mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #1602 from atgeirr/convergence-status
Add convergence status class
This commit is contained in:
commit
4cf81c69b1
@ -131,6 +131,7 @@ list (APPEND TEST_SOURCE_FILES
|
||||
tests/test_blackoil_amg.cpp
|
||||
tests/test_block.cpp
|
||||
tests/test_boprops_ad.cpp
|
||||
tests/test_convergencereport.cpp
|
||||
tests/test_graphcoloring.cpp
|
||||
tests/test_rateconverter.cpp
|
||||
tests/test_span.cpp
|
||||
@ -442,6 +443,7 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/simulators/timestepping/AdaptiveTimeStepping.hpp
|
||||
opm/simulators/timestepping/AdaptiveTimeStepping_impl.hpp
|
||||
opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp
|
||||
opm/simulators/timestepping/ConvergenceReport.hpp
|
||||
opm/simulators/timestepping/TimeStepControl.hpp
|
||||
opm/simulators/timestepping/TimeStepControlInterface.hpp
|
||||
opm/simulators/timestepping/SimulatorTimer.hpp
|
||||
|
@ -234,8 +234,6 @@ namespace Opm {
|
||||
// a vector of all the wells.
|
||||
std::vector<WellInterfacePtr > well_container_;
|
||||
|
||||
using ConvergenceReport = typename WellInterface<TypeTag>::ConvergenceReport;
|
||||
|
||||
// create the well container
|
||||
std::vector<WellInterfacePtr > createWellContainer(const int time_step);
|
||||
|
||||
|
@ -665,40 +665,48 @@ namespace Opm {
|
||||
for (const auto& well : well_container_) {
|
||||
report += well->getWellConvergence(B_avg);
|
||||
}
|
||||
ConvergenceReport::Severity severity = report.severityOfWorstFailure();
|
||||
|
||||
// checking NaN residuals
|
||||
{
|
||||
bool nan_residual_found = report.nan_residual_found;
|
||||
// Debug reporting.
|
||||
for (const auto& f : report.wellFailures()) {
|
||||
if (f.severity() == ConvergenceReport::Severity::NotANumber) {
|
||||
OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
|
||||
}
|
||||
}
|
||||
|
||||
// Throw if any nan residual found.
|
||||
bool nan_residual_found = (severity == ConvergenceReport::Severity::NotANumber);
|
||||
const auto& grid = ebosSimulator_.vanguard().grid();
|
||||
int value = nan_residual_found ? 1 : 0;
|
||||
|
||||
nan_residual_found = grid.comm().max(value);
|
||||
|
||||
if (nan_residual_found) {
|
||||
for (const auto& well : report.nan_residual_wells) {
|
||||
OpmLog::debug("NaN residual found with phase " + well.phase_name + " for well " + well.well_name);
|
||||
}
|
||||
OPM_THROW(Opm::NumericalIssue, "NaN residual found!");
|
||||
}
|
||||
}
|
||||
|
||||
// checking too large residuals
|
||||
{
|
||||
bool too_large_residual_found = report.too_large_residual_found;
|
||||
// Debug reporting.
|
||||
for (const auto& f : report.wellFailures()) {
|
||||
if (f.severity() == ConvergenceReport::Severity::TooLarge) {
|
||||
OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
|
||||
}
|
||||
}
|
||||
|
||||
// Throw if any too large residual found.
|
||||
bool too_large_residual_found = (severity == ConvergenceReport::Severity::TooLarge);
|
||||
const auto& grid = ebosSimulator_.vanguard().grid();
|
||||
int value = too_large_residual_found ? 1 : 0;
|
||||
|
||||
too_large_residual_found = grid.comm().max(value);
|
||||
if (too_large_residual_found) {
|
||||
for (const auto& well : report.too_large_residual_wells) {
|
||||
OpmLog::debug("Too large residual found with phase " + well.phase_name + " fow well " + well.well_name);
|
||||
}
|
||||
OPM_THROW(Opm::NumericalIssue, "Too large residual found!");
|
||||
}
|
||||
}
|
||||
|
||||
// checking convergence
|
||||
bool converged_well = report.converged;
|
||||
bool converged_well = report.converged();
|
||||
{
|
||||
const auto& grid = ebosSimulator_.vanguard().grid();
|
||||
int value = converged_well ? 1 : 0;
|
||||
|
@ -71,7 +71,6 @@ namespace Opm
|
||||
static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq : numEq + 1;
|
||||
|
||||
using typename Base::Scalar;
|
||||
using typename Base::ConvergenceReport;
|
||||
|
||||
/// the matrix and vector types for the reservoir
|
||||
using typename Base::Mat;
|
||||
|
@ -405,7 +405,7 @@ namespace Opm
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
typename MultisegmentWell<TypeTag>::ConvergenceReport
|
||||
ConvergenceReport
|
||||
MultisegmentWell<TypeTag>::
|
||||
getWellConvergence(const std::vector<double>& B_avg) const
|
||||
{
|
||||
@ -419,63 +419,80 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
using CR = ConvergenceReport;
|
||||
CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid;
|
||||
switch(well_controls_get_current_type(well_controls_)) {
|
||||
case THP:
|
||||
ctrltype = CR::WellFailure::Type::ControlTHP;
|
||||
break;
|
||||
case BHP:
|
||||
ctrltype = CR::WellFailure::Type::ControlBHP;
|
||||
break;
|
||||
case RESERVOIR_RATE:
|
||||
case SURFACE_RATE:
|
||||
ctrltype = CR::WellFailure::Type::ControlRate;
|
||||
break;
|
||||
default:
|
||||
OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name());
|
||||
}
|
||||
assert(ctrltype != CR::WellFailure::Type::Invalid);
|
||||
|
||||
std::vector<double> maximum_residual(numWellEq, 0.0);
|
||||
|
||||
ConvergenceReport report;
|
||||
const int dummy_component = -1;
|
||||
// TODO: the following is a little complicated, maybe can be simplified in some way?
|
||||
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
||||
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
||||
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
||||
if (eq_idx < num_components_) { // phase or component mass equations
|
||||
const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
|
||||
// TODO: the report can not handle the segment number yet.
|
||||
if (std::isnan(flux_residual)) {
|
||||
report.nan_residual_found = true;
|
||||
const auto& compName = FluidSystem::componentName(Indices::activeToCanonicalComponentIndex(eq_idx));
|
||||
const typename ConvergenceReport::ProblemWell problem_well = {name(), compName};
|
||||
report.nan_residual_wells.push_back(problem_well);
|
||||
} else if (flux_residual > param_.max_residual_allowed_) {
|
||||
report.too_large_residual_found = true;
|
||||
const auto& compName = FluidSystem::componentName(Indices::activeToCanonicalComponentIndex(eq_idx));
|
||||
const typename ConvergenceReport::ProblemWell problem_well = {name(), compName};
|
||||
report.nan_residual_wells.push_back(problem_well);
|
||||
} else { // it is a normal residual
|
||||
if (flux_residual > maximum_residual[eq_idx]) {
|
||||
maximum_residual[eq_idx] = flux_residual;
|
||||
}
|
||||
} else { // pressure or control equation
|
||||
if (seg == 0) {
|
||||
// Control equation
|
||||
const double control_residual = abs_residual[seg][eq_idx];
|
||||
if (std::isnan(control_residual)) {
|
||||
report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, name()});
|
||||
} else if (control_residual > param_.max_residual_allowed_) {
|
||||
report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, name()});
|
||||
} else if (control_residual > param_.tolerance_wells_) {
|
||||
report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, name()});
|
||||
}
|
||||
} else {
|
||||
// Pressure equation
|
||||
const double pressure_residual = abs_residual[seg][eq_idx];
|
||||
if (pressure_residual > maximum_residual[eq_idx]) {
|
||||
maximum_residual[eq_idx] = pressure_residual;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
||||
if (eq_idx < num_components_) { // phase or component mass equations
|
||||
const double flux_residual = maximum_residual[eq_idx];
|
||||
// TODO: the report can not handle the segment number yet.
|
||||
if (std::isnan(flux_residual)) {
|
||||
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, name()});
|
||||
} else if (flux_residual > param_.max_residual_allowed_) {
|
||||
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, name()});
|
||||
} else if (flux_residual > param_.tolerance_wells_) {
|
||||
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, name()});
|
||||
}
|
||||
} else { // pressure equation
|
||||
// TODO: we should distinguish the rate control equations, bhp control equations
|
||||
// and the oridnary pressure equations
|
||||
const double pressure_residal = abs_residual[seg][eq_idx];
|
||||
const std::string eq_name("Pressure");
|
||||
if (std::isnan(pressure_residal)) {
|
||||
report.nan_residual_found = true;
|
||||
const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name};
|
||||
report.nan_residual_wells.push_back(problem_well);
|
||||
} else if (std::isinf(pressure_residal)) {
|
||||
report.too_large_residual_found = true;
|
||||
const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name};
|
||||
report.nan_residual_wells.push_back(problem_well);
|
||||
} else { // it is a normal residual
|
||||
if (pressure_residal > maximum_residual[eq_idx]) {
|
||||
maximum_residual[eq_idx] = pressure_residal;
|
||||
const double pressure_residual = maximum_residual[eq_idx];
|
||||
if (std::isnan(pressure_residual)) {
|
||||
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, name()});
|
||||
} else if (std::isinf(pressure_residual)) {
|
||||
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, name()});
|
||||
} else if (pressure_residual > param_.tolerance_pressure_ms_wells_) {
|
||||
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, name()});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ( !(report.nan_residual_found || report.too_large_residual_found) ) { // no abnormal residual value found
|
||||
// check convergence for flux residuals
|
||||
for ( int comp_idx = 0; comp_idx < num_components_; ++comp_idx)
|
||||
{
|
||||
report.converged = report.converged && (maximum_residual[comp_idx] < param_.tolerance_wells_);
|
||||
}
|
||||
|
||||
report.converged = report.converged && (maximum_residual[SPres] < param_.tolerance_pressure_ms_wells_);
|
||||
} else { // abnormal values found and no need to check the convergence
|
||||
report.converged = false;
|
||||
}
|
||||
|
||||
return report;
|
||||
}
|
||||
@ -1726,9 +1743,8 @@ namespace Opm
|
||||
// const std::vector<double> B {0.8, 0.8, 0.008};
|
||||
const std::vector<double> B {0.5, 0.5, 0.005};
|
||||
|
||||
const ConvergenceReport report = getWellConvergence(B);
|
||||
|
||||
if (report.converged) {
|
||||
const auto report = getWellConvergence(B);
|
||||
if (report.converged()) {
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -86,7 +86,6 @@ namespace Opm
|
||||
static const int Bhp = numWellEq - numWellControlEq;
|
||||
|
||||
using typename Base::Scalar;
|
||||
using typename Base::ConvergenceReport;
|
||||
|
||||
|
||||
using Base::name;
|
||||
|
@ -1483,7 +1483,7 @@ namespace Opm
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
typename StandardWell<TypeTag>::ConvergenceReport
|
||||
ConvergenceReport
|
||||
StandardWell<TypeTag>::
|
||||
getWellConvergence(const std::vector<double>& B_avg) const
|
||||
{
|
||||
@ -1509,6 +1509,8 @@ namespace Opm
|
||||
}
|
||||
|
||||
ConvergenceReport report;
|
||||
using CR = ConvergenceReport;
|
||||
CR::WellFailure::Type type = CR::WellFailure::Type::MassBalance;
|
||||
// checking if any NaN or too large residuals found
|
||||
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
||||
@ -1517,21 +1519,16 @@ namespace Opm
|
||||
|
||||
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
|
||||
const std::string& compName = FluidSystem::componentName(canonicalCompIdx);
|
||||
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
|
||||
const int compIdx = Indices::canonicalToActiveComponentIndex(canonicalCompIdx);
|
||||
|
||||
if (std::isnan(well_flux_residual[compIdx])) {
|
||||
report.nan_residual_found = true;
|
||||
const typename ConvergenceReport::ProblemWell problem_well = {name(), compName};
|
||||
report.nan_residual_wells.push_back(problem_well);
|
||||
} else {
|
||||
if (well_flux_residual[compIdx] > maxResidualAllowed) {
|
||||
report.too_large_residual_found = true;
|
||||
const typename ConvergenceReport::ProblemWell problem_well = {name(), compName};
|
||||
report.too_large_residual_wells.push_back(problem_well);
|
||||
report.setWellFailed({type, CR::Severity::NotANumber, compIdx, name()});
|
||||
} else if (well_flux_residual[compIdx] > maxResidualAllowed) {
|
||||
report.setWellFailed({type, CR::Severity::TooLarge, compIdx, name()});
|
||||
} else if (well_flux_residual[compIdx] > tol_wells) {
|
||||
report.setWellFailed({type, CR::Severity::Normal, compIdx, name()});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// processing the residual of the well control equation
|
||||
const double well_control_residual = res[numWellEq - 1];
|
||||
@ -1539,40 +1536,29 @@ namespace Opm
|
||||
double control_tolerance = 0.;
|
||||
switch(well_controls_get_current_type(well_controls_)) {
|
||||
case THP:
|
||||
type = CR::WellFailure::Type::ControlTHP;
|
||||
control_tolerance = 1.e3; // 0.01 bar
|
||||
break;
|
||||
case BHP: // pressure type of control
|
||||
type = CR::WellFailure::Type::ControlBHP;
|
||||
control_tolerance = 1.e3; // 0.01 bar
|
||||
break;
|
||||
case RESERVOIR_RATE:
|
||||
case SURFACE_RATE:
|
||||
type = CR::WellFailure::Type::ControlRate;
|
||||
control_tolerance = 1.e-4; // smaller tolerance for rate control
|
||||
break;
|
||||
default:
|
||||
OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name());
|
||||
}
|
||||
|
||||
const bool control_eq_converged = well_control_residual < control_tolerance;
|
||||
|
||||
const int dummy_component = -1;
|
||||
if (std::isnan(well_control_residual)) {
|
||||
report.nan_residual_found = true;
|
||||
const typename ConvergenceReport::ProblemWell problem_well = {name(), "control"};
|
||||
report.nan_residual_wells.push_back(problem_well);
|
||||
} else {
|
||||
// TODO: for pressure control equations, it can be pretty big during Newton iteration
|
||||
if (well_control_residual > maxResidualAllowed * 10.) {
|
||||
report.too_large_residual_found = true;
|
||||
const typename ConvergenceReport::ProblemWell problem_well = {name(), "control"};
|
||||
report.too_large_residual_wells.push_back(problem_well);
|
||||
}
|
||||
}
|
||||
|
||||
if ( !(report.nan_residual_found || report.too_large_residual_found) ) { // no abnormal residual value found
|
||||
// check convergence
|
||||
for ( int compIdx = 0; compIdx < num_components_; ++compIdx )
|
||||
{
|
||||
report.converged = report.converged && (well_flux_residual[compIdx] < tol_wells) && control_eq_converged;
|
||||
}
|
||||
} else { // abnormal values found and no need to check the convergence
|
||||
report.converged = false;
|
||||
report.setWellFailed({type, CR::Severity::NotANumber, dummy_component, name()});
|
||||
} else if (well_control_residual > maxResidualAllowed * 10.) {
|
||||
report.setWellFailed({type, CR::Severity::TooLarge, dummy_component, name()});
|
||||
} else if ( well_control_residual > control_tolerance) {
|
||||
report.setWellFailed({type, CR::Severity::Normal, dummy_component, name()});
|
||||
}
|
||||
|
||||
return report;
|
||||
|
@ -44,6 +44,7 @@
|
||||
#include <opm/autodiff/BlackoilModelParametersEbos.hpp>
|
||||
#include <opm/autodiff/RateConverter.hpp>
|
||||
|
||||
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
|
||||
#include <opm/simulators/WellSwitchingLogger.hpp>
|
||||
|
||||
#include<dune/common/fmatrix.hh>
|
||||
@ -137,37 +138,6 @@ namespace Opm
|
||||
|
||||
virtual void initPrimaryVariablesEvaluation() const = 0;
|
||||
|
||||
/// a struct to collect information about the convergence checking
|
||||
struct ConvergenceReport {
|
||||
struct ProblemWell {
|
||||
std::string well_name;
|
||||
std::string phase_name;
|
||||
};
|
||||
bool converged = true;
|
||||
bool nan_residual_found = false;
|
||||
std::vector<ProblemWell> nan_residual_wells;
|
||||
// We consider Inf is large residual here
|
||||
bool too_large_residual_found = false;
|
||||
std::vector<ProblemWell> too_large_residual_wells;
|
||||
|
||||
ConvergenceReport& operator+=(const ConvergenceReport& rhs) {
|
||||
converged = converged && rhs.converged;
|
||||
nan_residual_found = nan_residual_found || rhs.nan_residual_found;
|
||||
if (rhs.nan_residual_found) {
|
||||
for (const ProblemWell& well : rhs.nan_residual_wells) {
|
||||
nan_residual_wells.push_back(well);
|
||||
}
|
||||
}
|
||||
too_large_residual_found = too_large_residual_found || rhs.too_large_residual_found;
|
||||
if (rhs.too_large_residual_found) {
|
||||
for (const ProblemWell& well : rhs.too_large_residual_wells) {
|
||||
too_large_residual_wells.push_back(well);
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
virtual ConvergenceReport getWellConvergence(const std::vector<double>& B_avg) const = 0;
|
||||
|
||||
virtual void solveEqAndUpdateWellState(WellState& well_state) = 0;
|
||||
|
@ -932,10 +932,8 @@ namespace Opm
|
||||
do {
|
||||
assembleWellEq(ebosSimulator, dt, well_state, true);
|
||||
|
||||
ConvergenceReport report;
|
||||
report = getWellConvergence(B_avg);
|
||||
converged = report.converged;
|
||||
|
||||
auto report = getWellConvergence(B_avg);
|
||||
converged = report.converged();
|
||||
if (converged) {
|
||||
break;
|
||||
}
|
||||
|
176
opm/simulators/timestepping/ConvergenceReport.hpp
Normal file
176
opm/simulators/timestepping/ConvergenceReport.hpp
Normal file
@ -0,0 +1,176 @@
|
||||
/*
|
||||
Copyright 2018 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2018 Equinor.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_CONVERGENCEREPORT_HEADER_INCLUDED
|
||||
#define OPM_CONVERGENCEREPORT_HEADER_INCLUDED
|
||||
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// Represents the convergence status of the whole simulator, to
|
||||
/// make it possible to query and store the reasons for
|
||||
/// convergence failures.
|
||||
class ConvergenceReport
|
||||
{
|
||||
public:
|
||||
|
||||
// ----------- Types -----------
|
||||
|
||||
enum Status { AllGood = 0,
|
||||
ReservoirFailed = 1 << 0,
|
||||
WellFailed = 1 << 1 };
|
||||
enum struct Severity { None = 0,
|
||||
Normal = 1,
|
||||
TooLarge = 2,
|
||||
NotANumber = 3 };
|
||||
class ReservoirFailure
|
||||
{
|
||||
public:
|
||||
enum struct Type { Invalid, MassBalance, Cnv };
|
||||
ReservoirFailure(Type t, Severity s, int phase, int cell_index)
|
||||
: type_(t), severity_(s), phase_(phase), cell_index_(cell_index)
|
||||
{
|
||||
}
|
||||
Type type() const { return type_; }
|
||||
Severity severity() const { return severity_; }
|
||||
int phase() const { return phase_; }
|
||||
int cellIndex() const { return cell_index_; }
|
||||
private:
|
||||
Type type_;
|
||||
Severity severity_;
|
||||
int phase_;
|
||||
int cell_index_;
|
||||
};
|
||||
class WellFailure
|
||||
{
|
||||
public:
|
||||
enum struct Type { Invalid, MassBalance, Pressure, ControlBHP, ControlTHP, ControlRate };
|
||||
WellFailure(Type t, Severity s, int phase, const std::string& well_name)
|
||||
: type_(t), severity_(s), phase_(phase), well_name_(well_name)
|
||||
{
|
||||
}
|
||||
Type type() const { return type_; }
|
||||
Severity severity() const { return severity_; }
|
||||
int phase() const { return phase_; }
|
||||
const std::string& wellName() const { return well_name_; }
|
||||
private:
|
||||
Type type_;
|
||||
Severity severity_;
|
||||
int phase_;
|
||||
std::string well_name_;
|
||||
};
|
||||
|
||||
// ----------- Mutating member functions -----------
|
||||
|
||||
ConvergenceReport()
|
||||
: status_{AllGood}
|
||||
, res_failures_{}
|
||||
, well_failures_{}
|
||||
{
|
||||
}
|
||||
|
||||
void clear()
|
||||
{
|
||||
status_ = AllGood;
|
||||
res_failures_.clear();
|
||||
well_failures_.clear();
|
||||
}
|
||||
|
||||
void setReservoirFailed(const ReservoirFailure& rf)
|
||||
{
|
||||
status_ = static_cast<Status>(status_ | ReservoirFailed);
|
||||
res_failures_.push_back(rf);
|
||||
}
|
||||
|
||||
void setWellFailed(const WellFailure& wf)
|
||||
{
|
||||
status_ = static_cast<Status>(status_ | WellFailed);
|
||||
well_failures_.push_back(wf);
|
||||
}
|
||||
|
||||
ConvergenceReport& operator+=(const ConvergenceReport& other)
|
||||
{
|
||||
status_ = static_cast<Status>(status_ | other.status_);
|
||||
res_failures_.insert(res_failures_.end(), other.res_failures_.begin(), other.res_failures_.end());
|
||||
well_failures_.insert(well_failures_.end(), other.well_failures_.begin(), other.well_failures_.end());
|
||||
assert(reservoirFailed() != res_failures_.empty());
|
||||
assert(wellFailed() != well_failures_.empty());
|
||||
return *this;
|
||||
}
|
||||
|
||||
// ----------- Const member functions (queries) -----------
|
||||
|
||||
bool converged() const
|
||||
{
|
||||
return status_ == AllGood;
|
||||
}
|
||||
|
||||
bool reservoirFailed() const
|
||||
{
|
||||
return status_ & ReservoirFailed;
|
||||
}
|
||||
|
||||
bool wellFailed() const
|
||||
{
|
||||
return status_ & WellFailed;
|
||||
}
|
||||
|
||||
const std::vector<ReservoirFailure>& reservoirFailures() const
|
||||
{
|
||||
return res_failures_;
|
||||
}
|
||||
|
||||
const std::vector<WellFailure>& wellFailures() const
|
||||
{
|
||||
return well_failures_;
|
||||
}
|
||||
|
||||
Severity severityOfWorstFailure() const
|
||||
{
|
||||
// A function to get the worst of two severities.
|
||||
auto smax = [](Severity s1, Severity s2) {
|
||||
return s1 < s2 ? s2 : s1;
|
||||
};
|
||||
auto s = Severity::None;
|
||||
for (const auto f : res_failures_) {
|
||||
s = smax(s, f.severity());
|
||||
}
|
||||
for (const auto f : well_failures_) {
|
||||
s = smax(s, f.severity());
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
// ----------- Member variables -----------
|
||||
Status status_;
|
||||
std::vector<ReservoirFailure> res_failures_;
|
||||
std::vector<WellFailure> well_failures_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_CONVERGENCEREPORT_HEADER_INCLUDED
|
131
tests/test_convergencereport.cpp
Normal file
131
tests/test_convergencereport.cpp
Normal file
@ -0,0 +1,131 @@
|
||||
/*
|
||||
Copyright 2018 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2018 Equinor.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#define BOOST_TEST_MODULE ConvergenceReportTest
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
|
||||
|
||||
using CR = Opm::ConvergenceReport;
|
||||
|
||||
BOOST_AUTO_TEST_CASE(DefaultConstructor)
|
||||
{
|
||||
Opm::ConvergenceReport s;
|
||||
BOOST_CHECK(s.converged());
|
||||
BOOST_CHECK(!s.reservoirFailed());
|
||||
BOOST_CHECK(!s.wellFailed());
|
||||
BOOST_CHECK(s.severityOfWorstFailure() == CR::Severity::None);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(Failures)
|
||||
{
|
||||
Opm::ConvergenceReport s1;
|
||||
s1.setReservoirFailed({CR::ReservoirFailure::Type::Cnv, CR::Severity::Normal, 2, 100});
|
||||
{
|
||||
BOOST_CHECK(!s1.converged());
|
||||
BOOST_CHECK(s1.reservoirFailed());
|
||||
BOOST_CHECK(!s1.wellFailed());
|
||||
BOOST_REQUIRE(s1.reservoirFailures().size() == 1);
|
||||
const auto f = s1.reservoirFailures()[0];
|
||||
BOOST_CHECK(f.type() == CR::ReservoirFailure::Type::Cnv);
|
||||
BOOST_CHECK(f.severity() == CR::Severity::Normal);
|
||||
BOOST_CHECK(f.phase() == 2);
|
||||
BOOST_CHECK(f.cellIndex() == 100);
|
||||
BOOST_CHECK(s1.wellFailures().empty());
|
||||
BOOST_CHECK(s1.severityOfWorstFailure() == CR::Severity::Normal);
|
||||
}
|
||||
|
||||
Opm::ConvergenceReport s2;
|
||||
s2.setWellFailed({CR::WellFailure::Type::ControlTHP, CR::Severity::Normal, -1, "PRODUCER-123"});
|
||||
s2.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, 2, "INJECTOR-XYZ"});
|
||||
{
|
||||
BOOST_CHECK(!s2.converged());
|
||||
BOOST_CHECK(!s2.reservoirFailed());
|
||||
BOOST_CHECK(s2.wellFailed());
|
||||
BOOST_CHECK(s2.reservoirFailures().empty());
|
||||
BOOST_REQUIRE(s2.wellFailures().size() == 2);
|
||||
const auto f0 = s2.wellFailures()[0];
|
||||
BOOST_CHECK(f0.type() == CR::WellFailure::Type::ControlTHP);
|
||||
BOOST_CHECK(f0.severity() == CR::Severity::Normal);
|
||||
BOOST_CHECK(f0.phase() == -1);
|
||||
BOOST_CHECK(f0.wellName() == "PRODUCER-123");
|
||||
const auto f1 = s2.wellFailures()[1];
|
||||
BOOST_CHECK(f1.type() == CR::WellFailure::Type::MassBalance);
|
||||
BOOST_CHECK(f1.severity() == CR::Severity::TooLarge);
|
||||
BOOST_CHECK(f1.phase() == 2);
|
||||
BOOST_CHECK(f1.wellName() == "INJECTOR-XYZ");
|
||||
BOOST_CHECK(s2.severityOfWorstFailure() == CR::Severity::TooLarge);
|
||||
}
|
||||
|
||||
s1 += s2;
|
||||
{
|
||||
BOOST_CHECK(!s1.converged());
|
||||
BOOST_CHECK(s1.reservoirFailed());
|
||||
BOOST_CHECK(s1.wellFailed());
|
||||
BOOST_REQUIRE(s1.reservoirFailures().size() == 1);
|
||||
const auto f = s1.reservoirFailures()[0];
|
||||
BOOST_CHECK(f.type() == CR::ReservoirFailure::Type::Cnv);
|
||||
BOOST_CHECK(f.severity() == CR::Severity::Normal);
|
||||
BOOST_CHECK(f.phase() == 2);
|
||||
BOOST_CHECK(f.cellIndex() == 100);
|
||||
BOOST_REQUIRE(s1.wellFailures().size() == 2);
|
||||
const auto f0 = s1.wellFailures()[0];
|
||||
BOOST_CHECK(f0.type() == CR::WellFailure::Type::ControlTHP);
|
||||
BOOST_CHECK(f0.severity() == CR::Severity::Normal);
|
||||
BOOST_CHECK(f0.phase() == -1);
|
||||
BOOST_CHECK(f0.wellName() == "PRODUCER-123");
|
||||
const auto f1 = s1.wellFailures()[1];
|
||||
BOOST_CHECK(f1.type() == CR::WellFailure::Type::MassBalance);
|
||||
BOOST_CHECK(f1.severity() == CR::Severity::TooLarge);
|
||||
BOOST_CHECK(f1.phase() == 2);
|
||||
BOOST_CHECK(f1.wellName() == "INJECTOR-XYZ");
|
||||
BOOST_CHECK(s1.severityOfWorstFailure() == CR::Severity::TooLarge);
|
||||
}
|
||||
|
||||
s1.clear();
|
||||
{
|
||||
BOOST_CHECK(s1.converged());
|
||||
BOOST_CHECK(!s1.reservoirFailed());
|
||||
BOOST_CHECK(!s1.wellFailed());
|
||||
BOOST_CHECK(s1.severityOfWorstFailure() == CR::Severity::None);
|
||||
}
|
||||
|
||||
s1 += s2;
|
||||
{
|
||||
BOOST_CHECK(!s1.converged());
|
||||
BOOST_CHECK(!s1.reservoirFailed());
|
||||
BOOST_CHECK(s1.wellFailed());
|
||||
BOOST_CHECK(s1.reservoirFailures().empty());
|
||||
BOOST_REQUIRE(s1.wellFailures().size() == 2);
|
||||
const auto f0 = s1.wellFailures()[0];
|
||||
BOOST_CHECK(f0.type() == CR::WellFailure::Type::ControlTHP);
|
||||
BOOST_CHECK(f0.severity() == CR::Severity::Normal);
|
||||
BOOST_CHECK(f0.phase() == -1);
|
||||
BOOST_CHECK(f0.wellName() == "PRODUCER-123");
|
||||
const auto f1 = s1.wellFailures()[1];
|
||||
BOOST_CHECK(f1.type() == CR::WellFailure::Type::MassBalance);
|
||||
BOOST_CHECK(f1.severity() == CR::Severity::TooLarge);
|
||||
BOOST_CHECK(f1.phase() == 2);
|
||||
BOOST_CHECK(f1.wellName() == "INJECTOR-XYZ");
|
||||
BOOST_CHECK(s1.severityOfWorstFailure() == CR::Severity::TooLarge);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user