mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 10:40:21 -06:00
Merge pull request #330 from atgeirr/simplify-props
Further simplify properties
This commit is contained in:
commit
50fd23bffe
@ -546,39 +546,6 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
|
||||
|
||||
// ------ Rs bubble point curve ------
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V BlackoilPropsAdFromDeck::rsSat(const V& po,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Oil]) {
|
||||
OPM_THROW(std::runtime_error, "Cannot call rsMax(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
mapPvtRegions(cells);
|
||||
assert(po.size() == n);
|
||||
V rbub(n);
|
||||
V drbubdp(n);
|
||||
props_[phase_usage_.phase_pos[Oil]]->rsSat(n, pvt_region_.data(), po.data(), rbub.data(), drbubdp.data());
|
||||
return rbub;
|
||||
}
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V BlackoilPropsAdFromDeck::rsSat(const V& po,
|
||||
const V& so,
|
||||
const Cells& cells) const
|
||||
{
|
||||
V rs = rsSat(po, cells);
|
||||
applyVap(rs, so, cells, vap2_);
|
||||
return rs;
|
||||
}
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
@ -618,45 +585,12 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
|
||||
return rs;
|
||||
}
|
||||
|
||||
// ------ Condensation curve ------
|
||||
// ------ Rv condensation curve ------
|
||||
|
||||
/// Condensation curve for Rv as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V BlackoilPropsAdFromDeck::rvSat(const V& po,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!phase_usage_.phase_used[Gas]) {
|
||||
OPM_THROW(std::runtime_error, "Cannot call rvMax(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
mapPvtRegions(cells);
|
||||
assert(po.size() == n);
|
||||
V rv(n);
|
||||
V drvdp(n);
|
||||
props_[phase_usage_.phase_pos[Gas]]->rvSat(n, pvt_region_.data(), po.data(), rv.data(), drvdp.data());
|
||||
return rv;
|
||||
}
|
||||
|
||||
/// Condensation curve for Rv as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V BlackoilPropsAdFromDeck::rvSat(const V& po,
|
||||
const V& so,
|
||||
const Cells& cells) const
|
||||
{
|
||||
V rv = rvSat(po, cells);
|
||||
applyVap(rv, so, cells, vap1_);
|
||||
return rv;
|
||||
}
|
||||
|
||||
/// Condensation curve for Rv as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
/// \return Array of n condensation point values for Rv.
|
||||
ADB BlackoilPropsAdFromDeck::rvSat(const ADB& po,
|
||||
const Cells& cells) const
|
||||
{
|
||||
@ -682,7 +616,7 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
/// \return Array of n condensation point values for Rv.
|
||||
ADB BlackoilPropsAdFromDeck::rvSat(const ADB& po,
|
||||
const ADB& so,
|
||||
const Cells& cells) const
|
||||
@ -694,47 +628,6 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
|
||||
|
||||
// ------ Relative permeability ------
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<V> BlackoilPropsAdFromDeck::relperm(const V& sw,
|
||||
const V& so,
|
||||
const V& sg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
const int n = cells.size();
|
||||
const int np = numPhases();
|
||||
Block s_all(n, np);
|
||||
if (phase_usage_.phase_used[Water]) {
|
||||
assert(sw.size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Water]) = sw;
|
||||
}
|
||||
if (phase_usage_.phase_used[Oil]) {
|
||||
assert(so.size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Oil]) = so;
|
||||
}
|
||||
if (phase_usage_.phase_used[Gas]) {
|
||||
assert(sg.size() == n);
|
||||
s_all.col(phase_usage_.phase_pos[Gas]) = sg;
|
||||
}
|
||||
Block kr(n, np);
|
||||
satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), 0);
|
||||
std::vector<V> relperms;
|
||||
relperms.reserve(3);
|
||||
for (int phase = 0; phase < 3; ++phase) {
|
||||
if (phase_usage_.phase_used[phase]) {
|
||||
relperms.emplace_back(kr.col(phase_usage_.phase_pos[phase]));
|
||||
} else {
|
||||
relperms.emplace_back();
|
||||
}
|
||||
}
|
||||
return relperms;
|
||||
}
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
|
@ -245,23 +245,7 @@ namespace Opm
|
||||
/// Condensation curve for Rv as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V rvSat(const V& po,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Condensation curve for Rv as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V rvSat(const V& po,
|
||||
const V& so,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Condensation curve for Rv as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
/// \return Array of n condensation point values for Rv.
|
||||
ADB rvSat(const ADB& po,
|
||||
const Cells& cells) const;
|
||||
|
||||
@ -269,25 +253,13 @@ namespace Opm
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
/// \return Array of n condensation point values for Rv.
|
||||
ADB rvSat(const ADB& po,
|
||||
const ADB& so,
|
||||
const Cells& cells) const;
|
||||
|
||||
// ------ Relative permeability ------
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<V> relperm(const V& sw,
|
||||
const V& so,
|
||||
const V& sg,
|
||||
const Cells& cells) const;
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
|
@ -174,24 +174,6 @@ namespace Opm
|
||||
|
||||
// ------ Rs bubble point curve ------
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
virtual
|
||||
V rsSat(const V& po,
|
||||
const Cells& cells) const = 0;
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
virtual
|
||||
V rsSat(const V& po,
|
||||
const V& so,
|
||||
const Cells& cells) const = 0;
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
@ -210,39 +192,21 @@ namespace Opm
|
||||
const ADB& so,
|
||||
const Cells& cells) const = 0;
|
||||
|
||||
// ------ Rs bubble point curve ------
|
||||
// ------ Rv condensation curve ------
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// Condensation curve for Rv as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
virtual
|
||||
V rvSat(const V& po,
|
||||
const Cells& cells) const = 0;
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
virtual
|
||||
V rvSat(const V& po,
|
||||
const V& so,
|
||||
const Cells& cells) const = 0;
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
/// \return Array of n condensation point values for Rv.
|
||||
virtual
|
||||
ADB rvSat(const ADB& po,
|
||||
const Cells& cells) const = 0;
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// Condensation curve for Rv as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
/// \return Array of n condensation point values for Rv.
|
||||
virtual
|
||||
ADB rvSat(const ADB& po,
|
||||
const ADB& so,
|
||||
@ -250,19 +214,6 @@ namespace Opm
|
||||
|
||||
// ------ Relative permeability ------
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
virtual
|
||||
std::vector<V> relperm(const V& sw,
|
||||
const V& so,
|
||||
const V& sg,
|
||||
const Cells& cells) const = 0;
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
|
@ -2154,10 +2154,10 @@ namespace detail {
|
||||
template<class T>
|
||||
V
|
||||
FullyImplicitBlackoilSolver<T>::fluidRsSat(const V& p,
|
||||
const V& satOil,
|
||||
const std::vector<int>& cells) const
|
||||
const V& satOil,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
return fluid_.rsSat(p, satOil, cells);
|
||||
return fluid_.rsSat(ADB::constant(p), ADB::constant(satOil), cells).value();
|
||||
}
|
||||
|
||||
|
||||
@ -2167,19 +2167,20 @@ namespace detail {
|
||||
template<class T>
|
||||
ADB
|
||||
FullyImplicitBlackoilSolver<T>::fluidRsSat(const ADB& p,
|
||||
const ADB& satOil,
|
||||
const std::vector<int>& cells) const
|
||||
const ADB& satOil,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
return fluid_.rsSat(p, satOil, cells);
|
||||
}
|
||||
|
||||
|
||||
template<class T>
|
||||
V
|
||||
FullyImplicitBlackoilSolver<T>::fluidRvSat(const V& p,
|
||||
const V& satOil,
|
||||
const std::vector<int>& cells) const
|
||||
const V& satOil,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
return fluid_.rvSat(p, satOil, cells);
|
||||
return fluid_.rvSat(ADB::constant(p), ADB::constant(satOil), cells).value();
|
||||
}
|
||||
|
||||
|
||||
@ -2189,8 +2190,8 @@ namespace detail {
|
||||
template<class T>
|
||||
ADB
|
||||
FullyImplicitBlackoilSolver<T>::fluidRvSat(const ADB& p,
|
||||
const ADB& satOil,
|
||||
const std::vector<int>& cells) const
|
||||
const ADB& satOil,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
return fluid_.rvSat(p, satOil, cells);
|
||||
}
|
||||
|
@ -180,7 +180,7 @@ namespace {
|
||||
// Compute relperms once and for all (since saturations are explicit).
|
||||
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
||||
assert(np == 2);
|
||||
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
||||
kr_ = fluidRelperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
||||
// Compute relperms for wells. This must be revisited for crossflow.
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
@ -193,7 +193,7 @@ namespace {
|
||||
}
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
||||
well_kr_ = fluidRelperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
||||
|
||||
const double atol = 1.0e-10;
|
||||
const double rtol = 5.0e-6;
|
||||
@ -255,7 +255,7 @@ namespace {
|
||||
// Compute relperms.
|
||||
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
|
||||
assert(np == 2);
|
||||
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
||||
kr_ = fluidRelperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
|
||||
|
||||
// Compute relperms for wells. This must be revisited for crossflow.
|
||||
DataBlock well_s(nperf, np);
|
||||
@ -267,7 +267,7 @@ namespace {
|
||||
}
|
||||
const std::vector<int> well_cells(wells_.well_cells,
|
||||
wells_.well_cells + nperf);
|
||||
well_kr_ = fluid_.relperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
||||
well_kr_ = fluidRelperm(well_s.col(0), well_s.col(1), V::Zero(nperf,1), well_cells);
|
||||
|
||||
// Compute well pressure differentials.
|
||||
// Construct pressure difference vector for wells.
|
||||
@ -641,6 +641,20 @@ namespace {
|
||||
|
||||
|
||||
|
||||
std::vector<V> ImpesTPFAAD::fluidRelperm(const V& sw,
|
||||
const V& so,
|
||||
const V& sg,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
std::vector<ADB> kr_ad = fluid_.relperm(ADB::constant(sw), ADB::constant(so), ADB::constant(sg), cells);
|
||||
std::vector<V> kr = { kr_ad[0].value(), kr_ad[1].value(), kr_ad[2].value() };
|
||||
return kr;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
V ImpesTPFAAD::fluidKr(const int phase) const
|
||||
{
|
||||
return kr_[phase];
|
||||
|
@ -110,6 +110,7 @@ namespace Opm {
|
||||
ADB fluidFvf(const int phase, const ADB& p, const ADB& T, const std::vector<int>& cells) const;
|
||||
V fluidRho(const int phase, const V& p, const V& T, const std::vector<int>& cells) const;
|
||||
ADB fluidRho(const int phase, const ADB& p, const ADB& T, const std::vector<int>& cells) const;
|
||||
std::vector<V> fluidRelperm(const V& sw, const V& so, const V& sg, const std::vector<int>& cells) const;
|
||||
V fluidKr(const int phase) const;
|
||||
V fluidKrWell(const int phase) const;
|
||||
};
|
||||
|
@ -528,8 +528,9 @@ namespace Opm {
|
||||
// pressure into account. This facility uses the
|
||||
// average *hydrocarbon* pressure rather than
|
||||
// average phase pressure.
|
||||
Rmax_.col(io) = props_.rsSat(p_avg_, T_avg_, repcells_);
|
||||
Rmax_.col(ig) = props_.rvSat(p_avg_, T_avg_, repcells_);
|
||||
typedef BlackoilPropsAdInterface::ADB ADB;
|
||||
Rmax_.col(io) = props_.rsSat(ADB::constant(p_avg_), ADB::constant(T_avg_), repcells_).value();
|
||||
Rmax_.col(ig) = props_.rvSat(ADB::constant(p_avg_), ADB::constant(T_avg_), repcells_).value();
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user