mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
make SimulatorFullyImplicitBlackoilEbos independent of SimulatorBase
currently this involves a lot of copy and paste but, it will be boiled down soon.
This commit is contained in:
parent
3db63b0a22
commit
50ebb66041
@ -24,6 +24,7 @@
|
||||
#include <opm/autodiff/SimulatorBase.hpp>
|
||||
#include <opm/autodiff/NonlinearSolver.hpp>
|
||||
#include <opm/autodiff/BlackoilModelEbos.hpp>
|
||||
#include <opm/autodiff/BlackoilModelParameters.hpp>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
@ -31,41 +32,557 @@ template <class GridT>
|
||||
class SimulatorFullyImplicitBlackoilEbos;
|
||||
class StandardWells;
|
||||
|
||||
/// a simulator for the blackoil model
|
||||
template <class GridT>
|
||||
struct SimulatorTraits<SimulatorFullyImplicitBlackoilEbos<GridT> >
|
||||
class SimulatorFullyImplicitBlackoilEbos
|
||||
{
|
||||
public:
|
||||
typedef WellStateFullyImplicitBlackoil WellState;
|
||||
typedef BlackoilState ReservoirState;
|
||||
typedef BlackoilOutputWriter OutputWriter;
|
||||
typedef GridT Grid;
|
||||
typedef BlackoilModelEbos<Grid> Model;
|
||||
typedef BlackoilModelParameters ModelParameters;
|
||||
typedef NonlinearSolver<Model> Solver;
|
||||
typedef StandardWells WellModel;
|
||||
};
|
||||
|
||||
/// a simulator for the blackoil model
|
||||
template <class GridT>
|
||||
class SimulatorFullyImplicitBlackoilEbos
|
||||
: public SimulatorBase<SimulatorFullyImplicitBlackoilEbos<GridT> >
|
||||
{
|
||||
typedef SimulatorBase<SimulatorFullyImplicitBlackoilEbos<GridT> > Base;
|
||||
public:
|
||||
// forward the constructor to the base class
|
||||
|
||||
/// Initialise from parameters and objects to observe.
|
||||
/// \param[in] param parameters, this class accepts the following:
|
||||
/// parameter (default) effect
|
||||
/// -----------------------------------------------------------
|
||||
/// output (true) write output to files?
|
||||
/// output_dir ("output") output directoty
|
||||
/// output_interval (1) output every nth step
|
||||
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
|
||||
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
|
||||
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
|
||||
/// nl_maxiter (30) max nonlinear iterations in transport
|
||||
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
|
||||
/// num_transport_substeps (1) number of transport steps per pressure step
|
||||
/// use_segregation_split (false) solve for gravity segregation (if false,
|
||||
/// segregation is ignored).
|
||||
///
|
||||
/// \param[in] grid grid data structure
|
||||
/// \param[in] geo derived geological properties
|
||||
/// \param[in] props fluid and rock properties
|
||||
/// \param[in] rock_comp_props if non-null, rock compressibility properties
|
||||
/// \param[in] linsolver linear solver
|
||||
/// \param[in] gravity if non-null, gravity vector
|
||||
/// \param[in] has_disgas true for dissolved gas option
|
||||
/// \param[in] has_vapoil true for vaporized oil option
|
||||
/// \param[in] eclipse_state the object which represents an internalized ECL deck
|
||||
/// \param[in] output_writer
|
||||
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
|
||||
SimulatorFullyImplicitBlackoilEbos(const parameter::ParameterGroup& param,
|
||||
const typename Base::Grid& grid,
|
||||
DerivedGeology& geo,
|
||||
BlackoilPropsAdInterface& props,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
NewtonIterationBlackoilInterface& linsolver,
|
||||
const double* gravity,
|
||||
const bool disgas,
|
||||
const bool vapoil,
|
||||
std::shared_ptr<EclipseState> eclipse_state,
|
||||
BlackoilOutputWriter& output_writer,
|
||||
const std::vector<double>& threshold_pressures_by_face)
|
||||
: Base(param, grid, geo, props, rock_comp_props, linsolver, gravity, disgas, vapoil,
|
||||
eclipse_state, output_writer, threshold_pressures_by_face)
|
||||
{}
|
||||
const Grid& grid,
|
||||
DerivedGeology& geo,
|
||||
BlackoilPropsAdInterface& props,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
NewtonIterationBlackoilInterface& linsolver,
|
||||
const double* gravity,
|
||||
const bool has_disgas,
|
||||
const bool has_vapoil,
|
||||
std::shared_ptr<EclipseState> eclipse_state,
|
||||
BlackoilOutputWriter& output_writer,
|
||||
const std::vector<double>& threshold_pressures_by_face)
|
||||
: param_(param),
|
||||
model_param_(param),
|
||||
solver_param_(param),
|
||||
grid_(grid),
|
||||
props_(props),
|
||||
rock_comp_props_(rock_comp_props),
|
||||
gravity_(gravity),
|
||||
geo_(geo),
|
||||
solver_(linsolver),
|
||||
has_disgas_(has_disgas),
|
||||
has_vapoil_(has_vapoil),
|
||||
terminal_output_(param.getDefault("output_terminal", true)),
|
||||
eclipse_state_(eclipse_state),
|
||||
output_writer_(output_writer),
|
||||
rateConverter_(props_, std::vector<int>(AutoDiffGrid::numCells(grid_), 0)),
|
||||
threshold_pressures_by_face_(threshold_pressures_by_face),
|
||||
is_parallel_run_( false )
|
||||
{
|
||||
// Misc init.
|
||||
const int num_cells = AutoDiffGrid::numCells(grid);
|
||||
allcells_.resize(num_cells);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
allcells_[cell] = cell;
|
||||
}
|
||||
#if HAVE_MPI
|
||||
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
||||
{
|
||||
const ParallelISTLInformation& info =
|
||||
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
|
||||
// Only rank 0 does print to std::cout
|
||||
terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 );
|
||||
is_parallel_run_ = ( info.communicator().size() > 1 );
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Run the simulation.
|
||||
/// This will run succesive timesteps until timer.done() is true. It will
|
||||
/// modify the reservoir and well states.
|
||||
/// \param[in,out] timer governs the requested reporting timesteps
|
||||
/// \param[in,out] state state of reservoir: pressure, fluxes
|
||||
/// \return simulation report, with timing data
|
||||
SimulatorReport run(SimulatorTimer& timer,
|
||||
ReservoirState& state)
|
||||
{
|
||||
WellState prev_well_state;
|
||||
|
||||
if (output_writer_.isRestart()) {
|
||||
// This is a restart, populate WellState and ReservoirState state objects from restart file
|
||||
output_writer_.initFromRestartFile(props_.phaseUsage(), props_.permeability(), grid_, state, prev_well_state);
|
||||
initHydroCarbonState(state, props_.phaseUsage(), Opm::UgGridHelpers::numCells(grid_), has_disgas_, has_vapoil_);
|
||||
}
|
||||
|
||||
// Create timers and file for writing timing info.
|
||||
Opm::time::StopWatch solver_timer;
|
||||
double stime = 0.0;
|
||||
Opm::time::StopWatch step_timer;
|
||||
Opm::time::StopWatch total_timer;
|
||||
total_timer.start();
|
||||
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
|
||||
std::ofstream tstep_os(tstep_filename.c_str());
|
||||
|
||||
const auto& schedule = eclipse_state_->getSchedule();
|
||||
const auto& events = schedule->getEvents();
|
||||
|
||||
// adaptive time stepping
|
||||
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
|
||||
if( param_.getDefault("timestep.adaptive", true ) )
|
||||
{
|
||||
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
|
||||
}
|
||||
|
||||
|
||||
|
||||
output_writer_.writeInit( geo_.simProps(grid_) , geo_.nonCartesianConnections( ) );
|
||||
|
||||
std::string restorefilename = param_.getDefault("restorefile", std::string("") );
|
||||
if( ! restorefilename.empty() )
|
||||
{
|
||||
// -1 means that we'll take the last report step that was written
|
||||
const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
|
||||
|
||||
output_writer_.restore( timer,
|
||||
state,
|
||||
prev_well_state,
|
||||
restorefilename,
|
||||
desiredRestoreStep );
|
||||
}
|
||||
|
||||
unsigned int totalLinearizations = 0;
|
||||
unsigned int totalNonlinearIterations = 0;
|
||||
unsigned int totalLinearIterations = 0;
|
||||
bool is_well_potentials_computed = param_.getDefault("compute_well_potentials", false );
|
||||
std::vector<double> well_potentials;
|
||||
DynamicListEconLimited dynamic_list_econ_limited;
|
||||
|
||||
// Main simulation loop.
|
||||
while (!timer.done()) {
|
||||
// Report timestep.
|
||||
step_timer.start();
|
||||
if ( terminal_output_ )
|
||||
{
|
||||
std::ostringstream ss;
|
||||
timer.report(ss);
|
||||
OpmLog::note(ss.str());
|
||||
}
|
||||
|
||||
// Create wells and well state.
|
||||
WellsManager wells_manager(eclipse_state_,
|
||||
timer.currentStepNum(),
|
||||
Opm::UgGridHelpers::numCells(grid_),
|
||||
Opm::UgGridHelpers::globalCell(grid_),
|
||||
Opm::UgGridHelpers::cartDims(grid_),
|
||||
Opm::UgGridHelpers::dimensions(grid_),
|
||||
Opm::UgGridHelpers::cell2Faces(grid_),
|
||||
Opm::UgGridHelpers::beginFaceCentroids(grid_),
|
||||
props_.permeability(),
|
||||
dynamic_list_econ_limited,
|
||||
is_parallel_run_,
|
||||
well_potentials);
|
||||
const Wells* wells = wells_manager.c_wells();
|
||||
WellState well_state;
|
||||
well_state.init(wells, state, prev_well_state);
|
||||
|
||||
// give the polymer and surfactant simulators the chance to do their stuff
|
||||
handleAdditionalWellInflow(timer, wells_manager, well_state, wells);
|
||||
|
||||
// write the inital state at the report stage
|
||||
if (timer.initialStep()) {
|
||||
output_writer_.writeTimeStep( timer, state, well_state );
|
||||
}
|
||||
|
||||
// Max oil saturation (for VPPARS), hysteresis update.
|
||||
props_.updateSatOilMax(state.saturation());
|
||||
props_.updateSatHyst(state.saturation(), allcells_);
|
||||
|
||||
// Compute reservoir volumes for RESV controls.
|
||||
computeRESV(timer.currentStepNum(), wells, state, well_state);
|
||||
|
||||
// Run a multiple steps of the solver depending on the time step control.
|
||||
solver_timer.start();
|
||||
|
||||
const WellModel well_model(wells);
|
||||
|
||||
auto solver = createSolver(well_model);
|
||||
|
||||
if( terminal_output_ )
|
||||
{
|
||||
std::ostringstream step_msg;
|
||||
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
|
||||
step_msg.imbue(std::locale(std::locale::classic(), facet));
|
||||
step_msg << "\nTime step " << std::setw(4) <<timer.currentStepNum()
|
||||
<< " at day " << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day)
|
||||
<< "/" << (double)unit::convert::to(timer.totalTime(), unit::day)
|
||||
<< ", date = " << timer.currentDateTime()
|
||||
<< "\n";
|
||||
OpmLog::info(step_msg.str());
|
||||
}
|
||||
|
||||
// If sub stepping is enabled allow the solver to sub cycle
|
||||
// in case the report steps are too large for the solver to converge
|
||||
//
|
||||
// \Note: The report steps are met in any case
|
||||
// \Note: The sub stepping will require a copy of the state variables
|
||||
if( adaptiveTimeStepping ) {
|
||||
adaptiveTimeStepping->step( timer, *solver, state, well_state, output_writer_ );
|
||||
}
|
||||
else {
|
||||
// solve for complete report step
|
||||
solver->step(timer, state, well_state);
|
||||
}
|
||||
|
||||
// update the derived geology (transmissibilities, pore volumes, etc) if the
|
||||
// has geology changed for the next report step
|
||||
const int nextTimeStepIdx = timer.currentStepNum() + 1;
|
||||
if (nextTimeStepIdx < timer.numSteps()
|
||||
&& events.hasEvent(ScheduleEvents::GEO_MODIFIER, nextTimeStepIdx)) {
|
||||
// bring the contents of the keywords to the current state of the SCHEDULE
|
||||
// section
|
||||
//
|
||||
// TODO (?): handle the parallel case (maybe this works out of the box)
|
||||
DeckConstPtr miniDeck = schedule->getModifierDeck(nextTimeStepIdx);
|
||||
eclState()->applyModifierDeck(*miniDeck);
|
||||
geo_.update(grid_, props_, eclipse_state_, gravity_);
|
||||
}
|
||||
|
||||
// take time that was used to solve system for this reportStep
|
||||
solver_timer.stop();
|
||||
|
||||
// accumulate the number of nonlinear and linear Iterations
|
||||
totalLinearizations += solver->linearizations();
|
||||
totalNonlinearIterations += solver->nonlinearIterations();
|
||||
totalLinearIterations += solver->linearIterations();
|
||||
|
||||
// Report timing.
|
||||
const double st = solver_timer.secsSinceStart();
|
||||
|
||||
// accumulate total time
|
||||
stime += st;
|
||||
|
||||
if ( terminal_output_ )
|
||||
{
|
||||
std::string msg;
|
||||
msg = "Fully implicit solver took: " + std::to_string(st) + " seconds. Total solver time taken: " + std::to_string(stime) + " seconds.";
|
||||
OpmLog::note(msg);
|
||||
}
|
||||
|
||||
if ( output_writer_.output() ) {
|
||||
SimulatorReport step_report;
|
||||
step_report.pressure_time = st;
|
||||
step_report.total_time = step_timer.secsSinceStart();
|
||||
step_report.reportParam(tstep_os);
|
||||
}
|
||||
|
||||
// Increment timer, remember well state.
|
||||
++timer;
|
||||
|
||||
// write simulation state at the report stage
|
||||
output_writer_.writeTimeStep( timer, state, well_state );
|
||||
|
||||
prev_well_state = well_state;
|
||||
// The well potentials are only computed if they are needed
|
||||
// For now thay are only used to determine default guide rates for group controlled wells
|
||||
if ( is_well_potentials_computed ) {
|
||||
computeWellPotentials(wells, well_state, well_potentials);
|
||||
}
|
||||
|
||||
updateListEconLimited(solver, eclipse_state_->getSchedule(), timer.currentStepNum(), wells,
|
||||
well_state, dynamic_list_econ_limited);
|
||||
}
|
||||
|
||||
// Stop timer and create timing report
|
||||
total_timer.stop();
|
||||
SimulatorReport report;
|
||||
report.pressure_time = stime;
|
||||
report.transport_time = 0.0;
|
||||
report.total_time = total_timer.secsSinceStart();
|
||||
report.total_linearizations = totalLinearizations;
|
||||
report.total_newton_iterations = totalNonlinearIterations;
|
||||
report.total_linear_iterations = totalLinearIterations;
|
||||
return report;
|
||||
}
|
||||
|
||||
protected:
|
||||
void handleAdditionalWellInflow(SimulatorTimer& timer,
|
||||
WellsManager& wells_manager,
|
||||
WellState& well_state,
|
||||
const Wells* wells)
|
||||
{ }
|
||||
|
||||
std::unique_ptr<Solver> createSolver(const WellModel& well_model)
|
||||
{
|
||||
auto model = std::unique_ptr<Model>(new Model(model_param_,
|
||||
grid_,
|
||||
props_,
|
||||
geo_,
|
||||
rock_comp_props_,
|
||||
well_model,
|
||||
solver_,
|
||||
eclipse_state_,
|
||||
has_disgas_,
|
||||
has_vapoil_,
|
||||
terminal_output_));
|
||||
|
||||
return std::unique_ptr<Solver>(new Solver(solver_param_, std::move(model)));
|
||||
}
|
||||
|
||||
void computeRESV(const std::size_t step,
|
||||
const Wells* wells,
|
||||
const BlackoilState& x,
|
||||
WellState& xw)
|
||||
{
|
||||
typedef SimFIBODetails::WellMap WellMap;
|
||||
|
||||
const auto w_ecl = eclipse_state_->getSchedule()->getWells(step);
|
||||
const WellMap& wmap = SimFIBODetails::mapWells(w_ecl);
|
||||
|
||||
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells, step, wmap);
|
||||
|
||||
const std::size_t number_resv_wells = resv_wells.size();
|
||||
std::size_t global_number_resv_wells = number_resv_wells;
|
||||
#if HAVE_MPI
|
||||
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
||||
{
|
||||
const auto& info =
|
||||
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
|
||||
global_number_resv_wells = info.communicator().sum(global_number_resv_wells);
|
||||
if ( global_number_resv_wells )
|
||||
{
|
||||
// At least one process has resv wells. Therefore rate converter needs
|
||||
// to calculate averages over regions that might cross process
|
||||
// borders. This needs to be done by all processes and therefore
|
||||
// outside of the next if statement.
|
||||
rateConverter_.defineState(x, boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation()));
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
if ( global_number_resv_wells )
|
||||
{
|
||||
rateConverter_.defineState(x);
|
||||
}
|
||||
}
|
||||
|
||||
if (! resv_wells.empty()) {
|
||||
const PhaseUsage& pu = props_.phaseUsage();
|
||||
const std::vector<double>::size_type np = props_.numPhases();
|
||||
|
||||
std::vector<double> distr (np);
|
||||
std::vector<double> hrates(np);
|
||||
std::vector<double> prates(np);
|
||||
|
||||
for (std::vector<int>::const_iterator
|
||||
rp = resv_wells.begin(), e = resv_wells.end();
|
||||
rp != e; ++rp)
|
||||
{
|
||||
WellControls* ctrl = wells->ctrls[*rp];
|
||||
const bool is_producer = wells->type[*rp] == PRODUCER;
|
||||
|
||||
// RESV control mode, all wells
|
||||
{
|
||||
const int rctrl = SimFIBODetails::resv_control(ctrl);
|
||||
|
||||
if (0 <= rctrl) {
|
||||
const std::vector<double>::size_type off = (*rp) * np;
|
||||
|
||||
if (is_producer) {
|
||||
// Convert to positive rates to avoid issues
|
||||
// in coefficient calculations.
|
||||
std::transform(xw.wellRates().begin() + (off + 0*np),
|
||||
xw.wellRates().begin() + (off + 1*np),
|
||||
prates.begin(), std::negate<double>());
|
||||
} else {
|
||||
std::copy(xw.wellRates().begin() + (off + 0*np),
|
||||
xw.wellRates().begin() + (off + 1*np),
|
||||
prates.begin());
|
||||
}
|
||||
|
||||
const int fipreg = 0; // Hack. Ignore FIP regions.
|
||||
rateConverter_.calcCoeff(prates, fipreg, distr);
|
||||
|
||||
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
|
||||
}
|
||||
}
|
||||
|
||||
// RESV control, WCONHIST wells. A bit of duplicate
|
||||
// work, regrettably.
|
||||
if (is_producer && wells->name[*rp] != 0) {
|
||||
WellMap::const_iterator i = wmap.find(wells->name[*rp]);
|
||||
|
||||
if (i != wmap.end()) {
|
||||
const auto* wp = i->second;
|
||||
|
||||
const WellProductionProperties& p =
|
||||
wp->getProductionProperties(step);
|
||||
|
||||
if (! p.predictionMode) {
|
||||
// History matching (WCONHIST/RESV)
|
||||
SimFIBODetails::historyRates(pu, p, hrates);
|
||||
|
||||
const int fipreg = 0; // Hack. Ignore FIP regions.
|
||||
rateConverter_.calcCoeff(hrates, fipreg, distr);
|
||||
|
||||
// WCONHIST/RESV target is sum of all
|
||||
// observed phase rates translated to
|
||||
// reservoir conditions. Recall sign
|
||||
// convention: Negative for producers.
|
||||
const double target =
|
||||
- std::inner_product(distr.begin(), distr.end(),
|
||||
hrates.begin(), 0.0);
|
||||
|
||||
well_controls_clear(ctrl);
|
||||
well_controls_assert_number_of_phases(ctrl, int(np));
|
||||
|
||||
static const double invalid_alq = -std::numeric_limits<double>::max();
|
||||
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
||||
|
||||
const int ok_resv =
|
||||
well_controls_add_new(RESERVOIR_RATE, target,
|
||||
invalid_alq, invalid_vfp,
|
||||
& distr[0], ctrl);
|
||||
|
||||
// For WCONHIST the BHP limit is set to 1 atm.
|
||||
// or a value specified using WELTARG
|
||||
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
|
||||
const int ok_bhp =
|
||||
well_controls_add_new(BHP, bhp_limit,
|
||||
invalid_alq, invalid_vfp,
|
||||
NULL, ctrl);
|
||||
|
||||
if (ok_resv != 0 && ok_bhp != 0) {
|
||||
xw.currentControls()[*rp] = 0;
|
||||
well_controls_set_current(ctrl, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( wells )
|
||||
{
|
||||
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
|
||||
WellControls* ctrl = wells->ctrls[w];
|
||||
const bool is_producer = wells->type[w] == PRODUCER;
|
||||
if (!is_producer && wells->name[w] != 0) {
|
||||
WellMap::const_iterator i = wmap.find(wells->name[w]);
|
||||
if (i != wmap.end()) {
|
||||
const auto* wp = i->second;
|
||||
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
|
||||
if (!injector.predictionMode) {
|
||||
//History matching WCONINJEH
|
||||
static const double invalid_alq = -std::numeric_limits<double>::max();
|
||||
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
||||
// For WCONINJEH the BHP limit is set to a large number
|
||||
// or a value specified using WELTARG
|
||||
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits<double>::max();
|
||||
const int ok_bhp =
|
||||
well_controls_add_new(BHP, bhp_limit,
|
||||
invalid_alq, invalid_vfp,
|
||||
NULL, ctrl);
|
||||
if (!ok_bhp) {
|
||||
OPM_THROW(std::runtime_error, "Failed to add well control.");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void computeWellPotentials(const Wells* wells,
|
||||
const WellState& xw,
|
||||
std::vector<double>& well_potentials)
|
||||
{
|
||||
const int nw = wells->number_of_wells;
|
||||
const int np = wells->number_of_phases;
|
||||
well_potentials.clear();
|
||||
well_potentials.resize(nw*np,0.0);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
well_potentials[w*np + phase] += xw.wellPotentials()[perf*np + phase];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void updateListEconLimited(const std::unique_ptr<Solver>& solver,
|
||||
ScheduleConstPtr schedule,
|
||||
const int current_step,
|
||||
const Wells* wells,
|
||||
const WellState& well_state,
|
||||
DynamicListEconLimited& list_econ_limited) const
|
||||
{
|
||||
solver->model().wellModel().updateListEconLimited(schedule, current_step, wells,
|
||||
well_state, list_econ_limited);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Data.
|
||||
typedef RateConverter::
|
||||
SurfaceToReservoirVoidage< BlackoilPropsAdInterface,
|
||||
std::vector<int> > RateConverterType;
|
||||
typedef typename Solver::SolverParameters SolverParameters;
|
||||
|
||||
const parameter::ParameterGroup param_;
|
||||
ModelParameters model_param_;
|
||||
SolverParameters solver_param_;
|
||||
|
||||
// Observed objects.
|
||||
const Grid& grid_;
|
||||
BlackoilPropsAdInterface& props_;
|
||||
const RockCompressibility* rock_comp_props_;
|
||||
const double* gravity_;
|
||||
// Solvers
|
||||
DerivedGeology& geo_;
|
||||
NewtonIterationBlackoilInterface& solver_;
|
||||
// Misc. data
|
||||
std::vector<int> allcells_;
|
||||
const bool has_disgas_;
|
||||
const bool has_vapoil_;
|
||||
bool terminal_output_;
|
||||
// eclipse_state
|
||||
std::shared_ptr<EclipseState> eclipse_state_;
|
||||
// output_writer
|
||||
OutputWriter& output_writer_;
|
||||
RateConverterType rateConverter_;
|
||||
// Threshold pressures.
|
||||
std::vector<double> threshold_pressures_by_face_;
|
||||
// Whether this a parallel simulation or not
|
||||
bool is_parallel_run_;
|
||||
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
Loading…
Reference in New Issue
Block a user