moving the shear-thinning application out of the addWellEq()

So we still use the addWellEq() from the Base Class, without making a
new addWellEq() function in the BlackoilPolymerModel class.
This commit is contained in:
Kai Bao 2015-06-19 15:17:59 +02:00
parent 60494ac531
commit 4807a90c35
2 changed files with 8 additions and 170 deletions

View File

@ -197,7 +197,7 @@ namespace Opm {
using Base::drMaxRel;
using Base::maxResidualAllowed;
// using Base::addWellEq;
using Base::addWellEq;
using Base::updateWellControls;
using Base::computeWellConnectionPressures;
using Base::addWellControlEq;
@ -226,15 +226,6 @@ namespace Opm {
void
assembleMassBalanceEq(const SolutionState& state);
void
addWellEq(const SolutionState& state,
WellState& xw,
std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
V& aliveWells,
std::vector<ADB>& cq_s,
const bool welleq_initial);
void
addWellContributionToMassBalanceEq(const SolutionState& state,
const WellState& xw,

View File

@ -606,6 +606,12 @@ namespace Opm {
OPM_THROW(std::runtime_error, " failed in calculating the shear factors for wells ");
}
// applying the shear-thinning to the water face
const int water_pos = fluid_.phaseUsage().phase_pos[Water];
V shear_mult_wells_v = Eigen::Map<V>(shear_mult_wells_.data(), shear_mult_wells_.size());
ADB shear_mult_wells_adb = ADB::constant(shear_mult_wells_v);
mob_perfcells[water_pos] = mob_perfcells[water_pos] / shear_mult_wells_adb;
/* const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
@ -617,7 +623,7 @@ namespace Opm {
}
// addWellEq(state, well_state, aliveWells);
addWellEq(state, well_state, mob_perfcells, b_perfcells, aliveWells, cq_s, false);
addWellEq(state, well_state, mob_perfcells, b_perfcells, aliveWells, cq_s);
addWellContributionToMassBalanceEq(state, well_state, cq_s);
addWellControlEq(state, well_state, aliveWells);
}
@ -745,165 +751,6 @@ namespace Opm {
return polymer_props_ad_.polymerWaterVelocityRatio(state.concentration);
}
template <class Grid>
void
BlackoilPolymerModel<Grid>::addWellEq(const SolutionState& state,
WellState& xw,
std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
V& aliveWells,
std::vector<ADB>& cq_s,
const bool welleq_initial)
{
if( ! wellsActive() ) return ;
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
V Tw = Eigen::Map<const V>(wells().WI, nperf);
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
// pressure diffs computed already (once per step, not changing per iteration)
const V& cdp = well_perforation_pressure_diffs_;
// Extract needed quantities for the perforation cells
const ADB& p_perfcells = subset(state.pressure, well_cells);
const ADB& rv_perfcells = subset(state.rv, well_cells);
const ADB& rs_perfcells = subset(state.rs, well_cells);
// applying the shear-thinning to the water face
if (has_plyshlog_ && (!welleq_initial)) {
const int water_pos = pu.phase_pos[Water];
V shear_mult_wells_v = Eigen::Map<V>(shear_mult_wells_.data(), shear_mult_wells_.size());
ADB shear_mult_wells_adb = ADB::constant(shear_mult_wells_v);
mob_perfcells[water_pos] = mob_perfcells[water_pos] / shear_mult_wells_adb;
}
// Perforation pressure
const ADB perfpressure = (wops_.w2p * state.bhp) + cdp;
std::vector<double> perfpressure_d(perfpressure.value().data(), perfpressure.value().data() + nperf);
xw.perfPress() = perfpressure_d;
// Pressure drawdown (also used to determine direction of flow)
const ADB drawdown = p_perfcells - perfpressure;
// Compute vectors with zero and ones that
// selects the wanted quantities.
// selects injection perforations
V selectInjectingPerforations = V::Zero(nperf);
// selects producing perforations
V selectProducingPerforations = V::Zero(nperf);
for (int c = 0; c < nperf; ++c){
if (drawdown.value()[c] < 0)
selectInjectingPerforations[c] = 1;
else
selectProducingPerforations[c] = 1;
}
// HANDLE FLOW INTO WELLBORE
// compute phase volumetric rates at standard conditions
std::vector<ADB> cq_ps(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown);
cq_ps[phase] = b_perfcells[phase] * cq_p;
}
if (active_[Oil] && active_[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const ADB cq_psOil = cq_ps[oilpos];
const ADB cq_psGas = cq_ps[gaspos];
cq_ps[gaspos] += rs_perfcells * cq_psOil;
cq_ps[oilpos] += rv_perfcells * cq_psGas;
}
// HANDLE FLOW OUT FROM WELLBORE
// Using total mobilities
ADB total_mob = mob_perfcells[0];
for (int phase = 1; phase < np; ++phase) {
total_mob += mob_perfcells[phase];
}
// injection perforations total volume rates
const ADB cqt_i = -(selectInjectingPerforations * Tw) * (total_mob * drawdown);
// compute wellbore mixture for injecting perforations
// The wellbore mixture depends on the inflow from the reservoar
// and the well injection rates.
// compute avg. and total wellbore phase volumetric rates at standard conds
const DataBlock compi = Eigen::Map<const DataBlock>(wells().comp_frac, nw, np);
std::vector<ADB> wbq(np, ADB::null());
ADB wbqt = ADB::constant(V::Zero(nw));
for (int phase = 0; phase < np; ++phase) {
const ADB& q_ps = wops_.p2w * cq_ps[phase];
const ADB& q_s = subset(state.qs, Span(nw, 1, phase*nw));
Selector<double> injectingPhase_selector(q_s.value(), Selector<double>::GreaterZero);
const int pos = pu.phase_pos[phase];
wbq[phase] = (compi.col(pos) * injectingPhase_selector.select(q_s,ADB::constant(V::Zero(nw)))) - q_ps;
wbqt += wbq[phase];
}
// compute wellbore mixture at standard conditions.
Selector<double> notDeadWells_selector(wbqt.value(), Selector<double>::Zero);
std::vector<ADB> cmix_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const int pos = pu.phase_pos[phase];
cmix_s[phase] = wops_.w2p * notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt);
}
// compute volume ratio between connection at standard conditions
ADB volumeRatio = ADB::constant(V::Zero(nperf));
const ADB d = V::Constant(nperf,1.0) - rv_perfcells * rs_perfcells;
for (int phase = 0; phase < np; ++phase) {
ADB tmp = cmix_s[phase];
if (phase == Oil && active_[Gas]) {
const int gaspos = pu.phase_pos[Gas];
tmp = tmp - rv_perfcells * cmix_s[gaspos] / d;
}
if (phase == Gas && active_[Oil]) {
const int oilpos = pu.phase_pos[Oil];
tmp = tmp - rs_perfcells * cmix_s[oilpos] / d;
}
volumeRatio += tmp / b_perfcells[phase];
}
// injecting connections total volumerates at standard conditions
ADB cqt_is = cqt_i/volumeRatio;
// connection phase volumerates at standard conditions
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cq_ps[phase] + cmix_s[phase]*cqt_is;
}
// WELL EQUATIONS
ADB qs = state.qs;
for (int phase = 0; phase < np; ++phase) {
qs -= superset(wops_.p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np);
}
// check for dead wells (used in the well controll equations)
aliveWells = V::Constant(nw, 1.0);
for (int w = 0; w < nw; ++w) {
if (wbqt.value()[w] == 0) {
aliveWells[w] = 0.0;
}
}
// Update the perforation phase rates (used to calculate the pressure drop in the wellbore)
V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np);
for (int phase = 1; phase < np; ++phase) {
cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np);
}
std::vector<double> cq_d(cq.data(), cq.data() + nperf*np);
xw.perfPhaseRates() = cq_d;
residual_.well_flux_eq = qs;
}
template<class Grid>
void
BlackoilPolymerModel<Grid>::computeWaterShearVelocityFaces(const V& transi, const std::vector<ADB>& kr,