
|
||||
eq = eq && (A.innerSize() == B.innerSize());
|
||||
// 1) Outer and inner dimensions
|
||||
bool eq = (A.outerSize() == B.outerSize());
|
||||
eq = eq && (A.innerSize() == B.innerSize());
|
||||
|
||||
// 2) Equal number of non-zero elements
|
||||
eq = eq && (A.nonZeros() == B.nonZeros());
|
||||
// 2) Equal number of non-zero elements
|
||||
eq = eq && (A.nonZeros() == B.nonZeros());
|
||||
|
||||
for (typename Eigen::SparseMatrix<Scalar>::Index
|
||||
k0 = 0, kend = A.outerSize(); eq && (k0 < kend); ++k0) {
|
||||
for (typename Eigen::SparseMatrix<Scalar>::InnerIterator
|
||||
iA(A, k0), iB(B, k0); eq && (iA && iB); ++iA, ++iB) {
|
||||
// 3) Sparsity structure
|
||||
eq = (iA.row() == iB.row()) && (iA.col() == iB.col());
|
||||
for (typename Eigen::SparseMatrix<double>::Index
|
||||
k0 = 0, kend = A.outerSize(); eq && (k0 < kend); ++k0) {
|
||||
for (typename Eigen::SparseMatrix<double>::InnerIterator
|
||||
iA(A, k0), iB(B, k0); eq && (iA && iB); ++iA, ++iB) {
|
||||
// 3) Sparsity structure
|
||||
eq = (iA.row() == iB.row()) && (iA.col() == iB.col());
|
||||
|
||||
// 4) Equal non-zero elements
|
||||
eq = eq && (iA.value() == iB.value());
|
||||
}
|
||||
}
|
||||
|
||||
return eq;
|
||||
|
||||
// Note: Investigate implementing this operator as
|
||||
// return A.cwiseNotEqual(B).count() == 0;
|
||||
// 4) Equal non-zero elements
|
||||
eq = eq && (iA.value() == iB.value());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return eq;
|
||||
|
||||
// Note: Investigate implementing this operator as
|
||||
// return A.cwiseNotEqual(B).count() == 0;
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(Initialization)
|
||||
{
|
||||
// Setup.
|
||||
Mat z = make_shared<Zero>(3,3);
|
||||
Mat z = Mat(AutoDiffMatrix::ZeroMatrix, 3);
|
||||
|
||||
Mat i = make_shared<Identity>(3);
|
||||
Mat i = Mat(AutoDiffMatrix::IdentityMatrix, 3);
|
||||
|
||||
Eigen::Array<double, Eigen::Dynamic> d1(3);
|
||||
Eigen::Array<double, Eigen::Dynamic, 1> d1(3);
|
||||
d1 << 0.2, 1.2, 13.4;
|
||||
Mat d = make_shared<Diagonal>(d1);
|
||||
Mat d = Mat(d1.matrix().asDiagonal());
|
||||
|
||||
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> s1(3,2);
|
||||
s1 <<
|
||||
1.0, 0.0, 2.0,
|
||||
0.0, 1.0, 0.0;
|
||||
Sp s2(s1);
|
||||
Mat s = make_shared<Sparse>(s2);
|
||||
Sp s2(s1.sparseView());
|
||||
Mat s = Mat(s2);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(EigenConversion)
|
||||
{
|
||||
// Setup
|
||||
Mat z = make_shared<Zero>(3,3);
|
||||
// Setup.
|
||||
Mat z = Mat(AutoDiffMatrix::ZeroMatrix, 3);
|
||||
|
||||
Mat i = make_shared<Identity>(3);
|
||||
Mat i = Mat(AutoDiffMatrix::IdentityMatrix, 3);
|
||||
|
||||
Eigen::Array<double, Eigen::Dynamic> d1(3);
|
||||
Eigen::Array<double, Eigen::Dynamic, 1> d1(3);
|
||||
d1 << 0.2, 1.2, 13.4;
|
||||
Mat d = make_shared<Diagonal>(d1);
|
||||
Mat d = Mat(d1.matrix().asDiagonal());
|
||||
|
||||
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> s1(3,2);
|
||||
s1 <<
|
||||
1.0, 0.0, 2.0,
|
||||
0.0, 1.0, 0.0;
|
||||
Mat s = make_shared<Sparse>(Sp(s1));
|
||||
Sp s2(s1.sparseView());
|
||||
Mat s = Mat(s2);
|
||||
|
||||
// Convert to Eigen::SparseMatrix
|
||||
Sp x;
|
||||
z->toSparse(x);
|
||||
BOOST_CHECK_EQUAL(x, Sp(3,3));
|
||||
i->toSparse(x);
|
||||
Sp i1(Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(3,3));
|
||||
BOOST_CHECK_EQUAL(x, i1);
|
||||
d->toSparse(x);
|
||||
BOOST_CHECK_EQUAL(x, Sp(d1.matrix().asDiagonal()));
|
||||
s->toSparse(x);
|
||||
BOOST_CHECK_EQUAL(x, Sp(s1));
|
||||
z.toSparse(x);
|
||||
Sp z1(3,3);
|
||||
BOOST_CHECK(x == z1);
|
||||
i.toSparse(x);
|
||||
Sp i1(Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(3,3).sparseView());
|
||||
BOOST_CHECK(x == i1);
|
||||
d.toSparse(x);
|
||||
Sp d2 = spdiag(d1);
|
||||
BOOST_CHECK(x == d2);
|
||||
s.toSparse(x);
|
||||
BOOST_CHECK(x == s2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(AdditionOps)
|
||||
{
|
||||
// Setup.
|
||||
Mat z = Mat(AutoDiffMatrix::ZeroMatrix, 3);
|
||||
Sp zs(3,3);
|
||||
|
||||
Mat i = Mat(AutoDiffMatrix::IdentityMatrix, 3);
|
||||
Sp is(Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(3,3).sparseView());
|
||||
|
||||
Eigen::Array<double, Eigen::Dynamic, 1> d1(3);
|
||||
d1 << 0.2, 1.2, 13.4;
|
||||
Mat d = Mat(d1.matrix().asDiagonal());
|
||||
Sp ds = spdiag(d1);
|
||||
|
||||
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> s1(3,3);
|
||||
s1 <<
|
||||
1.0, 0.0, 2.0,
|
||||
0.0, 1.0, 0.0,
|
||||
0.0, 0.0, 2.0;
|
||||
Sp ss(s1.sparseView());
|
||||
Mat s = Mat(ss);
|
||||
|
||||
// Convert to Eigen::SparseMatrix
|
||||
Sp x;
|
||||
z.toSparse(x);
|
||||
BOOST_CHECK(x == zs);
|
||||
i.toSparse(x);
|
||||
BOOST_CHECK(x == is);
|
||||
d.toSparse(x);
|
||||
BOOST_CHECK(x == ds);
|
||||
s.toSparse(x);
|
||||
BOOST_CHECK(x == ss);
|
||||
|
||||
// Adding zero.
|
||||
auto zpz = z + z;
|
||||
zpz.toSparse(x);
|
||||
BOOST_CHECK(x == zs);
|
||||
auto ipz = i + z;
|
||||
ipz.toSparse(x);
|
||||
BOOST_CHECK(x == is);
|
||||
auto dpz = d + z;
|
||||
dpz.toSparse(x);
|
||||
BOOST_CHECK(x == ds);
|
||||
auto spz = s + z;
|
||||
spz.toSparse(x);
|
||||
BOOST_CHECK(x == ss);
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user