adding function checkWellOperatability() to StandardWell

it includes BHPLimit check, THPlimit check, and also to see whether if
the well can produce/inject in the correct direction.
This commit is contained in:
Kai Bao 2018-11-15 14:31:41 +01:00
parent dbe047a8a5
commit 5204bbe4ca
5 changed files with 200 additions and 1 deletions

View File

@ -330,6 +330,10 @@ namespace Opm
// handling the overshooting and undershooting of the fractions
void processFractions(const int seg) const;
// checking the operability of the well based on current reservoir condition
// it is not implemented for multisegment well yet
virtual void checkWellOperatability(const Simulator& ebos_simulator);
void updateWellStateFromPrimaryVariables(WellState& well_state) const;
bool frictionalPressureLossConsidered() const;

View File

@ -1642,6 +1642,20 @@ namespace Opm
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
checkWellOperatability(const Simulator& ebos_simulator)
{
const std::string msg = "Support of well operatability checking for mutlisegment wells is not yet,"
" checkWellOperatability() for " + name() + " will do nothing";
OpmLog::warning("NO_OPERATABILITY_CHECKING_MS_WELLS", msg);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::

View File

@ -348,6 +348,16 @@ namespace Opm
// updating the inflow based on the current reservoir condition
void updateIPR(const Simulator& ebos_simulator) const;
// check whether the well is operable under the current reservoir condition
// mostly related to BHP limit and THP limit
virtual void checkWellOperatability(const Simulator& ebos_simulator) override;
// check whether the well is operable under BHP limit with current reservoir condition
void checkOperabilityUnderBHPLimit(const Simulator& ebos_simulator);
// check whether the well is operable under THP limit with current reservoir condition
void checkOperabilityUnderTHPLimit(const Simulator& ebos_simulator);
// update WellState based on IPR and associated VFP table
void updateWellStateWithTHPTargetIPR(const Simulator& ebos_simulator,
WellState& well_state) const;
@ -355,6 +365,10 @@ namespace Opm
void updateWellStateWithTHPTargetIPRProducer(const Simulator& ebos_simulator,
WellState& well_state) const;
// for a well, when all drawdown are in the wrong direction, then this well will not
// be able to produce/inject .
bool allDrawDownWrongDirection(const Simulator& ebosSimulator) const;
// calculate the BHP from THP target based on IPR
// TODO: we need to check the operablility here first, if not operable, then maybe there is
// no point to do this

View File

@ -1228,7 +1228,8 @@ namespace Opm
// it should not be negative anyway. If it is negative, we might need to re-formulate
// to taking into consideration the crossflow here.
if (pressure_diff <= 0.) {
OpmLog::warning("NON_POSITIVE_DRAWDOWN_IPR", "non-positive drawdown found when updateIPR for well " + name());
OpmLog::warning("NON_POSITIVE_DRAWDOWN_IPR",
"non-positive drawdown found when updateIPR for well " + name());
}
// the well index associated with the connection
@ -1277,6 +1278,171 @@ namespace Opm
template<typename TypeTag>
void
StandardWell<TypeTag>::
checkWellOperatability(const Simulator& ebos_simulator)
{
// TODO: this function is probably can split another function out so that
// wellTestingPhysical can share some code with this function
// on solution is that this function will be called updateWellOperatability
// and the actual checking part become another function checkWellOperatability
// Let us finish the wellTestingPhysical first.
// focusing on PRODUCER for now
if (well_type_ == INJECTOR) {
return;
}
if (!this->underPredictionMode() ) {
return;
}
const bool old_well_operable = this->operability_status_.isOperable();
this->operability_status_.reset();
updateIPR(ebos_simulator);
// checking the BHP limit related
checkOperabilityUnderBHPLimit(ebos_simulator);
// TODO: if the BHP limit does not work anyway, we do not need to do the following
// We do it now for studying purpose.
// checking whether the well can operate under the THP constraints.
if (this->wellHasTHPConstraints()) {
checkOperabilityUnderTHPLimit(ebos_simulator);
}
// checking whether the well can not produce or something else
this->operability_status_.negative_well_rates = allDrawDownWrongDirection(ebos_simulator);
const bool well_operable = this->operability_status_.isOperable();
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
checkOperabilityUnderBHPLimit(const Simulator& ebos_simulator)
{
const double bhp_limit = mostStrictBhpFromBhpLimits();
// TODO: a better way to detect whether the BHP is defaulted or not
if ( bhp_limit > 1.5e5 || !this->wellHasTHPConstraints() ) {
// if ( !(bhp_limit < 1.5e5 && this->wellHasTHPConstraints()) ) {
// if there is a non-defaulted BHP limit or the well does not have a THP limit
for (int p = 0; p < number_of_phases_; ++p) {
const double temp = ipr_a_[p] - ipr_b_[p] * bhp_limit;
if (temp < 0.) {
this->operability_status_.operable_under_only_bhp_limit = false;
break;
}
}
// checking whether running under BHP limit will violate THP limit
if (this->operability_status_.operable_under_only_bhp_limit && this->wellHasTHPConstraints()) {
// option 1: calculate well rates based on the BHP limit.
// option 2: stick with the above IPR curve
// TODO: most likely, we can use IPR here
const double bhp_limit = mostStrictBhpFromBhpLimits();
std::vector<double> well_rates_bhp_limit;
computeWellRatesWithBhp(ebos_simulator, bhp_limit, well_rates_bhp_limit);
const double thp = calculateThpFromBhp(well_rates_bhp_limit, bhp_limit);
const double thp_limit = this->getTHPConstraint();
if (thp < thp_limit || thp > bhp_limit) {
this->operability_status_.violate_thp_limit_under_bhp_limit = true;
}
}
} else {
// defaulted BHP and there is THP constraints
// default BHP limit is about 1.03 bar.
// when applied the hydrostatic pressure correction,
// most likely we get a negative bhp value to search in the VFP table,
// which is not desirable
this->operability_status_.operable_under_only_bhp_limit = true;
this->operability_status_.violate_thp_limit_under_bhp_limit = true;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
checkOperabilityUnderTHPLimit(const Simulator& ebos_simulator)
{
// We will use IPR to make the rates for now
const double bhp_limit = mostStrictBhpFromBhpLimits();
const double thp_limit = this->getTHPConstraint();
const double thp_control_index = this->getTHPControlIndex();
const int thp_table_id = well_controls_iget_vfp(well_controls_, thp_control_index);
const double alq = well_controls_iget_alq(well_controls_, thp_control_index);
double vfp_ref_depth = 0.;
// not considering injectors for now
vfp_ref_depth = vfp_properties_->getProd()->getTable(thp_table_id)->getDatumDepth();
// the density of the top perforation
const double rho = perf_densities_[0];
const double dp = (vfp_ref_depth - ref_depth_) * rho * gravity_;
vfp_properties_->getProd()->operabilityCheckingUnderTHP(ipr_a_, ipr_b_, bhp_limit,
thp_table_id, thp_limit, alq, dp,
this->operability_status_.obtain_solution_with_thp_limit,
this->operability_status_.violate_bhp_limit_with_thp_limit );
}
template<typename TypeTag>
bool
StandardWell<TypeTag>::
allDrawDownWrongDirection(const Simulator& ebosSimulator) const
{
bool all_drawdown_wrong_direction = true;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
const double pressure = (fs.pressure(FluidSystem::oilPhaseIdx)).value();
const double bhp = getBhp().value();
// Pressure drawdown (also used to determine direction of flow)
const double well_pressure = bhp + perf_pressure_diffs_[perf];
const double drawdown = pressure - well_pressure;
// for now, if there is one perforation can produce/inject in the correct
// direction, we consider this well can still produce/inject.
// TODO: it can be more complicated than this
if ( (drawdown < 0. && well_type_ == INJECTOR) ||
(drawdown > 0. && well_type_ == PRODUCER) ) {
all_drawdown_wrong_direction = false;
break;
}
}
return all_drawdown_wrong_direction;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::

View File

@ -223,6 +223,7 @@ namespace Opm
void updatePerforatedCell(std::vector<bool>& is_cell_perforated);
virtual void checkWellOperatability(const Simulator& ebos_simulator) = 0;
protected: