flow: move the internal classes to separate files

i.e., the contents of the Opm::details namespace, the IterationReport
and the DefaultBlackoilSolutionState classes. the purpose of this is
to share the code between the existing flow variants and flow_ebos.
This commit is contained in:
Andreas Lauser
2016-06-07 12:57:25 +02:00
parent 415bb25166
commit 4a66b4495b
8 changed files with 316 additions and 238 deletions

View File

@@ -25,6 +25,7 @@
#define OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
#include <opm/autodiff/BlackoilModelBase.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
@@ -93,73 +94,6 @@ typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
namespace detail {
inline
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<bool> active(maxnp, false);
for (int p = 0; p < pu.MaxNumPhases; ++p) {
active[ p ] = pu.phase_used[ p ] != 0;
}
return active;
}
template <class PU>
std::vector<int>
active2Canonical(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<int> act2can(maxnp, -1);
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[ phase ]) {
act2can[ pu.phase_pos[ phase ] ] = phase;
}
}
return act2can;
}
inline
double getGravity(const double* g, const int dim) {
double grav = 0.0;
if (g) {
// Guard against gravity in anything but last dimension.
for (int dd = 0; dd < dim - 1; ++dd) {
assert(g[dd] == 0.0);
}
grav = g[dim - 1];
}
return grav;
}
} // namespace detail
template <class Grid, class WellModel, class Implementation>
BlackoilModelBase<Grid, WellModel, Implementation>::
BlackoilModelBase(const ModelParameters& param,
@@ -1088,135 +1022,6 @@ namespace detail {
return linsolver_.computeNewtonIncrement(residual_);
}
namespace detail
{
/// \brief Compute the L-infinity norm of a vector
/// \warn This function is not suitable to compute on the well equations.
/// \param a The container to compute the infinity norm on.
/// It has to have one entry for each cell.
/// \param info In a parallel this holds the information about the data distribution.
inline
double infinityNorm( const ADB& a, const boost::any& pinfo = boost::any() )
{
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
#if HAVE_MPI
if ( pinfo.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& real_info =
boost::any_cast<const ParallelISTLInformation&>(pinfo);
double result=0;
real_info.computeReduction(a.value(), Reduction::makeLInfinityNormFunctor<double>(), result);
return result;
}
else
#endif
{
if( a.value().size() > 0 ) {
return a.value().matrix().lpNorm<Eigen::Infinity> ();
}
else { // this situation can occur when no wells are present
return 0.0;
}
}
}
/// \brief Compute the Euclidian norm of a vector
/// \warning In the case that num_components is greater than 1
/// an interleaved ordering is assumed. E.g. for each cell
/// all phases of that cell are stored consecutively. First
/// the ones for cell 0, then the ones for cell 1, ... .
/// \param it begin iterator for the given vector
/// \param end end iterator for the given vector
/// \param num_components number of components (i.e. phases) in the vector
/// \param pinfo In a parallel this holds the information about the data distribution.
template <class Iterator>
inline
double euclidianNormSquared( Iterator it, const Iterator end, int num_components, const boost::any& pinfo = boost::any() )
{
static_cast<void>(num_components); // Suppress warning in the serial case.
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
#if HAVE_MPI
if ( pinfo.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(pinfo);
typedef typename Iterator::value_type Scalar;
Scalar product = 0.0;
int size_per_component = (end - it);
size_per_component /= num_components; // two lines to supresse unused warning.
assert((end - it) == num_components * size_per_component);
if( num_components == 1 )
{
auto component_container =
boost::make_iterator_range(it, end);
info.computeReduction(component_container,
Opm::Reduction::makeInnerProductFunctor<double>(),
product);
}
else
{
auto& maskContainer = info.getOwnerMask();
auto mask = maskContainer.begin();
assert(static_cast<int>(maskContainer.size()) == size_per_component);
for(int cell = 0; cell < size_per_component; ++cell, ++mask)
{
Scalar cell_product = (*it) * (*it);
++it;
for(int component=1; component < num_components;
++component, ++it)
{
cell_product += (*it) * (*it);
}
product += cell_product * (*mask);
}
}
return info.communicator().sum(product);
}
else
#endif
{
double product = 0.0 ;
for( ; it != end; ++it ) {
product += ( *it * *it );
}
return product;
}
}
/// \brief Compute the L-infinity norm of a vector representing a well equation.
/// \param a The container to compute the infinity norm on.
/// \param info In a parallel this holds the information about the data distribution.
inline
double infinityNormWell( const ADB& a, const boost::any& pinfo )
{
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
double result=0;
if( a.value().size() > 0 ) {
result = a.value().matrix().lpNorm<Eigen::Infinity> ();
}
#if HAVE_MPI
if ( pinfo.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& real_info =
boost::any_cast<const ParallelISTLInformation&>(pinfo);
result = real_info.communicator().max(result);
}
#endif
return result;
}
} // namespace detail
template <class Grid, class WellModel, class Implementation>
void
BlackoilModelBase<Grid, WellModel, Implementation>::