mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
flow: move the internal classes to separate files
i.e., the contents of the Opm::details namespace, the IterationReport and the DefaultBlackoilSolutionState classes. the purpose of this is to share the code between the existing flow variants and flow_ebos.
This commit is contained in:
@@ -25,6 +25,7 @@
|
||||
#define OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|
||||
|
||||
#include <opm/autodiff/BlackoilModelBase.hpp>
|
||||
#include <opm/autodiff/BlackoilDetails.hpp>
|
||||
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
@@ -93,73 +94,6 @@ typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
|
||||
|
||||
namespace detail {
|
||||
|
||||
|
||||
inline
|
||||
std::vector<int>
|
||||
buildAllCells(const int nc)
|
||||
{
|
||||
std::vector<int> all_cells(nc);
|
||||
|
||||
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
||||
|
||||
return all_cells;
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class PU>
|
||||
std::vector<bool>
|
||||
activePhases(const PU& pu)
|
||||
{
|
||||
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
||||
std::vector<bool> active(maxnp, false);
|
||||
|
||||
for (int p = 0; p < pu.MaxNumPhases; ++p) {
|
||||
active[ p ] = pu.phase_used[ p ] != 0;
|
||||
}
|
||||
|
||||
return active;
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class PU>
|
||||
std::vector<int>
|
||||
active2Canonical(const PU& pu)
|
||||
{
|
||||
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
||||
std::vector<int> act2can(maxnp, -1);
|
||||
|
||||
for (int phase = 0; phase < maxnp; ++phase) {
|
||||
if (pu.phase_used[ phase ]) {
|
||||
act2can[ pu.phase_pos[ phase ] ] = phase;
|
||||
}
|
||||
}
|
||||
|
||||
return act2can;
|
||||
}
|
||||
|
||||
|
||||
|
||||
inline
|
||||
double getGravity(const double* g, const int dim) {
|
||||
double grav = 0.0;
|
||||
if (g) {
|
||||
// Guard against gravity in anything but last dimension.
|
||||
for (int dd = 0; dd < dim - 1; ++dd) {
|
||||
assert(g[dd] == 0.0);
|
||||
}
|
||||
grav = g[dim - 1];
|
||||
}
|
||||
return grav;
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
|
||||
template <class Grid, class WellModel, class Implementation>
|
||||
BlackoilModelBase<Grid, WellModel, Implementation>::
|
||||
BlackoilModelBase(const ModelParameters& param,
|
||||
@@ -1088,135 +1022,6 @@ namespace detail {
|
||||
return linsolver_.computeNewtonIncrement(residual_);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
namespace detail
|
||||
{
|
||||
/// \brief Compute the L-infinity norm of a vector
|
||||
/// \warn This function is not suitable to compute on the well equations.
|
||||
/// \param a The container to compute the infinity norm on.
|
||||
/// It has to have one entry for each cell.
|
||||
/// \param info In a parallel this holds the information about the data distribution.
|
||||
inline
|
||||
double infinityNorm( const ADB& a, const boost::any& pinfo = boost::any() )
|
||||
{
|
||||
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
|
||||
#if HAVE_MPI
|
||||
if ( pinfo.type() == typeid(ParallelISTLInformation) )
|
||||
{
|
||||
const ParallelISTLInformation& real_info =
|
||||
boost::any_cast<const ParallelISTLInformation&>(pinfo);
|
||||
double result=0;
|
||||
real_info.computeReduction(a.value(), Reduction::makeLInfinityNormFunctor<double>(), result);
|
||||
return result;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
if( a.value().size() > 0 ) {
|
||||
return a.value().matrix().lpNorm<Eigen::Infinity> ();
|
||||
}
|
||||
else { // this situation can occur when no wells are present
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Compute the Euclidian norm of a vector
|
||||
/// \warning In the case that num_components is greater than 1
|
||||
/// an interleaved ordering is assumed. E.g. for each cell
|
||||
/// all phases of that cell are stored consecutively. First
|
||||
/// the ones for cell 0, then the ones for cell 1, ... .
|
||||
/// \param it begin iterator for the given vector
|
||||
/// \param end end iterator for the given vector
|
||||
/// \param num_components number of components (i.e. phases) in the vector
|
||||
/// \param pinfo In a parallel this holds the information about the data distribution.
|
||||
template <class Iterator>
|
||||
inline
|
||||
double euclidianNormSquared( Iterator it, const Iterator end, int num_components, const boost::any& pinfo = boost::any() )
|
||||
{
|
||||
static_cast<void>(num_components); // Suppress warning in the serial case.
|
||||
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
|
||||
#if HAVE_MPI
|
||||
if ( pinfo.type() == typeid(ParallelISTLInformation) )
|
||||
{
|
||||
const ParallelISTLInformation& info =
|
||||
boost::any_cast<const ParallelISTLInformation&>(pinfo);
|
||||
typedef typename Iterator::value_type Scalar;
|
||||
Scalar product = 0.0;
|
||||
int size_per_component = (end - it);
|
||||
size_per_component /= num_components; // two lines to supresse unused warning.
|
||||
assert((end - it) == num_components * size_per_component);
|
||||
|
||||
if( num_components == 1 )
|
||||
{
|
||||
auto component_container =
|
||||
boost::make_iterator_range(it, end);
|
||||
info.computeReduction(component_container,
|
||||
Opm::Reduction::makeInnerProductFunctor<double>(),
|
||||
product);
|
||||
}
|
||||
else
|
||||
{
|
||||
auto& maskContainer = info.getOwnerMask();
|
||||
auto mask = maskContainer.begin();
|
||||
assert(static_cast<int>(maskContainer.size()) == size_per_component);
|
||||
|
||||
for(int cell = 0; cell < size_per_component; ++cell, ++mask)
|
||||
{
|
||||
Scalar cell_product = (*it) * (*it);
|
||||
++it;
|
||||
for(int component=1; component < num_components;
|
||||
++component, ++it)
|
||||
{
|
||||
cell_product += (*it) * (*it);
|
||||
}
|
||||
product += cell_product * (*mask);
|
||||
}
|
||||
}
|
||||
return info.communicator().sum(product);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
double product = 0.0 ;
|
||||
for( ; it != end; ++it ) {
|
||||
product += ( *it * *it );
|
||||
}
|
||||
return product;
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Compute the L-infinity norm of a vector representing a well equation.
|
||||
/// \param a The container to compute the infinity norm on.
|
||||
/// \param info In a parallel this holds the information about the data distribution.
|
||||
inline
|
||||
double infinityNormWell( const ADB& a, const boost::any& pinfo )
|
||||
{
|
||||
static_cast<void>(pinfo); // Suppress warning in non-MPI case.
|
||||
double result=0;
|
||||
if( a.value().size() > 0 ) {
|
||||
result = a.value().matrix().lpNorm<Eigen::Infinity> ();
|
||||
}
|
||||
#if HAVE_MPI
|
||||
if ( pinfo.type() == typeid(ParallelISTLInformation) )
|
||||
{
|
||||
const ParallelISTLInformation& real_info =
|
||||
boost::any_cast<const ParallelISTLInformation&>(pinfo);
|
||||
result = real_info.communicator().max(result);
|
||||
}
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <class Grid, class WellModel, class Implementation>
|
||||
void
|
||||
BlackoilModelBase<Grid, WellModel, Implementation>::
|
||||
|
||||
Reference in New Issue
Block a user