New implementation of AutoDiffMatrix, some tests.

Compiles and tests successfully, but test coverage very
limited. New approach based on relatively primitive
run-time switching instead of trying to use inheritance.
This commit is contained in:
Atgeirr Flø Rasmussen
2015-08-24 13:55:16 +02:00
committed by babrodtk
parent 6a5a48e728
commit 47e7dbe943
2 changed files with 381 additions and 240 deletions

View File

@@ -26,100 +26,150 @@
#define BOOST_TEST_MODULE AutoDiffMatrixTest
#include <opm/autodiff/AutoDiffMatrix.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <boost/test/unit_test.hpp>
using namespace Opm::AutoDiffMatrix;
using std::make_shared;
typedef Eigen::SparseMatrix<double> Sp;
typedef Opm::AutoDiffMatrix Mat;
using namespace Opm;
namespace {
template <typename Scalar>
bool
operator ==(const Eigen::SparseMatrix<Scalar>& A,
const Eigen::SparseMatrix<Scalar>& B)
{
// Two SparseMatrices are equal if
// 0) They have the same ordering (enforced by equal types)
// 1) They have the same outer and inner dimensions
// 2) They have the same number of non-zero elements
// 3) They have the same sparsity structure
// 4) The non-zero elements are equal
bool
operator ==(const Eigen::SparseMatrix<double>& A,
const Eigen::SparseMatrix<double>& B)
{
// Two SparseMatrices are equal if
// 0) They have the same ordering (enforced by equal types)
// 1) They have the same outer and inner dimensions
// 2) They have the same number of non-zero elements
// 3) They have the same sparsity structure
// 4) The non-zero elements are equal
// 1) Outer and inner dimensions
bool eq = (A.outerSize() == B.outerSize());
eq = eq && (A.innerSize() == B.innerSize());
// 1) Outer and inner dimensions
bool eq = (A.outerSize() == B.outerSize());
eq = eq && (A.innerSize() == B.innerSize());
// 2) Equal number of non-zero elements
eq = eq && (A.nonZeros() == B.nonZeros());
// 2) Equal number of non-zero elements
eq = eq && (A.nonZeros() == B.nonZeros());
for (typename Eigen::SparseMatrix<Scalar>::Index
k0 = 0, kend = A.outerSize(); eq && (k0 < kend); ++k0) {
for (typename Eigen::SparseMatrix<Scalar>::InnerIterator
iA(A, k0), iB(B, k0); eq && (iA && iB); ++iA, ++iB) {
// 3) Sparsity structure
eq = (iA.row() == iB.row()) && (iA.col() == iB.col());
for (typename Eigen::SparseMatrix<double>::Index
k0 = 0, kend = A.outerSize(); eq && (k0 < kend); ++k0) {
for (typename Eigen::SparseMatrix<double>::InnerIterator
iA(A, k0), iB(B, k0); eq && (iA && iB); ++iA, ++iB) {
// 3) Sparsity structure
eq = (iA.row() == iB.row()) && (iA.col() == iB.col());
// 4) Equal non-zero elements
eq = eq && (iA.value() == iB.value());
}
}
return eq;
// Note: Investigate implementing this operator as
// return A.cwiseNotEqual(B).count() == 0;
// 4) Equal non-zero elements
eq = eq && (iA.value() == iB.value());
}
}
}
return eq;
// Note: Investigate implementing this operator as
// return A.cwiseNotEqual(B).count() == 0;
}
BOOST_AUTO_TEST_CASE(Initialization)
{
// Setup.
Mat z = make_shared<Zero>(3,3);
Mat z = Mat(AutoDiffMatrix::ZeroMatrix, 3);
Mat i = make_shared<Identity>(3);
Mat i = Mat(AutoDiffMatrix::IdentityMatrix, 3);
Eigen::Array<double, Eigen::Dynamic> d1(3);
Eigen::Array<double, Eigen::Dynamic, 1> d1(3);
d1 << 0.2, 1.2, 13.4;
Mat d = make_shared<Diagonal>(d1);
Mat d = Mat(d1.matrix().asDiagonal());
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> s1(3,2);
s1 <<
1.0, 0.0, 2.0,
0.0, 1.0, 0.0;
Sp s2(s1);
Mat s = make_shared<Sparse>(s2);
Sp s2(s1.sparseView());
Mat s = Mat(s2);
}
BOOST_AUTO_TEST_CASE(EigenConversion)
{
// Setup
Mat z = make_shared<Zero>(3,3);
// Setup.
Mat z = Mat(AutoDiffMatrix::ZeroMatrix, 3);
Mat i = make_shared<Identity>(3);
Mat i = Mat(AutoDiffMatrix::IdentityMatrix, 3);
Eigen::Array<double, Eigen::Dynamic> d1(3);
Eigen::Array<double, Eigen::Dynamic, 1> d1(3);
d1 << 0.2, 1.2, 13.4;
Mat d = make_shared<Diagonal>(d1);
Mat d = Mat(d1.matrix().asDiagonal());
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> s1(3,2);
s1 <<
1.0, 0.0, 2.0,
0.0, 1.0, 0.0;
Mat s = make_shared<Sparse>(Sp(s1));
Sp s2(s1.sparseView());
Mat s = Mat(s2);
// Convert to Eigen::SparseMatrix
Sp x;
z->toSparse(x);
BOOST_CHECK_EQUAL(x, Sp(3,3));
i->toSparse(x);
Sp i1(Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(3,3));
BOOST_CHECK_EQUAL(x, i1);
d->toSparse(x);
BOOST_CHECK_EQUAL(x, Sp(d1.matrix().asDiagonal()));
s->toSparse(x);
BOOST_CHECK_EQUAL(x, Sp(s1));
z.toSparse(x);
Sp z1(3,3);
BOOST_CHECK(x == z1);
i.toSparse(x);
Sp i1(Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(3,3).sparseView());
BOOST_CHECK(x == i1);
d.toSparse(x);
Sp d2 = spdiag(d1);
BOOST_CHECK(x == d2);
s.toSparse(x);
BOOST_CHECK(x == s2);
}
BOOST_AUTO_TEST_CASE(AdditionOps)
{
// Setup.
Mat z = Mat(AutoDiffMatrix::ZeroMatrix, 3);
Sp zs(3,3);
Mat i = Mat(AutoDiffMatrix::IdentityMatrix, 3);
Sp is(Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(3,3).sparseView());
Eigen::Array<double, Eigen::Dynamic, 1> d1(3);
d1 << 0.2, 1.2, 13.4;
Mat d = Mat(d1.matrix().asDiagonal());
Sp ds = spdiag(d1);
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> s1(3,3);
s1 <<
1.0, 0.0, 2.0,
0.0, 1.0, 0.0,
0.0, 0.0, 2.0;
Sp ss(s1.sparseView());
Mat s = Mat(ss);
// Convert to Eigen::SparseMatrix
Sp x;
z.toSparse(x);
BOOST_CHECK(x == zs);
i.toSparse(x);
BOOST_CHECK(x == is);
d.toSparse(x);
BOOST_CHECK(x == ds);
s.toSparse(x);
BOOST_CHECK(x == ss);
// Adding zero.
auto zpz = z + z;
zpz.toSparse(x);
BOOST_CHECK(x == zs);
auto ipz = i + z;
ipz.toSparse(x);
BOOST_CHECK(x == is);
auto dpz = d + z;
dpz.toSparse(x);
BOOST_CHECK(x == ds);
auto spz = s + z;
spz.toSparse(x);
BOOST_CHECK(x == ss);
}