Merge pull request #2076 from GitPaean/converting_aquifier_unix

converting the aquifer files to be unix format
This commit is contained in:
Kai Bao 2019-10-19 21:40:03 +02:00 committed by GitHub
commit 501122ca0d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 414 additions and 414 deletions

View File

@ -1,225 +1,225 @@
/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#define OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifetp.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <vector>
#include <algorithm>
#include <unordered_map>
namespace Opm
{
template<typename TypeTag>
class AquiferInterface
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Opm::BlackOilFluidState<Eval, FluidSystem, enableTemperature, enableEnergy, BlackoilIndices::gasEnabled, BlackoilIndices::numPhases> FluidState;
static const auto waterCompIdx = FluidSystem::waterCompIdx;
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
// Constructor
AquiferInterface( const Aquancon::AquanconOutput& connection,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator)
: connection_(connection)
, ebos_simulator_(ebosSimulator)
, cartesian_to_compressed_(cartesian_to_compressed)
{}
// Deconstructor
virtual ~AquiferInterface() {}
void initialSolutionApplied()
{
initQuantities(connection_);
}
void beginTimeStep()
{
ElementContext elemCtx(ebos_simulator_);
auto elemIt = ebos_simulator_.gridView().template begin<0>();
const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
int cellIdx = elemCtx.globalSpaceIndex(0, 0);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updateIntensiveQuantities(0);
const auto& iq = elemCtx.intensiveQuantities(0, 0);
pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
}
}
template <class Context>
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
{
unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
return;
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
// This is the pressure at td + dt
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
calculateInflowRate(idx, context.simulator());
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
}
protected:
inline Scalar gravity_() const
{
return ebos_simulator_.problem().gravity()[2];
}
inline void initQuantities(const Aquancon::AquanconOutput& connection)
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
W_flux_ = 0.;
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
initializeConnections(connection);
calculateAquiferCondition();
calculateAquiferConstants();
pressure_previous_.resize(cell_idx_.size(), 0.);
pressure_current_.resize(cell_idx_.size(), 0.);
Qai_.resize(cell_idx_.size(), 0.0);
}
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
template<class faceCellType, class ugridType>
inline double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid,
const int faceIdx, const int idx,
const Aquancon::AquanconOutput& connection) const
{
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
// Do not make the connection if the product of the two cellIdx > 0. This is because the
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
double faceArea = 0.;
const auto cellNeighbour0 = faceCells(faceIdx,0);
const auto cellNeighbour1 = faceCells(faceIdx,1);
const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))?
defaultFaceArea :
*(connection.influx_coeff.at(idx));
faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea;
if (cellNeighbour1 == 0){
faceArea = (cellNeighbour0 < 0)? faceArea : 0.;
}
else if (cellNeighbour0 == 0){
faceArea = (cellNeighbour1 < 0)? faceArea : 0.;
}
return faceArea;
}
virtual void endTimeStep() = 0;
const Aquancon::AquanconOutput connection_;
const Simulator& ebos_simulator_;
const std::unordered_map<int, int> cartesian_to_compressed_;
// Grid variables
std::vector<size_t> cell_idx_;
std::vector<Scalar> faceArea_connected_;
std::vector<int> cellToConnectionIdx_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
Scalar mu_w_; //water viscosity
Scalar Tc_; // Time constant
Scalar pa0_; // initial aquifer pressure
Eval W_flux_;
virtual void initializeConnections(const Aquancon::AquanconOutput& connection) =0;
virtual Scalar dpai(int idx) = 0;
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
virtual void calculateAquiferCondition() = 0;
virtual void calculateAquiferConstants() = 0;
virtual Scalar calculateReservoirEquilibrium() =0;
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
};
} // namespace Opm
#endif
/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#define OPM_AQUIFERINTERFACE_HEADER_INCLUDED
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifetp.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <vector>
#include <algorithm>
#include <unordered_map>
namespace Opm
{
template<typename TypeTag>
class AquiferInterface
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Opm::BlackOilFluidState<Eval, FluidSystem, enableTemperature, enableEnergy, BlackoilIndices::gasEnabled, BlackoilIndices::numPhases> FluidState;
static const auto waterCompIdx = FluidSystem::waterCompIdx;
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
// Constructor
AquiferInterface( const Aquancon::AquanconOutput& connection,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator)
: connection_(connection)
, ebos_simulator_(ebosSimulator)
, cartesian_to_compressed_(cartesian_to_compressed)
{}
// Deconstructor
virtual ~AquiferInterface() {}
void initialSolutionApplied()
{
initQuantities(connection_);
}
void beginTimeStep()
{
ElementContext elemCtx(ebos_simulator_);
auto elemIt = ebos_simulator_.gridView().template begin<0>();
const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
int cellIdx = elemCtx.globalSpaceIndex(0, 0);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updateIntensiveQuantities(0);
const auto& iq = elemCtx.intensiveQuantities(0, 0);
pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
}
}
template <class Context>
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
{
unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
return;
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
// This is the pressure at td + dt
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
calculateInflowRate(idx, context.simulator());
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
}
protected:
inline Scalar gravity_() const
{
return ebos_simulator_.problem().gravity()[2];
}
inline void initQuantities(const Aquancon::AquanconOutput& connection)
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
W_flux_ = 0.;
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
initializeConnections(connection);
calculateAquiferCondition();
calculateAquiferConstants();
pressure_previous_.resize(cell_idx_.size(), 0.);
pressure_current_.resize(cell_idx_.size(), 0.);
Qai_.resize(cell_idx_.size(), 0.0);
}
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
template<class faceCellType, class ugridType>
inline double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid,
const int faceIdx, const int idx,
const Aquancon::AquanconOutput& connection) const
{
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
// Do not make the connection if the product of the two cellIdx > 0. This is because the
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
double faceArea = 0.;
const auto cellNeighbour0 = faceCells(faceIdx,0);
const auto cellNeighbour1 = faceCells(faceIdx,1);
const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))?
defaultFaceArea :
*(connection.influx_coeff.at(idx));
faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea;
if (cellNeighbour1 == 0){
faceArea = (cellNeighbour0 < 0)? faceArea : 0.;
}
else if (cellNeighbour0 == 0){
faceArea = (cellNeighbour1 < 0)? faceArea : 0.;
}
return faceArea;
}
virtual void endTimeStep() = 0;
const Aquancon::AquanconOutput connection_;
const Simulator& ebos_simulator_;
const std::unordered_map<int, int> cartesian_to_compressed_;
// Grid variables
std::vector<size_t> cell_idx_;
std::vector<Scalar> faceArea_connected_;
std::vector<int> cellToConnectionIdx_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
Scalar mu_w_; //water viscosity
Scalar Tc_; // Time constant
Scalar pa0_; // initial aquifer pressure
Eval W_flux_;
virtual void initializeConnections(const Aquancon::AquanconOutput& connection) =0;
virtual Scalar dpai(int idx) = 0;
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
virtual void calculateAquiferCondition() = 0;
virtual void calculateAquiferConstants() = 0;
virtual Scalar calculateReservoirEquilibrium() =0;
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
};
} // namespace Opm
#endif

View File

@ -1,173 +1,146 @@
#include <opm/grid/utility/cartesianToCompressed.hpp>
namespace Opm {
#include <opm/grid/utility/cartesianToCompressed.hpp>
namespace Opm {
template<typename TypeTag>
BlackoilAquiferModel<TypeTag>::
BlackoilAquiferModel(Simulator& simulator)
: simulator_(simulator)
{
init();
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::initialSolutionApplied()
{
if(aquiferCarterTracyActive())
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->initialSolutionApplied();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->initialSolutionApplied();
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginEpisode()
{ }
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginIteration()
{ }
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: beginTimeStep()
BlackoilAquiferModel<TypeTag>::
BlackoilAquiferModel(Simulator& simulator)
: simulator_(simulator)
{
init();
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::initialSolutionApplied()
{
if(aquiferCarterTracyActive())
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->beginTimeStep();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->beginTimeStep();
}
}
}
template<typename TypeTag>
template<class Context>
void BlackoilAquiferModel<TypeTag>:: addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
if(aquiferCarterTracyActive())
{
for (auto& aquifer : aquifers_CarterTracy)
{
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
}
}
if(aquiferFetkovichActive())
{
for (auto& aquifer : aquifers_Fetkovich)
{
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endIteration()
{ }
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: endTimeStep()
{
if(aquiferCarterTracyActive())
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->endTimeStep();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->endTimeStep();
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endEpisode()
{ }
template <typename TypeTag>
template <class Restarter>
void
BlackoilAquiferModel<TypeTag>::serialize(Restarter& /* res */)
{
// TODO (?)
throw std::logic_error("BlackoilAquiferModel::serialize() is not yet implemented");
}
template<typename TypeTag>
template <class Restarter>
void
BlackoilAquiferModel<TypeTag>::deserialize(Restarter& /* res */)
{
// TODO (?)
throw std::logic_error("BlackoilAquiferModel::deserialize() is not yet implemented");
}
// Initialize the aquifers in the deck
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: init()
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->initialSolutionApplied();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->initialSolutionApplied();
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginEpisode()
{ }
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::beginIteration()
{ }
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: beginTimeStep()
{
const auto& deck = this->simulator_.vanguard().deck();
if(aquiferCarterTracyActive())
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->beginTimeStep();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->beginTimeStep();
}
}
}
template<typename TypeTag>
template<class Context>
void BlackoilAquiferModel<TypeTag>:: addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
if(aquiferCarterTracyActive())
{
for (auto& aquifer : aquifers_CarterTracy)
{
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
}
}
if(aquiferFetkovichActive())
{
for (auto& aquifer : aquifers_Fetkovich)
{
aquifer.addToSource(rates, context, spaceIdx, timeIdx);
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endIteration()
{ }
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: endTimeStep()
{
if(aquiferCarterTracyActive())
{
for (auto aquifer = aquifers_CarterTracy.begin(); aquifer != aquifers_CarterTracy.end(); ++aquifer)
{
aquifer->endTimeStep();
}
}
if(aquiferFetkovichActive())
{
for (auto aquifer = aquifers_Fetkovich.begin(); aquifer != aquifers_Fetkovich.end(); ++aquifer)
{
aquifer->endTimeStep();
}
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::endEpisode()
{ }
template <typename TypeTag>
template <class Restarter>
void
BlackoilAquiferModel<TypeTag>::serialize(Restarter& /* res */)
{
// TODO (?)
throw std::logic_error("BlackoilAquiferModel::serialize() is not yet implemented");
}
template<typename TypeTag>
template <class Restarter>
void
BlackoilAquiferModel<TypeTag>::deserialize(Restarter& /* res */)
{
// TODO (?)
throw std::logic_error("BlackoilAquiferModel::deserialize() is not yet implemented");
}
// Initialize the aquifers in the deck
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: init()
{
const auto& deck = this->simulator_.vanguard().deck();
if (deck.hasKeyword("AQUCT")) {
//updateConnectionIntensiveQuantities();
const auto& eclState = this->simulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
const AquiferCT aquiferct = AquiferCT(eclState,deck);
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
assert( aquifersData.size() == aquifer_connection.size() );
const auto& ugrid = simulator_.vanguard().grid();
const auto& gridView = simulator_.gridView();
const int number_of_cells = gridView.size(0);
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells,
Opm::UgGridHelpers::globalCell(ugrid));
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers_CarterTracy.push_back(
AquiferCarterTracy<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
);
}
}
if(deck.hasKeyword("AQUFETP"))
{
//updateConnectionIntensiveQuantities();
const auto& eclState = this->simulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
const Aquifetp aquifetp = Aquifetp(deck);
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<Aquifetp::AQUFETP_data> aquifersData = aquifetp.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
//updateConnectionIntensiveQuantities();
const auto& eclState = this->simulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
const AquiferCT aquiferct = AquiferCT(eclState,deck);
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
assert( aquifersData.size() == aquifer_connection.size() );
const auto& ugrid = simulator_.vanguard().grid();
const auto& gridView = simulator_.gridView();
@ -176,30 +149,57 @@ namespace Opm {
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells,
Opm::UgGridHelpers::globalCell(ugrid));
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers_Fetkovich.push_back(
AquiferFetkovich<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
);
}
}
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferActive() const
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers_CarterTracy.push_back(
AquiferCarterTracy<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
);
}
}
if(deck.hasKeyword("AQUFETP"))
{
//updateConnectionIntensiveQuantities();
const auto& eclState = this->simulator_.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
const Aquifetp aquifetp = Aquifetp(deck);
const Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<Aquifetp::AQUFETP_data> aquifersData = aquifetp.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
assert( aquifersData.size() == aquifer_connection.size() );
const auto& ugrid = simulator_.vanguard().grid();
const auto& gridView = simulator_.gridView();
const int number_of_cells = gridView.size(0);
cartesian_to_compressed_ = cartesianToCompressed(number_of_cells,
Opm::UgGridHelpers::globalCell(ugrid));
for (size_t i = 0; i < aquifersData.size(); ++i)
{
aquifers_Fetkovich.push_back(
AquiferFetkovich<TypeTag> (aquifer_connection.at(i), cartesian_to_compressed_, this->simulator_ , aquifersData.at(i))
);
}
}
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferActive() const
{
return (aquiferCarterTracyActive() || aquiferFetkovichActive());
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferCarterTracyActive() const
{
return !aquifers_CarterTracy.empty();
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferFetkovichActive() const
{
return !aquifers_Fetkovich.empty();
}
} // namespace Opm
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferCarterTracyActive() const
{
return !aquifers_CarterTracy.empty();
}
template<typename TypeTag>
bool
BlackoilAquiferModel<TypeTag>:: aquiferFetkovichActive() const
{
return !aquifers_Fetkovich.empty();
}
} // namespace Opm