GraphColoring.hpp: cosmetics

This commit is contained in:
Tobias Meyer Andersen 2023-11-20 12:21:06 +01:00 committed by Arne Morten Kvarving
parent 9309f96d8f
commit 54b7f9c44f

View File

@ -29,29 +29,24 @@
#include <tuple>
#include <vector>
namespace Opm
{
namespace Detail
{
template<class Graph>
namespace Opm {
namespace Detail {
template <class Graph>
std::size_t colorGraphWelshPowell(const Graph& graph,
std::deque<typename Graph::VertexDescriptor>& orderedVertices,
std::vector<int>& colors,
int color, int noVertices)
std::deque<typename Graph::VertexDescriptor>& orderedVertices,
std::vector<int>& colors,
int color,
int noVertices)
{
std::vector<int> forbidden(noVertices, false);
std::size_t noColored = 0;
for(auto vertex = orderedVertices.begin(),
vertexEnd = orderedVertices.end();
vertex != vertexEnd; ++vertex)
{
for (auto vertex = orderedVertices.begin(),
vertexEnd = orderedVertices.end(); vertex != vertexEnd; ++vertex) {
// Skip forbidden vertices
while(vertex != vertexEnd && forbidden[*vertex])
while (vertex != vertexEnd && forbidden[*vertex])
++vertex;
if ( vertex == vertexEnd )
{
if (vertex == vertexEnd) {
break;
}
@ -59,25 +54,24 @@ std::size_t colorGraphWelshPowell(const Graph& graph,
colors[*vertex] = color;
++noColored;
// Forbid neighors
for(auto edge = graph.beginEdges(*vertex), endEdge = graph.endEdges(*vertex);
edge != endEdge; ++edge)
{
for (auto edge = graph.beginEdges(*vertex),
endEdge = graph.endEdges(*vertex); edge != endEdge; ++edge) {
forbidden[edge.target()] = true;
}
}
// forbidden vertices will be colored next for coloring
using Vertex = typename Graph::VertexDescriptor;
auto newEnd = std::remove_if(orderedVertices.begin(), orderedVertices.end(),
[&forbidden](const Vertex& vertex)
{
return !forbidden[vertex];
});
orderedVertices.resize(newEnd-orderedVertices.begin());
auto newEnd = std::remove_if(orderedVertices.begin(),
orderedVertices.end(),
[&forbidden](const Vertex& vertex) { return !forbidden[vertex]; });
orderedVertices.resize(newEnd - orderedVertices.begin());
return noColored;
}
template<class Graph, class Functor>
std::size_t breadthFirstSearch(const Graph& graph, typename Graph::VertexDescriptor root,
Functor functor)
template <class Graph, class Functor>
std::size_t breadthFirstSearch(const Graph& graph,
typename Graph::VertexDescriptor root,
Functor functor)
{
std::vector<int> visited(graph.maxVertex() + 1, false);
using Vertex = typename Graph::VertexDescriptor;
@ -86,15 +80,11 @@ std::size_t breadthFirstSearch(const Graph& graph, typename Graph::VertexDescrip
nextVertices.push(root);
visited[root] = true; // We do not visit root.
while( !nextVertices.empty() )
{
while (!nextVertices.empty()) {
auto current = nextVertices.front();
for(auto edge = graph.beginEdges(current),
endEdge = graph.endEdges(current);
edge != endEdge; ++edge)
{
if ( ! visited[edge.target()] )
{
for (auto edge = graph.beginEdges(current),
endEdge = graph.endEdges(current); edge != endEdge; ++edge) {
if (!visited[edge.target()]) {
visited[edge.target()] = true;
nextVertices.push(edge.target());
functor(edge.target());
@ -114,44 +104,36 @@ std::size_t breadthFirstSearch(const Graph& graph, typename Graph::VertexDescrip
/// \param graph The graph to color. Must adhere to the graph interface of dune-istl.
/// \return A pair of a vector with the colors of the vertices and the number of colors
/// assigned
template<class Graph>
std::tuple<std::vector<int>, int, std::vector<std::size_t> >
template <class Graph>
std::tuple<std::vector<int>, int, std::vector<std::size_t>>
colorVerticesWelshPowell(const Graph& graph)
{
using Vertex = typename Graph::VertexDescriptor;
std::deque<Vertex> orderedVertices;
auto noVertices = graph.maxVertex()+1;
auto noVertices = graph.maxVertex() + 1;
std::vector<int> degrees(noVertices, 0);
int maxDegree = 0;
std::ptrdiff_t firstDegreeChange = 0;
// populate deque
for( auto vertex = graph.begin(), endVertex = graph.end();
vertex != endVertex; ++vertex)
{
for (auto vertex = graph.begin(),
endVertex = graph.end(); vertex != endVertex; ++vertex) {
auto currentVertex = *vertex;
auto& degree = degrees[currentVertex];
for(auto edge = graph.beginEdges(currentVertex),
endEdge = graph.endEdges(currentVertex);
edge != endEdge; ++edge)
{
for (auto edge = graph.beginEdges(currentVertex),
endEdge = graph.endEdges(currentVertex); edge != endEdge; ++edge) {
++degree;
}
if( degree >= maxDegree )
{
if (degree >= maxDegree) {
orderedVertices.emplace_front(currentVertex);
++firstDegreeChange;
if(degree > maxDegree)
{
if (degree > maxDegree) {
firstDegreeChange = 1;
maxDegree = degree;
}
}
else
{
} else {
orderedVertices.emplace_back(currentVertex);
}
}
@ -159,10 +141,8 @@ colorVerticesWelshPowell(const Graph& graph)
// order deque by descending degree
std::stable_sort(orderedVertices.begin() + firstDegreeChange,
orderedVertices.end(),
[&degrees](const Vertex& v1, const Vertex& v2)
{
return degrees[v1] > degrees[v2];
});
[&degrees](const Vertex& v1, const Vertex& v2)
{ return degrees[v1] > degrees[v2]; });
// Overwrite degree with color
auto& colors = degrees;
@ -172,39 +152,38 @@ colorVerticesWelshPowell(const Graph& graph)
std::vector<std::size_t> verticesPerColor;
verticesPerColor.reserve(10);
while(!orderedVertices.empty())
{
verticesPerColor
.push_back(Detail::colorGraphWelshPowell(graph, orderedVertices, colors,
color++, noVertices));
while (!orderedVertices.empty()) {
verticesPerColor.push_back(Detail::colorGraphWelshPowell(graph, orderedVertices,
colors, color++, noVertices));
}
return std::make_tuple(colors, color, verticesPerColor);
}
/// \! Reorder colored graph preserving order of vertices with the same color.
template<class Graph>
template <class Graph>
std::vector<std::size_t>
reorderVerticesPreserving(const std::vector<int>& colors, int noColors,
reorderVerticesPreserving(const std::vector<int>& colors,
int noColors,
const std::vector<std::size_t>& verticesPerColor,
const Graph& graph)
{
std::vector<std::size_t> colorIndex(noColors, 0);
std::vector<std::size_t> indices(graph.maxVertex() + 1);
std::partial_sum(verticesPerColor.begin(),
verticesPerColor.begin()+verticesPerColor.size() - 1,
verticesPerColor.begin() + verticesPerColor.size() - 1,
colorIndex.begin() + 1);
for(const auto& vertex: graph)
{
for (const auto& vertex : graph) {
indices[vertex] = colorIndex[colors[vertex]]++;
}
return indices;
}
/// \! Reorder Vetrices in spheres
template<class Graph>
template <class Graph>
std::vector<std::size_t>
reorderVerticesSpheres(const std::vector<int>& colors, int noColors,
reorderVerticesSpheres(const std::vector<int>& colors,
int noColors,
const std::vector<std::size_t>& verticesPerColor,
const Graph& graph,
typename Graph::VertexDescriptor root)
@ -214,26 +193,22 @@ reorderVerticesSpheres(const std::vector<int>& colors, int noColors,
std::vector<std::size_t> indices(graph.maxVertex() + 1, notVisitedTag);
using Vertex = typename Graph::VertexDescriptor;
std::partial_sum(verticesPerColor.begin(),
verticesPerColor.begin()+verticesPerColor.size() - 1,
verticesPerColor.begin() + verticesPerColor.size() - 1,
colorIndex.begin() + 1);
std::size_t noVisited = 0;
auto numberer = [&colorIndex, &colors, &indices](Vertex vertex)
{
indices[vertex] = colorIndex[colors[vertex]]++;
};
while ( noVisited < graph.maxVertex() + 1 )
{
indices[vertex] = colorIndex[colors[vertex]]++;
};
while (noVisited < graph.maxVertex() + 1) {
numberer(root);
++noVisited; //root node already visited and not visited in BFS
++noVisited; // root node already visited and not visited in BFS
noVisited += Detail::breadthFirstSearch(graph, root, numberer);
if ( noVisited < graph.maxVertex() + 1 )
{
if (noVisited < graph.maxVertex() + 1) {
// Graph is disconnected search for not yet visited node
for(auto vertex: graph)
{
if ( indices[vertex] == notVisitedTag )
{
for (auto vertex : graph) {
if (indices[vertex] == notVisitedTag) {
// \todo make sure that this is a peripheral node!
root = vertex;
break;