mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Remove unused parts of TpfaLinearizer.
This commit is contained in:
parent
bd6b42b859
commit
552e38bf1d
@ -31,9 +31,6 @@
|
||||
#include "fvbaseproperties.hh"
|
||||
#include "linearizationtype.hh"
|
||||
|
||||
#include <opm/models/parallel/gridcommhandles.hh>
|
||||
#include <opm/models/parallel/threadmanager.hh>
|
||||
#include <opm/models/parallel/threadedentityiterator.hh>
|
||||
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
|
||||
|
||||
#include <opm/material/common/Exceptions.hpp>
|
||||
@ -71,15 +68,11 @@ class TpfaLinearizer
|
||||
{
|
||||
//! \cond SKIP_THIS
|
||||
using Model = GetPropType<TypeTag, Properties::Model>;
|
||||
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||||
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
|
||||
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
|
||||
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||||
|
||||
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
||||
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
||||
@ -87,21 +80,14 @@ class TpfaLinearizer
|
||||
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
||||
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
||||
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
|
||||
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
|
||||
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
||||
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
||||
|
||||
using GridCommHandleFactory = GetPropType<TypeTag, Properties::GridCommHandleFactory>;
|
||||
|
||||
using Toolbox = MathToolbox<Evaluation>;
|
||||
|
||||
using Element = typename GridView::template Codim<0>::Entity;
|
||||
using ElementIterator = typename GridView::template Codim<0>::Iterator;
|
||||
|
||||
using Vector = GlobalEqVector;
|
||||
|
||||
using IstlMatrix = typename SparseMatrixAdapter::IstlMatrix;
|
||||
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
enum { historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
|
||||
|
||||
@ -109,7 +95,6 @@ class TpfaLinearizer
|
||||
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
|
||||
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
|
||||
|
||||
|
||||
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
|
||||
|
||||
// copying the linearizer is not a good idea
|
||||
@ -125,10 +110,6 @@ public:
|
||||
|
||||
~TpfaLinearizer()
|
||||
{
|
||||
auto it = elementCtx_.begin();
|
||||
const auto& endIt = elementCtx_.end();
|
||||
for (; it != endIt; ++it)
|
||||
delete *it;
|
||||
}
|
||||
|
||||
/*!
|
||||
@ -150,12 +131,6 @@ public:
|
||||
{
|
||||
simulatorPtr_ = &simulator;
|
||||
eraseMatrix();
|
||||
auto it = elementCtx_.begin();
|
||||
const auto& endIt = elementCtx_.end();
|
||||
for (; it != endIt; ++it){
|
||||
delete *it;
|
||||
}
|
||||
elementCtx_.resize(0);
|
||||
}
|
||||
|
||||
/*!
|
||||
@ -293,8 +268,8 @@ public:
|
||||
*
|
||||
* (This object is only non-empty if the EnableConstraints property is true.)
|
||||
*/
|
||||
const std::map<unsigned, Constraints>& constraintsMap() const
|
||||
{ return constraintsMap_; }
|
||||
const std::map<unsigned, Constraints> constraintsMap() const
|
||||
{ return {}; }
|
||||
|
||||
private:
|
||||
Simulator& simulator_()
|
||||
@ -315,12 +290,6 @@ private:
|
||||
const GridView& gridView_() const
|
||||
{ return problem_().gridView(); }
|
||||
|
||||
const ElementMapper& elementMapper_() const
|
||||
{ return model_().elementMapper(); }
|
||||
|
||||
const DofMapper& dofMapper_() const
|
||||
{ return model_().dofMapper(); }
|
||||
|
||||
void initFirstIteration_()
|
||||
{
|
||||
// initialize the BCRS matrix for the Jacobian of the residual function
|
||||
@ -329,11 +298,6 @@ private:
|
||||
// initialize the Jacobian matrix and the vector for the residual function
|
||||
residual_.resize(model_().numTotalDof());
|
||||
resetSystem_();
|
||||
|
||||
// create the per-thread context objects
|
||||
elementCtx_.resize(ThreadManager::maxThreads());
|
||||
for (unsigned threadId = 0; threadId != ThreadManager::maxThreads(); ++ threadId)
|
||||
elementCtx_[threadId] = new ElementContext(simulator_());
|
||||
}
|
||||
|
||||
// Construct the BCRS matrix for the Jacobian of the residual function
|
||||
@ -363,6 +327,9 @@ private:
|
||||
}
|
||||
}
|
||||
|
||||
// Do not include auxiliary connections in the linearization sparsity pattern.
|
||||
auto reservoirSparsityPattern = sparsityPattern;
|
||||
|
||||
// add the additional neighbors and degrees of freedom caused by the auxiliary
|
||||
// equations
|
||||
size_t numAuxMod = model.numAuxiliaryModules();
|
||||
@ -375,15 +342,17 @@ private:
|
||||
// create matrix structure based on sparsity pattern
|
||||
jacobian_->reserve(sparsityPattern);
|
||||
|
||||
// Now generate the neighbours_ and trans_ structures for the linearization loop.
|
||||
// Those should not include an entry for the cell itself.
|
||||
for (unsigned globI = 0; globI < model.numTotalDof(); globI++) {
|
||||
sparsityPattern[globI].erase(globI);
|
||||
reservoirSparsityPattern[globI].erase(globI);
|
||||
}
|
||||
unsigned numCells = model.numTotalDof();
|
||||
neighbours_.reserve(numCells, 6 * numCells);
|
||||
trans_.reserve(numCells, 6 * numCells);
|
||||
std::vector<double> loctrans;
|
||||
for (unsigned globI = 0; globI < numCells; globI++) {
|
||||
const auto& cells = sparsityPattern[globI];
|
||||
const auto& cells = reservoirSparsityPattern[globI];
|
||||
neighbours_.appendRow(cells.begin(), cells.end());
|
||||
unsigned n = cells.size();
|
||||
loctrans.resize(n);
|
||||
@ -404,52 +373,6 @@ private:
|
||||
jacobian_->clear();
|
||||
}
|
||||
|
||||
// query the problem for all constraint degrees of freedom. note that this method is
|
||||
// quite involved and is thus relatively slow.
|
||||
void updateConstraintsMap_()
|
||||
{
|
||||
if (!enableConstraints_())
|
||||
// constraints are not explictly enabled, so we don't need to consider them!
|
||||
return;
|
||||
|
||||
constraintsMap_.clear();
|
||||
|
||||
// loop over all elements...
|
||||
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView_());
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
unsigned threadId = ThreadManager::threadId();
|
||||
ElementIterator elemIt = threadedElemIt.beginParallel();
|
||||
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
|
||||
// create an element context (the solution-based quantities are not
|
||||
// available here!)
|
||||
const Element& elem = *elemIt;
|
||||
ElementContext& elemCtx = *elementCtx_[threadId];
|
||||
elemCtx.updateStencil(elem);
|
||||
|
||||
// check if the problem wants to constrain any degree of the current
|
||||
// element's freedom. if yes, add the constraint to the map.
|
||||
for (unsigned primaryDofIdx = 0;
|
||||
primaryDofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
||||
++ primaryDofIdx)
|
||||
{
|
||||
Constraints constraints;
|
||||
elemCtx.problem().constraints(constraints,
|
||||
elemCtx,
|
||||
primaryDofIdx,
|
||||
/*timeIdx=*/0);
|
||||
if (constraints.isActive()) {
|
||||
unsigned globI = elemCtx.globalSpaceIndex(primaryDofIdx, /*timeIdx=*/0);
|
||||
constraintsMap_[globI] = constraints;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
void setResAndJacobi(VectorBlock& res, MatrixBlock& bMat, const ADVectorBlock& resid) const
|
||||
{
|
||||
@ -468,7 +391,7 @@ public:
|
||||
}
|
||||
|
||||
private:
|
||||
void linearizeGlobalTPFA_()
|
||||
void linearize_()
|
||||
{
|
||||
const bool well_local = false;
|
||||
resetSystem_();
|
||||
@ -492,6 +415,7 @@ private:
|
||||
VectorBlock res(0.0);
|
||||
MatrixBlock bMat(0.0);
|
||||
setResAndJacobi(res, bMat, adres);
|
||||
// TODO: check recycleFirst etc.
|
||||
// first we use it as storage cache
|
||||
if (model_().newtonMethod().numIterations() == 0) {
|
||||
model_().updateCachedStorage(globI, /*timeIdx=*/1, res);
|
||||
@ -539,170 +463,7 @@ private:
|
||||
// can't depend on the solution.)
|
||||
}
|
||||
|
||||
// linearize the whole system
|
||||
void linearize_()
|
||||
{
|
||||
linearizeGlobalTPFA_();
|
||||
return;
|
||||
|
||||
resetSystem_();
|
||||
|
||||
// before the first iteration of each time step, we need to update the
|
||||
// constraints. (i.e., we assume that constraints can be time dependent, but they
|
||||
// can't depend on the solution.)
|
||||
if (model_().newtonMethod().numIterations() == 0)
|
||||
updateConstraintsMap_();
|
||||
|
||||
applyConstraintsToSolution_();
|
||||
|
||||
// to avoid a race condition if two threads handle an exception at the same time,
|
||||
// we use an explicit lock to control access to the exception storage object
|
||||
// amongst thread-local handlers
|
||||
std::mutex exceptionLock;
|
||||
|
||||
// storage to any exception that needs to be bridged out of the
|
||||
// parallel block below. initialized to null to indicate no exception
|
||||
std::exception_ptr exceptionPtr = nullptr;
|
||||
|
||||
// relinearize the elements...
|
||||
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView_());
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel
|
||||
#endif
|
||||
{
|
||||
ElementIterator elemIt = threadedElemIt.beginParallel();
|
||||
ElementIterator nextElemIt = elemIt;
|
||||
try {
|
||||
for (; !threadedElemIt.isFinished(elemIt); elemIt = nextElemIt) {
|
||||
// give the model and the problem a chance to prefetch the data required
|
||||
// to linearize the next element, but only if we need to consider it
|
||||
nextElemIt = threadedElemIt.increment();
|
||||
if (!threadedElemIt.isFinished(nextElemIt)) {
|
||||
const auto& nextElem = *nextElemIt;
|
||||
if (linearizeNonLocalElements
|
||||
|| nextElem.partitionType() == Dune::InteriorEntity)
|
||||
{
|
||||
model_().prefetch(nextElem);
|
||||
problem_().prefetch(nextElem);
|
||||
}
|
||||
}
|
||||
|
||||
const Element& elem = *elemIt;
|
||||
if (!linearizeNonLocalElements && elem.partitionType() != Dune::InteriorEntity)
|
||||
continue;
|
||||
|
||||
linearizeElement_(elem);
|
||||
}
|
||||
}
|
||||
// If an exception occurs in the parallel block, it won't escape the
|
||||
// block; terminate() is called instead of a handler outside! hence, we
|
||||
// tuck any exceptions that occur away in the pointer. If an exception
|
||||
// occurs in more than one thread at the same time, we must pick one of
|
||||
// them to be rethrown as we cannot have two active exceptions at the
|
||||
// same time. This solution essentially picks one at random. This will
|
||||
// only be a problem if two different kinds of exceptions are thrown, for
|
||||
// instance if one thread experiences a (recoverable) numerical issue
|
||||
// while another is out of memory.
|
||||
catch(...) {
|
||||
std::lock_guard<std::mutex> take(exceptionLock);
|
||||
exceptionPtr = std::current_exception();
|
||||
threadedElemIt.setFinished();
|
||||
}
|
||||
} // parallel block
|
||||
|
||||
// after reduction from the parallel block, exceptionPtr will point to
|
||||
// a valid exception if one occurred in one of the threads; rethrow
|
||||
// it here to let the outer handler take care of it properly
|
||||
if(exceptionPtr) {
|
||||
std::rethrow_exception(exceptionPtr);
|
||||
}
|
||||
|
||||
applyConstraintsToLinearization_();
|
||||
}
|
||||
|
||||
// linearize an element in the interior of the process' grid partition
|
||||
void linearizeElement_(const Element& elem)
|
||||
{
|
||||
unsigned threadId = ThreadManager::threadId();
|
||||
|
||||
ElementContext *elementCtx = elementCtx_[threadId];
|
||||
auto& localLinearizer = model_().localLinearizer(threadId);
|
||||
|
||||
// the actual work of linearization is done by the local linearizer class
|
||||
localLinearizer.linearize(*elementCtx, elem);
|
||||
|
||||
// update the right hand side and the Jacobian matrix
|
||||
if (getPropValue<TypeTag, Properties::UseLinearizationLock>())
|
||||
globalMatrixMutex_.lock();
|
||||
|
||||
size_t numPrimaryDof = elementCtx->numPrimaryDof(/*timeIdx=*/0);
|
||||
for (unsigned primaryDofIdx = 0; primaryDofIdx < numPrimaryDof; ++ primaryDofIdx) {
|
||||
unsigned globI = elementCtx->globalSpaceIndex(/*spaceIdx=*/primaryDofIdx, /*timeIdx=*/0);
|
||||
|
||||
// update the right hand side
|
||||
residual_[globI] += localLinearizer.residual(primaryDofIdx);
|
||||
|
||||
// update the global Jacobian matrix
|
||||
for (unsigned dofIdx = 0; dofIdx < elementCtx->numDof(/*timeIdx=*/0); ++ dofIdx) {
|
||||
unsigned globJ = elementCtx->globalSpaceIndex(/*spaceIdx=*/dofIdx, /*timeIdx=*/0);
|
||||
|
||||
jacobian_->addToBlock(globJ, globI, localLinearizer.jacobian(dofIdx, primaryDofIdx));
|
||||
}
|
||||
}
|
||||
|
||||
if (getPropValue<TypeTag, Properties::UseLinearizationLock>())
|
||||
globalMatrixMutex_.unlock();
|
||||
}
|
||||
|
||||
// apply the constraints to the solution. (i.e., the solution of constraint degrees
|
||||
// of freedom is set to the value of the constraint.)
|
||||
void applyConstraintsToSolution_()
|
||||
{
|
||||
if (!enableConstraints_())
|
||||
return;
|
||||
|
||||
// TODO: assuming a history size of 2 only works for Euler time discretizations!
|
||||
auto& sol = model_().solution(/*timeIdx=*/0);
|
||||
auto& oldSol = model_().solution(/*timeIdx=*/1);
|
||||
|
||||
auto it = constraintsMap_.begin();
|
||||
const auto& endIt = constraintsMap_.end();
|
||||
for (; it != endIt; ++it) {
|
||||
sol[it->first] = it->second;
|
||||
oldSol[it->first] = it->second;
|
||||
}
|
||||
}
|
||||
|
||||
// apply the constraints to the linearization. (i.e., for constrain degrees of
|
||||
// freedom the Jacobian matrix maps to identity and the residual is zero)
|
||||
void applyConstraintsToLinearization_()
|
||||
{
|
||||
if (!enableConstraints_())
|
||||
return;
|
||||
|
||||
auto it = constraintsMap_.begin();
|
||||
const auto& endIt = constraintsMap_.end();
|
||||
for (; it != endIt; ++it) {
|
||||
unsigned constraintDofIdx = it->first;
|
||||
|
||||
// reset the column of the Jacobian matrix
|
||||
// put an identity matrix on the main diagonal of the Jacobian
|
||||
jacobian_->clearRow(constraintDofIdx, Scalar(1.0));
|
||||
|
||||
// make the right-hand side of constraint DOFs zero
|
||||
residual_[constraintDofIdx] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
static bool enableConstraints_()
|
||||
{ return getPropValue<TypeTag, Properties::EnableConstraints>(); }
|
||||
|
||||
Simulator *simulatorPtr_;
|
||||
std::vector<ElementContext*> elementCtx_;
|
||||
|
||||
// The constraint equations (only non-empty if the
|
||||
// EnableConstraints property is true)
|
||||
std::map<unsigned, Constraints> constraintsMap_;
|
||||
|
||||
// the jacobian matrix
|
||||
std::unique_ptr<SparseMatrixAdapter> jacobian_;
|
||||
@ -712,8 +473,6 @@ private:
|
||||
|
||||
LinearizationType linearizationType_;
|
||||
|
||||
std::mutex globalMatrixMutex_;
|
||||
|
||||
SparseTable<unsigned> neighbours_;
|
||||
SparseTable<double> trans_;
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user