moving computeSegmentFluidProperties to MultisegmentWells

This commit is contained in:
Kai Bao 2016-04-27 11:43:08 +02:00
parent 944ebec4c0
commit 580ac7df6b
4 changed files with 224 additions and 208 deletions

View File

@ -224,11 +224,6 @@ namespace Opm {
std::vector<ADB>& vars,
SolutionState& state) const;
// Calculate the density of the mixture in the segments
// And the surface volume of the components in the segments by dt
void
computeSegmentFluidProperties(const SolutionState& state);
void
computeSegmentPressuresDelta(const SolutionState& state);

View File

@ -456,7 +456,7 @@ namespace Opm {
// Compute initial accumulation contributions
// and well connection pressures.
asImpl().computeAccum(state0, 0);
asImpl().computeSegmentFluidProperties(state0);
msWells().computeSegmentFluidProperties(state0, phaseCondition(), active_, fluid_, numPhases());
const int np = numPhases();
assert(np == int(msWells().segmentCompSurfVolumeInitial().size()));
for (int phase = 0; phase < np; ++phase) {
@ -483,7 +483,8 @@ namespace Opm {
return;
}
asImpl().computeSegmentFluidProperties(state);
// asImpl().computeSegmentFluidProperties(state);
msWells().computeSegmentFluidProperties(state, phaseCondition(), active_, fluid_, numPhases());
asImpl().computeSegmentPressuresDelta(state);
std::vector<ADB> mob_perfcells;
@ -921,207 +922,6 @@ namespace Opm {
template <class Grid>
void
BlackoilMultiSegmentModel<Grid>::computeSegmentFluidProperties(const SolutionState& state)
{
const int nw = wellsMultiSegment().size();
const int nseg_total = state.segp.size();
const int np = numPhases();
if ( !msWellOps().has_multisegment_wells ){
// not sure if this is needed actually
// TODO: to check later if this is really necessary.
msWells().wellSegmentDensities() = ADB::constant(V::Zero(nseg_total));
msWells().segmentMassFlowRates() = ADB::constant(V::Zero(nseg_total));
msWells().segmentViscosities() = ADB::constant(V::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
msWells().segmentCompSurfVolumeCurrent()[phase] = ADB::constant(V::Zero(nseg_total));
msWells().segmentCompSurfVolumeInitial()[phase] = V::Zero(nseg_total);
}
return;
}
// although we will calculate segment density for non-segmented wells at the same time,
// while under most of the cases, they will not be used,
// since for most of the cases, the density calculation for non-segment wells are
// set to be 'SEG' way, which is not a option for multi-segment wells.
// When the density calcuation for non-segmented wells are set to 'AVG', then
// the density calculation of the mixtures can be the same, while it remains to be verified.
// The grid cells associated with segments.
// TODO: shoud be computed once and stored in WellState or global Wells structure or class.
std::vector<int> segment_cells;
segment_cells.reserve(nseg_total);
for (int w = 0; w < nw; ++w) {
const std::vector<int>& segment_cells_well = wellsMultiSegment()[w]->segmentCells();
segment_cells.insert(segment_cells.end(), segment_cells_well.begin(), segment_cells_well.end());
}
assert(int(segment_cells.size()) == nseg_total);
const ADB segment_temp = subset(state.temperature, segment_cells);
// using the segment pressure or the average pressure
// using the segment pressure first
const ADB& segment_press = state.segp;
// Compute PVT properties for segments.
std::vector<PhasePresence> segment_cond(nseg_total);
const std::vector<PhasePresence>& pc = phaseCondition();
for (int s = 0; s < nseg_total; ++s) {
segment_cond[s] = pc[segment_cells[s]];
}
std::vector<ADB> b_seg(np, ADB::null());
// Viscosities for different phases
std::vector<ADB> mu_seg(np, ADB::null());
ADB rsmax_seg = ADB::null();
ADB rvmax_seg = ADB::null();
const PhaseUsage& pu = fluid_.phaseUsage();
if (pu.phase_used[Water]) {
b_seg[pu.phase_pos[Water]] = fluid_.bWat(segment_press, segment_temp, segment_cells);
mu_seg[pu.phase_pos[Water]] = fluid_.muWat(segment_press, segment_temp, segment_cells);
}
assert(active_[Oil]);
const ADB segment_so = subset(state.saturation[pu.phase_pos[Oil]], segment_cells);
if (pu.phase_used[Oil]) {
const ADB segment_rs = subset(state.rs, segment_cells);
b_seg[pu.phase_pos[Oil]] = fluid_.bOil(segment_press, segment_temp, segment_rs,
segment_cond, segment_cells);
rsmax_seg = fluidRsSat(segment_press, segment_so, segment_cells);
mu_seg[pu.phase_pos[Oil]] = fluid_.muOil(segment_press, segment_temp, segment_rs,
segment_cond, segment_cells);
}
assert(active_[Gas]);
if (pu.phase_used[Gas]) {
const ADB segment_rv = subset(state.rv, segment_cells);
b_seg[pu.phase_pos[Gas]] = fluid_.bGas(segment_press, segment_temp, segment_rv,
segment_cond, segment_cells);
rvmax_seg = fluidRvSat(segment_press, segment_so, segment_cells);
mu_seg[pu.phase_pos[Gas]] = fluid_.muGas(segment_press, segment_temp, segment_rv,
segment_cond, segment_cells);
}
// Extract segment flow by phase (segqs) and compute total surface rate.
ADB tot_surface_rate = ADB::constant(V::Zero(nseg_total));
std::vector<ADB> segqs(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
segqs[phase] = subset(state.segqs, Span(nseg_total, 1, phase * nseg_total));
tot_surface_rate += segqs[phase];
}
// TODO: later this will be implmented as a global mapping
std::vector<std::vector<double>> comp_frac(np, std::vector<double>(nseg_total, 0.0));
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
WellMultiSegmentConstPtr well = wellsMultiSegment()[w];
const int nseg = well->numberOfSegments();
const std::vector<double>& comp_frac_well = well->compFrac();
for (int phase = 0; phase < np; ++phase) {
for (int s = 0; s < nseg; ++s) {
comp_frac[phase][s + start_segment] = comp_frac_well[phase];
}
}
start_segment += nseg;
}
assert(start_segment == nseg_total);
// Compute mix.
// 'mix' contains the component fractions under surface conditions.
std::vector<ADB> mix(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
// initialize to be the compFrac for each well,
// then update only the one with non-zero total volume rate
mix[phase] = ADB::constant(Eigen::Map<V>(comp_frac[phase].data(), nseg_total));
}
// There should be a better way to do this.
Selector<double> non_zero_tot_rate(tot_surface_rate.value(), Selector<double>::NotEqualZero);
for (int phase = 0; phase < np; ++phase) {
mix[phase] = non_zero_tot_rate.select(segqs[phase] / tot_surface_rate, mix[phase]);
}
// Calculate rs and rv.
ADB rs = ADB::constant(V::Zero(nseg_total));
ADB rv = rs;
const int gaspos = pu.phase_pos[Gas];
const int oilpos = pu.phase_pos[Oil];
Selector<double> non_zero_mix_oilpos(mix[oilpos].value(), Selector<double>::GreaterZero);
Selector<double> non_zero_mix_gaspos(mix[gaspos].value(), Selector<double>::GreaterZero);
// What is the better way to do this?
// big values should not be necessary
ADB big_values = ADB::constant(V::Constant(nseg_total, 1.e100));
ADB mix_gas_oil = non_zero_mix_oilpos.select(mix[gaspos] / mix[oilpos], big_values);
ADB mix_oil_gas = non_zero_mix_gaspos.select(mix[oilpos] / mix[gaspos], big_values);
if (active_[Oil]) {
V selectorUnderRsmax = V::Zero(nseg_total);
V selectorAboveRsmax = V::Zero(nseg_total);
for (int s = 0; s < nseg_total; ++s) {
if (mix_gas_oil.value()[s] > rsmax_seg.value()[s]) {
selectorAboveRsmax[s] = 1.0;
} else {
selectorUnderRsmax[s] = 1.0;
}
}
rs = non_zero_mix_oilpos.select(selectorAboveRsmax * rsmax_seg + selectorUnderRsmax * mix_gas_oil, rs);
}
if (active_[Gas]) {
V selectorUnderRvmax = V::Zero(nseg_total);
V selectorAboveRvmax = V::Zero(nseg_total);
for (int s = 0; s < nseg_total; ++s) {
if (mix_oil_gas.value()[s] > rvmax_seg.value()[s]) {
selectorAboveRvmax[s] = 1.0;
} else {
selectorUnderRvmax[s] = 1.0;
}
}
rv = non_zero_mix_gaspos.select(selectorAboveRvmax * rvmax_seg + selectorUnderRvmax * mix_oil_gas, rv);
}
// Calculate the phase fraction under reservoir conditions.
std::vector<ADB> x(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
x[phase] = mix[phase];
}
if (active_[Gas] && active_[Oil]) {
x[gaspos] = (mix[gaspos] - mix[oilpos] * rs) / (V::Ones(nseg_total) - rs * rv);
x[oilpos] = (mix[oilpos] - mix[gaspos] * rv) / (V::Ones(nseg_total) - rs * rv);
}
// Compute total reservoir volume to surface volume ratio.
ADB volrat = ADB::constant(V::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
volrat += x[phase] / b_seg[phase];
}
// Compute segment densities.
ADB dens = ADB::constant(V::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
const V surface_density = fluid_.surfaceDensity(phase, segment_cells);
dens += surface_density * mix[phase];
}
msWells().wellSegmentDensities() = dens / volrat;
// Calculating the surface volume of each component in the segment
assert(np == int(msWells().segmentCompSurfVolumeCurrent().size()));
const ADB segment_surface_volume = msWells().segVDt() / volrat;
for (int phase = 0; phase < np; ++phase) {
msWells().segmentCompSurfVolumeCurrent()[phase] = segment_surface_volume * mix[phase];
}
// Mass flow rate of the segments
msWells().segmentMassFlowRates() = ADB::constant(V::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
// TODO: how to remove one repeated surfaceDensity()
const V surface_density = fluid_.surfaceDensity(phase, segment_cells);
msWells().segmentMassFlowRates() += surface_density * segqs[phase];
}
// Viscosity of the fluid mixture in the segments
msWells().segmentViscosities() = ADB::constant(V::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
msWells().segmentViscosities() += x[phase] * mu_seg[phase];
}
}
template <class Grid>
void

View File

@ -34,6 +34,7 @@
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/WellMultiSegment.hpp>
@ -146,6 +147,17 @@ namespace Opm {
std::vector<ADB>& cq_s) const;
// Calculate the density of the mixture in the segments
// And the surface volume of the components in the segments by dt
template <class SolutionState>
void
computeSegmentFluidProperties(const SolutionState& state,
const std::vector<PhasePresence>& pc,
const std::vector<bool>& active,
const BlackoilPropsAdInterface& fluid,
const int np);
protected:
// TODO: probably a wells_active_ will be required here.
const std::vector<WellMultiSegmentConstPtr> wells_multisegment_;

View File

@ -306,5 +306,214 @@ namespace Opm
}
}
template <class SolutionState>
void
MultisegmentWells::
computeSegmentFluidProperties(const SolutionState& state,
const std::vector<PhasePresence>& pc,
const std::vector<bool>& active,
const BlackoilPropsAdInterface& fluid,
const int np)
{
const int nw = wells().size();
const int nseg_total = nseg_total_;
if ( !wellOps().has_multisegment_wells ){
// not sure if this is needed actually
// TODO: to check later if this is really necessary.
wellSegmentDensities() = ADB::constant(Vector::Zero(nseg_total));
segmentMassFlowRates() = ADB::constant(Vector::Zero(nseg_total));
segmentViscosities() = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
segmentCompSurfVolumeCurrent()[phase] = ADB::constant(Vector::Zero(nseg_total));
segmentCompSurfVolumeInitial()[phase] = Vector::Zero(nseg_total);
}
return;
}
// although we will calculate segment density for non-segmented wells at the same time,
// while under most of the cases, they will not be used,
// since for most of the cases, the density calculation for non-segment wells are
// set to be 'SEG' way, which is not a option for multi-segment wells.
// When the density calcuation for non-segmented wells are set to 'AVG', then
// the density calculation of the mixtures can be the same, while it remains to be verified.
// The grid cells associated with segments.
// TODO: shoud be computed once and stored in WellState or global Wells structure or class.
std::vector<int> segment_cells;
segment_cells.reserve(nseg_total);
for (int w = 0; w < nw; ++w) {
const std::vector<int>& segment_cells_well = wells()[w]->segmentCells();
segment_cells.insert(segment_cells.end(), segment_cells_well.begin(), segment_cells_well.end());
}
assert(int(segment_cells.size()) == nseg_total);
const ADB segment_temp = subset(state.temperature, segment_cells);
// using the segment pressure or the average pressure
// using the segment pressure first
const ADB& segment_press = state.segp;
// Compute PVT properties for segments.
std::vector<PhasePresence> segment_cond(nseg_total);
for (int s = 0; s < nseg_total; ++s) {
segment_cond[s] = pc[segment_cells[s]];
}
std::vector<ADB> b_seg(np, ADB::null());
// Viscosities for different phases
std::vector<ADB> mu_seg(np, ADB::null());
ADB rsmax_seg = ADB::null();
ADB rvmax_seg = ADB::null();
const PhaseUsage& pu = fluid.phaseUsage();
if (pu.phase_used[Water]) {
b_seg[pu.phase_pos[Water]] = fluid.bWat(segment_press, segment_temp, segment_cells);
mu_seg[pu.phase_pos[Water]] = fluid.muWat(segment_press, segment_temp, segment_cells);
}
assert(active[Oil]);
const ADB segment_so = subset(state.saturation[pu.phase_pos[Oil]], segment_cells);
if (pu.phase_used[Oil]) {
const ADB segment_rs = subset(state.rs, segment_cells);
b_seg[pu.phase_pos[Oil]] = fluid.bOil(segment_press, segment_temp, segment_rs,
segment_cond, segment_cells);
// rsmax_seg = fluidRsSat(segment_press, segment_so, segment_cells);
rsmax_seg = fluid.rsSat(segment_press, segment_so, segment_cells);
mu_seg[pu.phase_pos[Oil]] = fluid.muOil(segment_press, segment_temp, segment_rs,
segment_cond, segment_cells);
}
assert(active[Gas]);
if (pu.phase_used[Gas]) {
const ADB segment_rv = subset(state.rv, segment_cells);
b_seg[pu.phase_pos[Gas]] = fluid.bGas(segment_press, segment_temp, segment_rv,
segment_cond, segment_cells);
// rvmax_seg = fluidRvSat(segment_press, segment_so, segment_cells);
rvmax_seg = fluid.rvSat(segment_press, segment_so, segment_cells);
mu_seg[pu.phase_pos[Gas]] = fluid.muGas(segment_press, segment_temp, segment_rv,
segment_cond, segment_cells);
}
// Extract segment flow by phase (segqs) and compute total surface rate.
ADB tot_surface_rate = ADB::constant(Vector::Zero(nseg_total));
std::vector<ADB> segqs(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
segqs[phase] = subset(state.segqs, Span(nseg_total, 1, phase * nseg_total));
tot_surface_rate += segqs[phase];
}
// TODO: later this will be implmented as a global mapping
std::vector<std::vector<double>> comp_frac(np, std::vector<double>(nseg_total, 0.0));
int start_segment = 0;
for (int w = 0; w < nw; ++w) {
WellMultiSegmentConstPtr well = wells()[w];
const int nseg = well->numberOfSegments();
const std::vector<double>& comp_frac_well = well->compFrac();
for (int phase = 0; phase < np; ++phase) {
for (int s = 0; s < nseg; ++s) {
comp_frac[phase][s + start_segment] = comp_frac_well[phase];
}
}
start_segment += nseg;
}
assert(start_segment == nseg_total);
// Compute mix.
// 'mix' contains the component fractions under surface conditions.
std::vector<ADB> mix(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
// initialize to be the compFrac for each well,
// then update only the one with non-zero total volume rate
mix[phase] = ADB::constant(Eigen::Map<Vector>(comp_frac[phase].data(), nseg_total));
}
// There should be a better way to do this.
Selector<double> non_zero_tot_rate(tot_surface_rate.value(), Selector<double>::NotEqualZero);
for (int phase = 0; phase < np; ++phase) {
mix[phase] = non_zero_tot_rate.select(segqs[phase] / tot_surface_rate, mix[phase]);
}
// Calculate rs and rv.
ADB rs = ADB::constant(Vector::Zero(nseg_total));
ADB rv = rs;
const int gaspos = pu.phase_pos[Gas];
const int oilpos = pu.phase_pos[Oil];
Selector<double> non_zero_mix_oilpos(mix[oilpos].value(), Selector<double>::GreaterZero);
Selector<double> non_zero_mix_gaspos(mix[gaspos].value(), Selector<double>::GreaterZero);
// What is the better way to do this?
// big values should not be necessary
ADB big_values = ADB::constant(Vector::Constant(nseg_total, 1.e100));
ADB mix_gas_oil = non_zero_mix_oilpos.select(mix[gaspos] / mix[oilpos], big_values);
ADB mix_oil_gas = non_zero_mix_gaspos.select(mix[oilpos] / mix[gaspos], big_values);
if (active[Oil]) {
Vector selectorUnderRsmax = Vector::Zero(nseg_total);
Vector selectorAboveRsmax = Vector::Zero(nseg_total);
for (int s = 0; s < nseg_total; ++s) {
if (mix_gas_oil.value()[s] > rsmax_seg.value()[s]) {
selectorAboveRsmax[s] = 1.0;
} else {
selectorUnderRsmax[s] = 1.0;
}
}
rs = non_zero_mix_oilpos.select(selectorAboveRsmax * rsmax_seg + selectorUnderRsmax * mix_gas_oil, rs);
}
if (active[Gas]) {
Vector selectorUnderRvmax = Vector::Zero(nseg_total);
Vector selectorAboveRvmax = Vector::Zero(nseg_total);
for (int s = 0; s < nseg_total; ++s) {
if (mix_oil_gas.value()[s] > rvmax_seg.value()[s]) {
selectorAboveRvmax[s] = 1.0;
} else {
selectorUnderRvmax[s] = 1.0;
}
}
rv = non_zero_mix_gaspos.select(selectorAboveRvmax * rvmax_seg + selectorUnderRvmax * mix_oil_gas, rv);
}
// Calculate the phase fraction under reservoir conditions.
std::vector<ADB> x(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
x[phase] = mix[phase];
}
if (active[Gas] && active[Oil]) {
x[gaspos] = (mix[gaspos] - mix[oilpos] * rs) / (Vector::Ones(nseg_total) - rs * rv);
x[oilpos] = (mix[oilpos] - mix[gaspos] * rv) / (Vector::Ones(nseg_total) - rs * rv);
}
// Compute total reservoir volume to surface volume ratio.
ADB volrat = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
volrat += x[phase] / b_seg[phase];
}
// Compute segment densities.
ADB dens = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
const Vector surface_density = fluid.surfaceDensity(phase, segment_cells);
dens += surface_density * mix[phase];
}
wellSegmentDensities() = dens / volrat;
// Calculating the surface volume of each component in the segment
assert(np == int(segmentCompSurfVolumeCurrent().size()));
const ADB segment_surface_volume = segVDt() / volrat;
for (int phase = 0; phase < np; ++phase) {
segmentCompSurfVolumeCurrent()[phase] = segment_surface_volume * mix[phase];
}
// Mass flow rate of the segments
segmentMassFlowRates() = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
// TODO: how to remove one repeated surfaceDensity()
const Vector surface_density = fluid.surfaceDensity(phase, segment_cells);
segmentMassFlowRates() += surface_density * segqs[phase];
}
// Viscosity of the fluid mixture in the segments
segmentViscosities() = ADB::constant(Vector::Zero(nseg_total));
for (int phase = 0; phase < np; ++phase) {
segmentViscosities() += x[phase] * mu_seg[phase];
}
}
}
#endif // OPM_MULTISEGMENTWELLS_IMPL_HEADER_INCLUDED