mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-30 04:53:48 -06:00
add a simulator which uses Eclipse data files and the blackoil model
This commit is contained in:
parent
82e65ba6fc
commit
515f9b00cf
566
tests/problems/eclproblem.hh
Normal file
566
tests/problems/eclproblem.hh
Normal file
@ -0,0 +1,566 @@
|
||||
/*
|
||||
Copyright (C) 2014 by Andreas Lauser
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Ewoms::EclProblem
|
||||
*/
|
||||
#ifndef EWOMS_ECL_PROBLEM_HH
|
||||
#define EWOMS_ECL_PROBLEM_HH
|
||||
|
||||
#include "eclgridmanager.hh"
|
||||
|
||||
#include <ewoms/models/blackoil/blackoilmodel.hh>
|
||||
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
|
||||
|
||||
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
||||
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
||||
|
||||
// for this simulator to make sense, dune-cornerpoint and opm-parser
|
||||
// must be available
|
||||
#include <dune/grid/CpGrid.hpp>
|
||||
#include <opm/parser/eclipse/Deck/Deck.hpp>
|
||||
#include <opm/parser/eclipse/Utility/PvtoTable.hpp>
|
||||
#include <opm/parser/eclipse/Utility/PvtwTable.hpp>
|
||||
#include <opm/parser/eclipse/Utility/PvdgTable.hpp>
|
||||
|
||||
#include <dune/common/version.hh>
|
||||
#include <dune/common/fvector.hh>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
||||
#include <boost/date_time.hpp>
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
namespace Ewoms {
|
||||
template <class TypeTag>
|
||||
class EclProblem;
|
||||
}
|
||||
|
||||
namespace Opm {
|
||||
namespace Properties {
|
||||
|
||||
NEW_TYPE_TAG(EclBaseProblem, INHERITS_FROM(EclGridManager));
|
||||
|
||||
// The temperature inside the reservoir
|
||||
NEW_PROP_TAG(Temperature);
|
||||
|
||||
// The name of the simulation
|
||||
NEW_PROP_TAG(SimulationName);
|
||||
|
||||
// Set the problem property
|
||||
SET_TYPE_PROP(EclBaseProblem, Problem, Ewoms::EclProblem<TypeTag>);
|
||||
|
||||
// Select the element centered finite volume method as spatial discretization
|
||||
SET_TAG_PROP(EclBaseProblem, SpatialDiscretizationSplice, EcfvDiscretization);
|
||||
|
||||
// Set the material Law
|
||||
SET_PROP(EclBaseProblem, MaterialLaw)
|
||||
{
|
||||
private:
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
|
||||
typedef Opm::
|
||||
ThreePhaseMaterialTraits<Scalar,
|
||||
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
||||
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
||||
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
|
||||
|
||||
public:
|
||||
typedef Opm::LinearMaterial<Traits> type;
|
||||
};
|
||||
|
||||
// Enable gravity
|
||||
SET_BOOL_PROP(EclBaseProblem, EnableGravity, true);
|
||||
|
||||
// Reuse the last linearization if possible?
|
||||
SET_BOOL_PROP(EclBaseProblem, EnableLinearizationRecycling, true);
|
||||
|
||||
// Re-assemble the linearization only for the cells which have changed?
|
||||
SET_BOOL_PROP(EclBaseProblem, EnablePartialRelinearization, true);
|
||||
|
||||
// set the defaults for some problem specific properties
|
||||
SET_SCALAR_PROP(EclBaseProblem, Temperature, 293.15);
|
||||
SET_STRING_PROP(EclBaseProblem, SimulationName, "ecl");
|
||||
|
||||
// The default for the end time of the simulation [s]
|
||||
//
|
||||
// By default, stop after the first year...
|
||||
SET_SCALAR_PROP(EclBaseProblem, EndTime, 1*365*24*60*60);
|
||||
|
||||
// The default for the initial time step size of the simulation [s].
|
||||
//
|
||||
// The chosen value means that the size of the first time step is the
|
||||
// one of the initial episode (if the length of the initial episode is
|
||||
// not millions of trillions of years, that is...)
|
||||
SET_SCALAR_PROP(EclBaseProblem, InitialTimeStepSize, 1e100);
|
||||
|
||||
// Disable the VTK output by default for this problem ...
|
||||
SET_BOOL_PROP(EclBaseProblem, EnableVtkOutput, false);
|
||||
|
||||
// ... but enable the Eclipse output by default
|
||||
SET_BOOL_PROP(EclBaseProblem, EnableEclipseOutput, true);
|
||||
|
||||
// The default DGF file to load
|
||||
SET_STRING_PROP(EclBaseProblem, GridFile, "grids/ecl.DATA");
|
||||
}} // namespace Properties, Opm
|
||||
|
||||
namespace Ewoms {
|
||||
/*!
|
||||
* \ingroup TestProblems
|
||||
*
|
||||
* \brief This problem uses a deck in the format of the Eclipse
|
||||
* simulator.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class EclProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
||||
{
|
||||
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
||||
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||||
|
||||
// Grid and world dimension
|
||||
enum { dim = GridView::dimension };
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
|
||||
// copy some indices for convenience
|
||||
enum { numPhases = FluidSystem::numPhases };
|
||||
enum { numComponents = FluidSystem::numComponents };
|
||||
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
||||
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
||||
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
||||
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
||||
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
||||
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
||||
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, BlackOilFluidState) BlackOilFluidState;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GridManager) GridManager;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
||||
|
||||
typedef typename GridView::ctype CoordScalar;
|
||||
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
||||
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
||||
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
|
||||
|
||||
public:
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::registerParameters
|
||||
*/
|
||||
static void registerParameters()
|
||||
{
|
||||
ParentType::registerParameters();
|
||||
|
||||
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
|
||||
"The temperature [K] in the reservoir");
|
||||
EWOMS_REGISTER_PARAM(TypeTag, std::string, SimulationName,
|
||||
"The name of the simulation used for the output "
|
||||
"files");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc Doxygen::defaultProblemConstructor
|
||||
*/
|
||||
EclProblem(Simulator &simulator)
|
||||
: ParentType(simulator)
|
||||
{
|
||||
temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
|
||||
|
||||
// invert the direction of the gravity vector for ECL problems
|
||||
// (z coodinates represent depth, not height.)
|
||||
this->gravity_[dim - 1] *= -1;
|
||||
|
||||
const auto deck = this->simulator().gridManager().deck();
|
||||
|
||||
initFluidSystem_(deck);
|
||||
readMaterialParameters_(deck);
|
||||
readInitialCondition_(deck);
|
||||
|
||||
// Start the first episode. For this, ask the Eclipse schedule.
|
||||
Opm::TimeMapConstPtr timeMap = simulator.gridManager().schedule()->getTimeMap();
|
||||
tm curTime = boost::posix_time::to_tm(timeMap->getStartTime(/*timeStepIdx=*/0));
|
||||
|
||||
simulator.startNextEpisode(/*startTime=*/std::mktime(&curTime),
|
||||
/*length=*/timeMap->getTimeStepLength(/*timeStepIdx=*/0));
|
||||
|
||||
// we want the episode index to be the same as the report step
|
||||
// index to make things simpler...
|
||||
simulator.setEpisodeIndex(0);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Called by the time manager after the end of an episode.
|
||||
*/
|
||||
void episodeEnd()
|
||||
{
|
||||
Simulator &simulator = this->simulator();
|
||||
Opm::TimeMapConstPtr timeMap = simulator.gridManager().schedule()->getTimeMap();
|
||||
int episodeIdx = simulator.episodeIndex();
|
||||
simulator.startNextEpisode(timeMap->getTimeStepLength(episodeIdx + 1));
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns true if the current solution should be written
|
||||
* to disk for visualization.
|
||||
*
|
||||
* For the ECL simulator we only write at the end of
|
||||
* episodes/report steps...
|
||||
*/
|
||||
bool shouldWriteOutput()
|
||||
{
|
||||
if (this->simulator().timeStepIndex() == 0)
|
||||
// always write the initial solution
|
||||
return true;
|
||||
|
||||
return this->simulator().episodeWillBeOver();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
||||
*/
|
||||
template <class Context>
|
||||
const DimMatrix &intrinsicPermeability(const Context &context,
|
||||
int spaceIdx,
|
||||
int timeIdx) const
|
||||
{
|
||||
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||||
return intrinsicPermeability_[globalSpaceIdx];
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseMultiPhaseProblem::porosity
|
||||
*/
|
||||
template <class Context>
|
||||
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
||||
{
|
||||
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||||
return porosity_[globalSpaceIdx];
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
||||
*/
|
||||
template <class Context>
|
||||
const MaterialLawParams &materialLawParams(const Context &context,
|
||||
int spaceIdx, int timeIdx) const
|
||||
{
|
||||
int globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||||
return materialParams_[globalSpaceIdx];
|
||||
}
|
||||
|
||||
/*!
|
||||
* \name Problem parameters
|
||||
*/
|
||||
//! \{
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::name
|
||||
*/
|
||||
static std::string name()
|
||||
{ return EWOMS_GET_PARAM(TypeTag, std::string, SimulationName); }
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseMultiPhaseProblem::temperature
|
||||
*
|
||||
* The black-oil model assumes constant temperature to define its
|
||||
* parameters. Although temperature is thus not really used by the
|
||||
* model, it gets written to the VTK output. Who nows, maybe we
|
||||
* will need it one day?
|
||||
*/
|
||||
template <class Context>
|
||||
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
|
||||
{ return temperature_; }
|
||||
|
||||
// \}
|
||||
|
||||
/*!
|
||||
* \name Boundary conditions
|
||||
*/
|
||||
//! \{
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::boundary
|
||||
*
|
||||
* Eclipse uses no-flow conditions for all boundaries. \todo really?
|
||||
*/
|
||||
template <class Context>
|
||||
void boundary(BoundaryRateVector &values,
|
||||
const Context &context,
|
||||
int spaceIdx,
|
||||
int timeIdx) const
|
||||
{ values.setNoFlow(); }
|
||||
|
||||
//! \}
|
||||
|
||||
/*!
|
||||
* \name Volume terms
|
||||
*/
|
||||
//! \{
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::initial
|
||||
*
|
||||
* The reservoir problem uses a constant boundary condition for
|
||||
* the whole domain.
|
||||
*/
|
||||
template <class Context>
|
||||
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
|
||||
{
|
||||
int globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||||
|
||||
values.assignNaive(initialFluidStates_[globalDofIdx]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseProblem::source
|
||||
*
|
||||
* For this problem, the source term of all components is 0 everywhere.
|
||||
*/
|
||||
template <class Context>
|
||||
void source(RateVector &rate, const Context &context, int spaceIdx,
|
||||
int timeIdx) const
|
||||
{
|
||||
#warning "TODO: wells"
|
||||
rate = Scalar(0.0);
|
||||
}
|
||||
|
||||
//! \}
|
||||
|
||||
private:
|
||||
void readMaterialParameters_(Opm::DeckConstPtr deck)
|
||||
{
|
||||
size_t numDof = this->model().numDof();
|
||||
|
||||
intrinsicPermeability_.resize(numDof);
|
||||
porosity_.resize(numDof);
|
||||
materialParams_.resize(numDof);
|
||||
|
||||
// read the intrinsic permeabilities from the deck
|
||||
if (deck->hasKeyword("PERM")) {
|
||||
// the PERM and PERM{X,Y,Z,{X,Y,Z}{X,Y,Z}} keywords are
|
||||
// mutually exclusive, but if the deck does shit, it is
|
||||
// not our fault!
|
||||
const std::vector<double> &permData =
|
||||
deck->getKeyword("PERM")->getSIDoubleData();
|
||||
|
||||
assert(permData.size() == numDof);
|
||||
|
||||
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx)
|
||||
intrinsicPermeability_[dofIdx] = this->toDimMatrix_(permData[dofIdx]);
|
||||
}
|
||||
else if (deck->hasKeyword("PERMX")) {
|
||||
const std::vector<double> &permxData =
|
||||
deck->getKeyword("PERMX")->getSIDoubleData();
|
||||
std::vector<double> permyData(permxData);
|
||||
if (deck->hasKeyword("PERMY"))
|
||||
permyData = deck->getKeyword("PERMY")->getSIDoubleData();
|
||||
std::vector<double> permzData(permxData);
|
||||
if (deck->hasKeyword("PERMZ"))
|
||||
permzData = deck->getKeyword("PERMZ")->getSIDoubleData();
|
||||
|
||||
assert(permxData.size() == numDof);
|
||||
assert(permyData.size() == numDof);
|
||||
assert(permzData.size() == numDof);
|
||||
|
||||
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
|
||||
intrinsicPermeability_[dofIdx] = 0.0;
|
||||
intrinsicPermeability_[dofIdx][0][0] = permxData[dofIdx];
|
||||
intrinsicPermeability_[dofIdx][1][1] = permyData[dofIdx];
|
||||
intrinsicPermeability_[dofIdx][2][2] = permzData[dofIdx];
|
||||
}
|
||||
|
||||
// we don't care about non-diagonal entries
|
||||
}
|
||||
else
|
||||
OPM_THROW(std::logic_error,
|
||||
"Can't read the intrinsic permeability from the deck. "
|
||||
"(The PERM* keywords are missing)");
|
||||
|
||||
if (deck->hasKeyword("PORO")) {
|
||||
const std::vector<double> &poroData =
|
||||
deck->getKeyword("PORO")->getSIDoubleData();
|
||||
|
||||
assert(poroData.size() == numDof);
|
||||
|
||||
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx)
|
||||
porosity_[dofIdx] = poroData[dofIdx];
|
||||
}
|
||||
else
|
||||
OPM_THROW(std::logic_error,
|
||||
"Can't read the porosity from the deck. "
|
||||
"(The PORO keyword is missing)");
|
||||
|
||||
#warning "TODO: read the relperm and pc parameters from the deck"
|
||||
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
|
||||
// parameters of the material law
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
materialParams_[dofIdx].setPcMinSat(phaseIdx, 0.0);
|
||||
materialParams_[dofIdx].setPcMaxSat(phaseIdx, 0.0);
|
||||
materialParams_[dofIdx].finalize();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void initFluidSystem_(Opm::DeckConstPtr deck)
|
||||
{
|
||||
FluidSystem::initBegin();
|
||||
|
||||
// so far, we require the presence of the PVTO, PVTW and PVDG
|
||||
// keywords...
|
||||
Opm::PvtoTable pvtoTable(deck->getKeyword("PVTO"), /*tableIdx=*/0);
|
||||
Opm::PvtwTable pvtwTable(deck->getKeyword("PVTW"));
|
||||
Opm::PvdgTable pvdgTable(deck->getKeyword("PVDG"));
|
||||
|
||||
FluidSystem::setPvtoTable(pvtoTable);
|
||||
FluidSystem::setPvtwTable(pvtwTable);
|
||||
FluidSystem::setPvdgTable(pvdgTable);
|
||||
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
||||
FluidSystem::setReferenceVolumeFactor(phaseIdx, 1.0);
|
||||
|
||||
// set the reference densities
|
||||
Opm::DeckRecordConstPtr densityRecord = deck->getKeyword("DENSITY")->getRecord(0);
|
||||
FluidSystem::setSurfaceDensities(densityRecord->getItem("OIL")->getSIDouble(0),
|
||||
densityRecord->getItem("WATER")->getSIDouble(0),
|
||||
densityRecord->getItem("GAS")->getSIDouble(0));
|
||||
|
||||
FluidSystem::initEnd();
|
||||
}
|
||||
|
||||
void readInitialCondition_(Opm::DeckConstPtr deck)
|
||||
{
|
||||
size_t numDof = this->model().numDof();
|
||||
|
||||
initialFluidStates_.resize(numDof);
|
||||
|
||||
if (!deck->hasKeyword("SWAT") ||
|
||||
!deck->hasKeyword("SGAS")) {
|
||||
OPM_THROW(std::runtime_error,
|
||||
"So far, the Eclipse input file requires the presence of the SWAT "
|
||||
"and SGAS keywords");
|
||||
}
|
||||
if (!deck->hasKeyword("PRESSURE")) {
|
||||
OPM_THROW(std::runtime_error,
|
||||
"So far, the Eclipse input file requires the presence of the PRESSURE "
|
||||
"keyword");
|
||||
}
|
||||
|
||||
const std::vector<double> &waterSaturationData =
|
||||
deck->getKeyword("SWAT")->getSIDoubleData();
|
||||
const std::vector<double> &gasSaturationData =
|
||||
deck->getKeyword("SGAS")->getSIDoubleData();
|
||||
const std::vector<double> &pressureData =
|
||||
deck->getKeyword("PRESSURE")->getSIDoubleData();
|
||||
|
||||
// make sure that the size of the data arrays is correct
|
||||
assert(waterSaturationData.size() == numDof);
|
||||
assert(gasSaturationData.size() == numDof);
|
||||
assert(pressureData.size() == numDof);
|
||||
|
||||
// calculate the initial fluid states
|
||||
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
|
||||
auto &dofFluidState = initialFluidStates_[dofIdx];
|
||||
|
||||
//////
|
||||
// set temperatures
|
||||
//////
|
||||
dofFluidState.setTemperature(temperature_);
|
||||
|
||||
//////
|
||||
// set saturations
|
||||
//////
|
||||
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
|
||||
waterSaturationData[dofIdx]);
|
||||
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
|
||||
gasSaturationData[dofIdx]);
|
||||
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
|
||||
1
|
||||
- waterSaturationData[dofIdx]
|
||||
- gasSaturationData[dofIdx]);
|
||||
|
||||
//////
|
||||
// set pressures
|
||||
//////
|
||||
Scalar oilPressure = pressureData[dofIdx];
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
dofFluidState.setPressure(phaseIdx, oilPressure);
|
||||
}
|
||||
|
||||
//////
|
||||
// set compositions
|
||||
//////
|
||||
|
||||
// reset all mole fractions to 0
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
||||
for (int compIdx = 0; compIdx < numComponents; ++compIdx)
|
||||
dofFluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
|
||||
|
||||
// set compositions of the gas and water phases
|
||||
dofFluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
|
||||
dofFluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
|
||||
|
||||
|
||||
// set the composition of the oil phase:
|
||||
//
|
||||
// first, retrieve the relevant black-oil parameters from
|
||||
// the fluid system.
|
||||
Scalar Bo = FluidSystem::oilFormationVolumeFactor(oilPressure);
|
||||
Scalar Rs = FluidSystem::gasDissolutionFactor(oilPressure);
|
||||
Scalar rhoo = FluidSystem::surfaceDensity(oilPhaseIdx) / Bo;
|
||||
Scalar rhogref = FluidSystem::surfaceDensity(gasPhaseIdx);
|
||||
|
||||
// calculate composition of oil phase in terms of mass
|
||||
// fractions.
|
||||
Scalar XoG = Rs * rhogref / rhoo;
|
||||
|
||||
// convert mass to mole fractions
|
||||
Scalar MG = FluidSystem::molarMass(gasCompIdx);
|
||||
Scalar MO = FluidSystem::molarMass(oilCompIdx);
|
||||
|
||||
Scalar xoG = XoG * MO / ((MO - MG) * XoG + MG);
|
||||
Scalar xoO = 1 - xoG;
|
||||
|
||||
// finally set the oil-phase composition
|
||||
dofFluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
|
||||
dofFluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, xoO);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Scalar> porosity_;
|
||||
std::vector<DimMatrix> intrinsicPermeability_;
|
||||
std::vector<MaterialLawParams> materialParams_;
|
||||
|
||||
std::vector<BlackOilFluidState> initialFluidStates_;
|
||||
|
||||
Scalar temperature_;
|
||||
};
|
||||
} // namespace Ewoms
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user