mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-28 02:00:59 -06:00
Merge pull request #2076 from GitPaean/converting_aquifier_unix
converting the aquifer files to be unix format
This commit is contained in:
commit
501122ca0d
@ -1,225 +1,225 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
Copyright 2017 IRIS
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_AQUIFERINTERFACE_HEADER_INCLUDED
|
||||
#define OPM_AQUIFERINTERFACE_HEADER_INCLUDED
|
||||
|
||||
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
|
||||
#include <opm/parser/eclipse/EclipseState/Aquifetp.hpp>
|
||||
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
|
||||
#include <opm/common/utility/numeric/linearInterpolation.hpp>
|
||||
|
||||
#include <opm/material/common/MathToolbox.hpp>
|
||||
#include <opm/material/densead/Math.hpp>
|
||||
#include <opm/material/densead/Evaluation.hpp>
|
||||
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
||||
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <unordered_map>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
template<typename TypeTag>
|
||||
class AquiferInterface
|
||||
{
|
||||
public:
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
|
||||
|
||||
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
|
||||
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
|
||||
|
||||
static const int numEq = BlackoilIndices::numEq;
|
||||
typedef double Scalar;
|
||||
|
||||
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
|
||||
|
||||
typedef Opm::BlackOilFluidState<Eval, FluidSystem, enableTemperature, enableEnergy, BlackoilIndices::gasEnabled, BlackoilIndices::numPhases> FluidState;
|
||||
|
||||
static const auto waterCompIdx = FluidSystem::waterCompIdx;
|
||||
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
||||
|
||||
// Constructor
|
||||
AquiferInterface( const Aquancon::AquanconOutput& connection,
|
||||
const std::unordered_map<int, int>& cartesian_to_compressed,
|
||||
const Simulator& ebosSimulator)
|
||||
: connection_(connection)
|
||||
, ebos_simulator_(ebosSimulator)
|
||||
, cartesian_to_compressed_(cartesian_to_compressed)
|
||||
{}
|
||||
|
||||
// Deconstructor
|
||||
virtual ~AquiferInterface() {}
|
||||
|
||||
void initialSolutionApplied()
|
||||
{
|
||||
initQuantities(connection_);
|
||||
}
|
||||
|
||||
void beginTimeStep()
|
||||
{
|
||||
ElementContext elemCtx(ebos_simulator_);
|
||||
auto elemIt = ebos_simulator_.gridView().template begin<0>();
|
||||
const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const auto& elem = *elemIt;
|
||||
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
|
||||
int cellIdx = elemCtx.globalSpaceIndex(0, 0);
|
||||
int idx = cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
continue;
|
||||
|
||||
elemCtx.updateIntensiveQuantities(0);
|
||||
const auto& iq = elemCtx.intensiveQuantities(0, 0);
|
||||
pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
|
||||
}
|
||||
}
|
||||
|
||||
template <class Context>
|
||||
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
|
||||
{
|
||||
unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||||
|
||||
int idx = cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
return;
|
||||
|
||||
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
|
||||
// IntensiveQuantities of that particular cell_id
|
||||
const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
|
||||
// This is the pressure at td + dt
|
||||
updateCellPressure(pressure_current_,idx,intQuants);
|
||||
updateCellDensity(idx,intQuants);
|
||||
calculateInflowRate(idx, context.simulator());
|
||||
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
|
||||
Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
|
||||
}
|
||||
|
||||
protected:
|
||||
inline Scalar gravity_() const
|
||||
{
|
||||
return ebos_simulator_.problem().gravity()[2];
|
||||
}
|
||||
|
||||
inline void initQuantities(const Aquancon::AquanconOutput& connection)
|
||||
{
|
||||
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
|
||||
W_flux_ = 0.;
|
||||
|
||||
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
|
||||
initializeConnections(connection);
|
||||
calculateAquiferCondition();
|
||||
calculateAquiferConstants();
|
||||
|
||||
pressure_previous_.resize(cell_idx_.size(), 0.);
|
||||
pressure_current_.resize(cell_idx_.size(), 0.);
|
||||
Qai_.resize(cell_idx_.size(), 0.0);
|
||||
}
|
||||
|
||||
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
|
||||
{
|
||||
const auto& fs = intQuants.fluidState();
|
||||
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
|
||||
}
|
||||
|
||||
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
|
||||
{
|
||||
const auto& fs = intQuants.fluidState();
|
||||
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
|
||||
}
|
||||
|
||||
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
|
||||
{
|
||||
const auto& fs = intQuants.fluidState();
|
||||
rhow_.at(idx) = fs.density(waterPhaseIdx);
|
||||
}
|
||||
|
||||
template<class faceCellType, class ugridType>
|
||||
inline double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid,
|
||||
const int faceIdx, const int idx,
|
||||
const Aquancon::AquanconOutput& connection) const
|
||||
{
|
||||
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
|
||||
// Do not make the connection if the product of the two cellIdx > 0. This is because the
|
||||
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
|
||||
double faceArea = 0.;
|
||||
const auto cellNeighbour0 = faceCells(faceIdx,0);
|
||||
const auto cellNeighbour1 = faceCells(faceIdx,1);
|
||||
const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
|
||||
const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))?
|
||||
defaultFaceArea :
|
||||
*(connection.influx_coeff.at(idx));
|
||||
faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea;
|
||||
if (cellNeighbour1 == 0){
|
||||
faceArea = (cellNeighbour0 < 0)? faceArea : 0.;
|
||||
}
|
||||
else if (cellNeighbour0 == 0){
|
||||
faceArea = (cellNeighbour1 < 0)? faceArea : 0.;
|
||||
}
|
||||
return faceArea;
|
||||
}
|
||||
|
||||
virtual void endTimeStep() = 0;
|
||||
|
||||
const Aquancon::AquanconOutput connection_;
|
||||
const Simulator& ebos_simulator_;
|
||||
const std::unordered_map<int, int> cartesian_to_compressed_;
|
||||
|
||||
// Grid variables
|
||||
std::vector<size_t> cell_idx_;
|
||||
std::vector<Scalar> faceArea_connected_;
|
||||
std::vector<int> cellToConnectionIdx_;
|
||||
// Quantities at each grid id
|
||||
std::vector<Scalar> cell_depth_;
|
||||
std::vector<Scalar> pressure_previous_;
|
||||
std::vector<Eval> pressure_current_;
|
||||
std::vector<Eval> Qai_;
|
||||
std::vector<Eval> rhow_;
|
||||
std::vector<Scalar> alphai_;
|
||||
|
||||
Scalar mu_w_; //water viscosity
|
||||
Scalar Tc_; // Time constant
|
||||
Scalar pa0_; // initial aquifer pressure
|
||||
|
||||
Eval W_flux_;
|
||||
|
||||
virtual void initializeConnections(const Aquancon::AquanconOutput& connection) =0;
|
||||
|
||||
virtual Scalar dpai(int idx) = 0;
|
||||
|
||||
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
|
||||
|
||||
virtual void calculateAquiferCondition() = 0;
|
||||
|
||||
virtual void calculateAquiferConstants() = 0;
|
||||
|
||||
virtual Scalar calculateReservoirEquilibrium() =0;
|
||||
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
|
||||
};
|
||||
} // namespace Opm
|
||||
#endif
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
Copyright 2017 IRIS
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_AQUIFERINTERFACE_HEADER_INCLUDED
|
||||
#define OPM_AQUIFERINTERFACE_HEADER_INCLUDED
|
||||
|
||||
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
|
||||
#include <opm/parser/eclipse/EclipseState/Aquifetp.hpp>
|
||||
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
|
||||
#include <opm/common/utility/numeric/linearInterpolation.hpp>
|
||||
|
||||
#include <opm/material/common/MathToolbox.hpp>
|
||||
#include <opm/material/densead/Math.hpp>
|
||||
#include <opm/material/densead/Evaluation.hpp>
|
||||
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
||||
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <unordered_map>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
template<typename TypeTag>
|
||||
class AquiferInterface
|
||||
{
|
||||
public:
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
|
||||
|
||||
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
|
||||
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
|
||||
|
||||
static const int numEq = BlackoilIndices::numEq;
|
||||
typedef double Scalar;
|
||||
|
||||
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
|
||||
|
||||
typedef Opm::BlackOilFluidState<Eval, FluidSystem, enableTemperature, enableEnergy, BlackoilIndices::gasEnabled, BlackoilIndices::numPhases> FluidState;
|
||||
|
||||
static const auto waterCompIdx = FluidSystem::waterCompIdx;
|
||||
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
||||
|
||||
// Constructor
|
||||
AquiferInterface( const Aquancon::AquanconOutput& connection,
|
||||
const std::unordered_map<int, int>& cartesian_to_compressed,
|
||||
const Simulator& ebosSimulator)
|
||||
: connection_(connection)
|
||||
, ebos_simulator_(ebosSimulator)
|
||||
, cartesian_to_compressed_(cartesian_to_compressed)
|
||||
{}
|
||||
|
||||
// Deconstructor
|
||||
virtual ~AquiferInterface() {}
|
||||
|
||||
void initialSolutionApplied()
|
||||
{
|
||||
initQuantities(connection_);
|
||||
}
|
||||
|
||||
void beginTimeStep()
|
||||
{
|
||||
ElementContext elemCtx(ebos_simulator_);
|
||||
auto elemIt = ebos_simulator_.gridView().template begin<0>();
|
||||
const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const auto& elem = *elemIt;
|
||||
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
|
||||
int cellIdx = elemCtx.globalSpaceIndex(0, 0);
|
||||
int idx = cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
continue;
|
||||
|
||||
elemCtx.updateIntensiveQuantities(0);
|
||||
const auto& iq = elemCtx.intensiveQuantities(0, 0);
|
||||
pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
|
||||
}
|
||||
}
|
||||
|
||||
template <class Context>
|
||||
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
|
||||
{
|
||||
unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||||
|
||||
int idx = cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
return;
|
||||
|
||||
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
|
||||
// IntensiveQuantities of that particular cell_id
|
||||
const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
|
||||
// This is the pressure at td + dt
|
||||
updateCellPressure(pressure_current_,idx,intQuants);
|
||||
updateCellDensity(idx,intQuants);
|
||||
calculateInflowRate(idx, context.simulator());
|
||||
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
|
||||
Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
|
||||
}
|
||||
|
||||
protected:
|
||||
inline Scalar gravity_() const
|
||||
{
|
||||
return ebos_simulator_.problem().gravity()[2];
|
||||
}
|
||||
|
||||
inline void initQuantities(const Aquancon::AquanconOutput& connection)
|
||||
{
|
||||
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
|
||||
W_flux_ = 0.;
|
||||
|
||||
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
|
||||
initializeConnections(connection);
|
||||
calculateAquiferCondition();
|
||||
calculateAquiferConstants();
|
||||
|
||||
pressure_previous_.resize(cell_idx_.size(), 0.);
|
||||
pressure_current_.resize(cell_idx_.size(), 0.);
|
||||
Qai_.resize(cell_idx_.size(), 0.0);
|
||||
}
|
||||
|
||||
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
|
||||
{
|
||||
const auto& fs = intQuants.fluidState();
|
||||
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
|
||||
}
|
||||
|
||||
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
|
||||
{
|
||||
const auto& fs = intQuants.fluidState();
|
||||
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
|
||||
}
|
||||
|
||||
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
|
||||
{
|
||||
const auto& fs = intQuants.fluidState();
|
||||
rhow_.at(idx) = fs.density(waterPhaseIdx);
|
||||
}
|
||||
|
||||
template<class faceCellType, class ugridType>
|
||||
inline double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid,
|
||||
const int faceIdx, const int idx,
|
||||
const Aquancon::AquanconOutput& connection) const
|
||||
{
|
||||
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
|
||||
// Do not make the connection if the product of the two cellIdx > 0. This is because the
|
||||
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
|
||||
double faceArea = 0.;
|
||||
const auto cellNeighbour0 = faceCells(faceIdx,0);
|
||||
const auto cellNeighbour1 = faceCells(faceIdx,1);
|
||||
const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
|
||||
const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))?
|
||||
defaultFaceArea :
|
||||
*(connection.influx_coeff.at(idx));
|
||||
faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea;
|
||||
if (cellNeighbour1 == 0){
|
||||
faceArea = (cellNeighbour0 < 0)? faceArea : 0.;
|
||||
}
|
||||
else if (cellNeighbour0 == 0){
|
||||
faceArea = (cellNeighbour1 < 0)? faceArea : 0.;
|
||||
}
|
||||
return faceArea;
|
||||
}
|
||||
|
||||
virtual void endTimeStep() = 0;
|
||||
|
||||
const Aquancon::AquanconOutput connection_;
|
||||
const Simulator& ebos_simulator_;
|
||||
const std::unordered_map<int, int> cartesian_to_compressed_;
|
||||
|
||||
// Grid variables
|
||||
std::vector<size_t> cell_idx_;
|
||||
std::vector<Scalar> faceArea_connected_;
|
||||
std::vector<int> cellToConnectionIdx_;
|
||||
// Quantities at each grid id
|
||||
std::vector<Scalar> cell_depth_;
|
||||
std::vector<Scalar> pressure_previous_;
|
||||
std::vector<Eval> pressure_current_;
|
||||
std::vector<Eval> Qai_;
|
||||
std::vector<Eval> rhow_;
|
||||
std::vector<Scalar> alphai_;
|
||||
|
||||
Scalar mu_w_; //water viscosity
|
||||
Scalar Tc_; // Time constant
|
||||
Scalar pa0_; // initial aquifer pressure
|
||||
|
||||
Eval W_flux_;
|
||||
|
||||
virtual void initializeConnections(const Aquancon::AquanconOutput& connection) =0;
|
||||
|
||||
virtual Scalar dpai(int idx) = 0;
|
||||
|
||||
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
|
||||
|
||||
virtual void calculateAquiferCondition() = 0;
|
||||
|
||||
virtual void calculateAquiferConstants() = 0;
|
||||
|
||||
virtual Scalar calculateReservoirEquilibrium() =0;
|
||||
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
|
||||
};
|
||||
} // namespace Opm
|
||||
#endif
|
||||
|
@ -1,173 +1,146 @@
|
||||
#include <opm/grid/utility/cartesianToCompressed.hpp>
|
||||
namespace Opm {
|
||||
#include <opm/grid/utility/cartesianToCompressed.hpp>
|
||||
namespace Opm {
|
||||
|
||||
template<typename TypeTag>
|
||||
BlackoilAquiferModel<TypeTag>::
|
||||
BlackoilAquiferModel(Simulator& simulator)
|
||||
: simulator_(simulator)
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::initialSolutionApplied()
|
||||
{
|
||||
if(aquiferCarterTracyActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
|
||||
{
|
||||
aquifer->initialSolutionApplied();
|
||||
}
|
||||
}
|
||||
if(aquiferFetkovichActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
|
||||
{
|
||||
aquifer->initialSolutionApplied();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::beginEpisode()
|
||||
{ }
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::beginIteration()
|
||||
{ }
|
||||
|
||||
template<typename TypeTag>
|
||||
void BlackoilAquiferModel<TypeTag>:: beginTimeStep()
|
||||
BlackoilAquiferModel<TypeTag>::
|
||||
BlackoilAquiferModel(Simulator& simulator)
|
||||
: simulator_(simulator)
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::initialSolutionApplied()
|
||||
{
|
||||
if(aquiferCarterTracyActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
|
||||
{
|
||||
aquifer->beginTimeStep();
|
||||
}
|
||||
}
|
||||
if(aquiferFetkovichActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
|
||||
{
|
||||
aquifer->beginTimeStep();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
template<class Context>
|
||||
void BlackoilAquiferModel<TypeTag>:: addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
||||
{
|
||||
if(aquiferCarterTracyActive())
|
||||
{
|
||||
for (auto& aquifer : aquifers_CarterTracy)
|
||||
{
|
||||
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
|
||||
}
|
||||
}
|
||||
if(aquiferFetkovichActive())
|
||||
{
|
||||
for (auto& aquifer : aquifers_Fetkovich)
|
||||
{
|
||||
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::endIteration()
|
||||
{ }
|
||||
|
||||
template<typename TypeTag>
|
||||
void BlackoilAquiferModel<TypeTag>:: endTimeStep()
|
||||
{
|
||||
if(aquiferCarterTracyActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
|
||||
{
|
||||
aquifer->endTimeStep();
|
||||
}
|
||||
}
|
||||
if(aquiferFetkovichActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
|
||||
{
|
||||
aquifer->endTimeStep();
|
||||
}
|
||||
}
|
||||
}
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::endEpisode()
|
||||
{ }
|
||||
|
||||
template <typename TypeTag>
|
||||
template <class Restarter>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::serialize(Restarter& /* res */)
|
||||
{
|
||||
// TODO (?)
|
||||
throw std::logic_error("BlackoilAquiferModel::serialize() is not yet implemented");
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
template <class Restarter>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::deserialize(Restarter& /* res */)
|
||||
{
|
||||
// TODO (?)
|
||||
throw std::logic_error("BlackoilAquiferModel::deserialize() is not yet implemented");
|
||||
}
|
||||
|
||||
// Initialize the aquifers in the deck
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>:: init()
|
||||
{
|
||||
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
|
||||
{
|
||||
aquifer->initialSolutionApplied();
|
||||
}
|
||||
}
|
||||
if(aquiferFetkovichActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
|
||||
{
|
||||
aquifer->initialSolutionApplied();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::beginEpisode()
|
||||
{ }
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::beginIteration()
|
||||
{ }
|
||||
|
||||
template<typename TypeTag>
|
||||
void BlackoilAquiferModel<TypeTag>:: beginTimeStep()
|
||||
{
|
||||
const auto& deck = this->simulator_.vanguard().deck();
|
||||
if(aquiferCarterTracyActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
|
||||
{
|
||||
aquifer->beginTimeStep();
|
||||
}
|
||||
}
|
||||
if(aquiferFetkovichActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
|
||||
{
|
||||
aquifer->beginTimeStep();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
template<class Context>
|
||||
void BlackoilAquiferModel<TypeTag>:: addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
||||
{
|
||||
if(aquiferCarterTracyActive())
|
||||
{
|
||||
for (auto& aquifer : aquifers_CarterTracy)
|
||||
{
|
||||
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
|
||||
}
|
||||
}
|
||||
if(aquiferFetkovichActive())
|
||||
{
|
||||
for (auto& aquifer : aquifers_Fetkovich)
|
||||
{
|
||||
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::endIteration()
|
||||
{ }
|
||||
|
||||
template<typename TypeTag>
|
||||
void BlackoilAquiferModel<TypeTag>:: endTimeStep()
|
||||
{
|
||||
if(aquiferCarterTracyActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
|
||||
{
|
||||
aquifer->endTimeStep();
|
||||
}
|
||||
}
|
||||
if(aquiferFetkovichActive())
|
||||
{
|
||||
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
|
||||
{
|
||||
aquifer->endTimeStep();
|
||||
}
|
||||
}
|
||||
}
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::endEpisode()
|
||||
{ }
|
||||
|
||||
template <typename TypeTag>
|
||||
template <class Restarter>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::serialize(Restarter& /* res */)
|
||||
{
|
||||
// TODO (?)
|
||||
throw std::logic_error("BlackoilAquiferModel::serialize() is not yet implemented");
|
||||
}
|
||||
|
||||
template<typename TypeTag>
|
||||
template <class Restarter>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>::deserialize(Restarter& /* res */)
|
||||
{
|
||||
// TODO (?)
|
||||
throw std::logic_error("BlackoilAquiferModel::deserialize() is not yet implemented");
|
||||
}
|
||||
|
||||
// Initialize the aquifers in the deck
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilAquiferModel<TypeTag>:: init()
|
||||
{
|
||||
const auto& deck = this->simulator_.vanguard().deck();
|
||||
if (deck.hasKeyword("AQUCT")) {
|
||||
//updateConnectionIntensiveQuantities();
|
||||
const auto& eclState = this->simulator_.vanguard().eclState();
|
||||
|
||||
// Get all the carter tracy aquifer properties data and put it in aquifers vector
|
||||
const AquiferCT aquiferct = AquiferCT(eclState,deck);
|
||||
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
|
||||
|
||||
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
|
||||
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
|
||||
|
||||
assert( aquifersData.size() == aquifer_connection.size() );
|
||||
const auto& ugrid = simulator_.vanguard().grid();
|
||||
const auto& gridView = simulator_.gridView();
|
||||
const int number_of_cells = gridView.size(0);
|
||||
|
||||
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells,
|
||||
Opm::UgGridHelpers::globalCell(ugrid));
|
||||
|
||||
for (size_t i = 0; i < aquifersData.size(); ++i)
|
||||
{
|
||||
aquifers_CarterTracy.push_back(
|
||||
AquiferCarterTracy<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
|
||||
);
|
||||
}
|
||||
}
|
||||
if(deck.hasKeyword("AQUFETP"))
|
||||
{
|
||||
//updateConnectionIntensiveQuantities();
|
||||
const auto& eclState = this->simulator_.vanguard().eclState();
|
||||
|
||||
// Get all the carter tracy aquifer properties data and put it in aquifers vector
|
||||
const Aquifetp aquifetp = Aquifetp(deck);
|
||||
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
|
||||
|
||||
std::vector<Aquifetp::AQUFETP_data> aquifersData = aquifetp.getAquifers();
|
||||
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
|
||||
|
||||
//updateConnectionIntensiveQuantities();
|
||||
const auto& eclState = this->simulator_.vanguard().eclState();
|
||||
|
||||
// Get all the carter tracy aquifer properties data and put it in aquifers vector
|
||||
const AquiferCT aquiferct = AquiferCT(eclState,deck);
|
||||
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
|
||||
|
||||
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
|
||||
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
|
||||
|
||||
assert( aquifersData.size() == aquifer_connection.size() );
|
||||
const auto& ugrid = simulator_.vanguard().grid();
|
||||
const auto& gridView = simulator_.gridView();
|
||||
@ -176,30 +149,57 @@ namespace Opm {
|
||||
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells,
|
||||
Opm::UgGridHelpers::globalCell(ugrid));
|
||||
|
||||
for (size_t i = 0; i < aquifersData.size(); ++i)
|
||||
{
|
||||
aquifers_Fetkovich.push_back(
|
||||
AquiferFetkovich<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
BlackoilAquiferModel<TypeTag>:: aquiferActive() const
|
||||
for (size_t i = 0; i < aquifersData.size(); ++i)
|
||||
{
|
||||
aquifers_CarterTracy.push_back(
|
||||
AquiferCarterTracy<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
|
||||
);
|
||||
}
|
||||
}
|
||||
if(deck.hasKeyword("AQUFETP"))
|
||||
{
|
||||
//updateConnectionIntensiveQuantities();
|
||||
const auto& eclState = this->simulator_.vanguard().eclState();
|
||||
|
||||
// Get all the carter tracy aquifer properties data and put it in aquifers vector
|
||||
const Aquifetp aquifetp = Aquifetp(deck);
|
||||
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
|
||||
|
||||
std::vector<Aquifetp::AQUFETP_data> aquifersData = aquifetp.getAquifers();
|
||||
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
|
||||
|
||||
assert( aquifersData.size() == aquifer_connection.size() );
|
||||
const auto& ugrid = simulator_.vanguard().grid();
|
||||
const auto& gridView = simulator_.gridView();
|
||||
const int number_of_cells = gridView.size(0);
|
||||
|
||||
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells,
|
||||
Opm::UgGridHelpers::globalCell(ugrid));
|
||||
|
||||
for (size_t i = 0; i < aquifersData.size(); ++i)
|
||||
{
|
||||
aquifers_Fetkovich.push_back(
|
||||
AquiferFetkovich<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
BlackoilAquiferModel<TypeTag>:: aquiferActive() const
|
||||
{
|
||||
return (aquiferCarterTracyActive() || aquiferFetkovichActive());
|
||||
}
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
BlackoilAquiferModel<TypeTag>:: aquiferCarterTracyActive() const
|
||||
{
|
||||
return !aquifers_CarterTracy.empty();
|
||||
}
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
BlackoilAquiferModel<TypeTag>:: aquiferFetkovichActive() const
|
||||
{
|
||||
return !aquifers_Fetkovich.empty();
|
||||
}
|
||||
} // namespace Opm
|
||||
}
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
BlackoilAquiferModel<TypeTag>:: aquiferCarterTracyActive() const
|
||||
{
|
||||
return !aquifers_CarterTracy.empty();
|
||||
}
|
||||
template<typename TypeTag>
|
||||
bool
|
||||
BlackoilAquiferModel<TypeTag>:: aquiferFetkovichActive() const
|
||||
{
|
||||
return !aquifers_Fetkovich.empty();
|
||||
}
|
||||
} // namespace Opm
|
||||
|
Loading…
Reference in New Issue
Block a user