mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
since two phase polymer simulator support EclipseWriter, need to remove historical
files for outputing water cut.
This commit is contained in:
parent
ac764bd8a8
commit
58bdc701e3
@ -197,9 +197,8 @@ namespace {
|
||||
FullyImplicitCompressiblePolymerSolver::
|
||||
step(const double dt,
|
||||
PolymerBlackoilState& x ,
|
||||
WellStateFullyImplicitBlackoil& xw,
|
||||
const std::vector<double>& polymer_inflow,
|
||||
std::vector<double>& src)
|
||||
WellStateFullyImplicitBlackoil& xw,
|
||||
const std::vector<double>& polymer_inflow)
|
||||
{
|
||||
|
||||
const SolutionState state = constantState(x, xw);
|
||||
@ -209,7 +208,7 @@ namespace {
|
||||
const double atol = 1.0e-12;
|
||||
const double rtol = 5.0e-8;
|
||||
const int maxit = 15;
|
||||
assemble(dt, x, xw, polymer_inflow, src);
|
||||
assemble(dt, x, xw, polymer_inflow);
|
||||
|
||||
const double r0 = residualNorm();
|
||||
const double r_polymer = residual_.material_balance_eq[2].value().matrix().lpNorm<Eigen::Infinity>();
|
||||
@ -223,7 +222,7 @@ namespace {
|
||||
const V dx = solveJacobianSystem();
|
||||
|
||||
updateState(dx, x, xw);
|
||||
assemble(dt, x, xw, polymer_inflow, src);
|
||||
assemble(dt, x, xw, polymer_inflow);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
@ -494,10 +493,9 @@ namespace {
|
||||
void
|
||||
FullyImplicitCompressiblePolymerSolver::
|
||||
assemble(const double dt,
|
||||
const PolymerBlackoilState& x ,
|
||||
const WellStateFullyImplicitBlackoil& xw,
|
||||
const std::vector<double>& polymer_inflow,
|
||||
std::vector<double>& src)
|
||||
const PolymerBlackoilState& x,
|
||||
const WellStateFullyImplicitBlackoil& xw,
|
||||
const std::vector<double>& polymer_inflow)
|
||||
{
|
||||
// Create the primary variables.
|
||||
//
|
||||
@ -541,9 +539,6 @@ namespace {
|
||||
const int np = wells_.number_of_phases;
|
||||
const int nw = wells_.number_of_wells;
|
||||
const int nperf = wells_.well_connpos[nw];
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
src[i] = 0.0;
|
||||
}
|
||||
|
||||
const std::vector<int> well_cells(wells_.well_cells, wells_.well_cells + nperf);
|
||||
const V transw = Eigen::Map<const V>(wells_.WI, nperf);
|
||||
@ -621,9 +616,6 @@ namespace {
|
||||
well_contribs[phase] = superset(perf_flux*perf_b, well_cells, nc);
|
||||
// DUMP(well_contribs[phase]);
|
||||
residual_.material_balance_eq[phase] += well_contribs[phase];
|
||||
for (int cell = 0; cell < nc; ++cell) {
|
||||
src[cell] += well_contribs[phase].value()[cell];
|
||||
}
|
||||
}
|
||||
|
||||
// well rates contribs to polymer mass balance eqn.
|
||||
|
@ -79,13 +79,11 @@ namespace Opm {
|
||||
/// \param[in] state reservoir state
|
||||
/// \param[in] wstate well state
|
||||
/// \param[in] polymer_inflow polymer influx
|
||||
/// \param[in] src to caculate wc
|
||||
void
|
||||
step(const double dt,
|
||||
PolymerBlackoilState& state ,
|
||||
WellStateFullyImplicitBlackoil& wstate,
|
||||
const std::vector<double>& polymer_inflow,
|
||||
std::vector<double>& src);
|
||||
WellStateFullyImplicitBlackoil& wstate,
|
||||
const std::vector<double>& polymer_inflow);
|
||||
|
||||
private:
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
@ -159,9 +157,8 @@ namespace Opm {
|
||||
void
|
||||
assemble(const double dt,
|
||||
const PolymerBlackoilState& x,
|
||||
const WellStateFullyImplicitBlackoil& xw,
|
||||
const std::vector<double>& polymer_inflow,
|
||||
std::vector<double>& src);
|
||||
const WellStateFullyImplicitBlackoil& xw,
|
||||
const std::vector<double>& polymer_inflow);
|
||||
|
||||
V solveJacobianSystem() const;
|
||||
|
||||
|
@ -32,7 +32,6 @@
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
||||
|
||||
#include <opm/polymer/fullyimplicit/FullyImplicitCompressiblePolymerSolver.hpp>
|
||||
#include <opm/polymer/fullyimplicit/utilities.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/pressure/flow_bc.h>
|
||||
@ -232,11 +231,9 @@ namespace Opm
|
||||
} else {
|
||||
computePorevolume(grid_, props_.porosity(), porevol);
|
||||
}
|
||||
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
||||
std::vector<double> initial_porevol = porevol;
|
||||
|
||||
std::vector<double> polymer_inflow_c(grid_.number_of_cells);
|
||||
std::vector<double> transport_src(grid_.number_of_cells);
|
||||
// Main simulation loop.
|
||||
Opm::time::StopWatch solver_timer;
|
||||
double stime = 0.0;
|
||||
@ -248,11 +245,11 @@ namespace Opm
|
||||
|
||||
//Main simulation loop.
|
||||
while (!timer.done()) {
|
||||
#if 0
|
||||
double tot_injected[2] = { 0.0 };
|
||||
double tot_produced[2] = { 0.0 };
|
||||
Opm::Watercut watercut;
|
||||
watercut.push(0.0, 0.0, 0.0);
|
||||
#if 0
|
||||
std::vector<double> fractional_flows;
|
||||
std::vector<double> well_resflows_phase;
|
||||
if (wells_) {
|
||||
@ -318,7 +315,7 @@ namespace Opm
|
||||
// Run solver.
|
||||
solver_timer.start();
|
||||
FullyImplicitCompressiblePolymerSolver solver(grid_, props_, geo_, rock_comp_props_, polymer_props_, *wells_manager.c_wells(), linsolver_);
|
||||
solver.step(timer.currentStepLength(), state, well_state, polymer_inflow_c, transport_src);
|
||||
solver.step(timer.currentStepLength(), state, well_state, polymer_inflow_c);
|
||||
// Stop timer and report.
|
||||
solver_timer.stop();
|
||||
const double st = solver_timer.secsSinceStart();
|
||||
@ -330,12 +327,11 @@ namespace Opm
|
||||
initial_porevol = porevol;
|
||||
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
|
||||
}
|
||||
|
||||
/*
|
||||
double injected[2] = { 0.0 };
|
||||
double produced[2] = { 0.0 };
|
||||
double polyinj = 0;
|
||||
double polyprod = 0;
|
||||
|
||||
Opm::computeInjectedProduced(props_, polymer_props_,
|
||||
state,
|
||||
transport_src, polymer_inflow_c, timer.currentStepLength(),
|
||||
@ -363,12 +359,12 @@ namespace Opm
|
||||
std::cout << " Total prod reservoir volumes: "
|
||||
<< std::setw(width) << tot_produced[0]
|
||||
<< std::setw(width) << tot_produced[1] << std::endl;
|
||||
*/
|
||||
if (output_) {
|
||||
SimulatorReport step_report;
|
||||
step_report.pressure_time = st;
|
||||
step_report.total_time = step_timer.secsSinceStart();
|
||||
step_report.reportParam(tstep_os);
|
||||
outputWaterCut(watercut, output_dir_);
|
||||
}
|
||||
++timer;
|
||||
prev_well_state = well_state;
|
||||
@ -464,7 +460,7 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#if 0
|
||||
static void outputWaterCut(const Opm::Watercut& watercut,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
@ -476,6 +472,7 @@ namespace Opm
|
||||
}
|
||||
watercut.write(os);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -1,293 +0,0 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2014 STATOIL ASA.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/linalg/blas_lapack.h>
|
||||
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
//#include <opm/autodiff/IncompPropsAdInterface.hpp>
|
||||
#include <opm/polymer/PolymerBlackoilState.hpp>
|
||||
#include <opm/polymer/PolymerState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/polymer/fullyimplicit/PolymerPropsAd.hpp>
|
||||
#include <opm/polymer/fullyimplicit/utilities.hpp>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
/// Compute two-phase transport source terms from well terms.
|
||||
/// Note: Unlike the incompressible version of this function,
|
||||
/// this version computes surface volume injection rates,
|
||||
/// production rates are still total reservoir volumes.
|
||||
/// \param[in] props Fluid and rock properties.
|
||||
/// \param[in] wells Wells data structure.
|
||||
/// \param[in] well_state Well pressures and fluxes.
|
||||
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
|
||||
/// (+) positive inflow of first (water) phase (reservoir volume),
|
||||
/// (-) negative total outflow of both phases (reservoir volume).
|
||||
void computeTransportSource(const BlackoilPropsAdInterface& props,
|
||||
const Wells* wells,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& transport_src)
|
||||
{
|
||||
int nc = props.numCells();
|
||||
transport_src.clear();
|
||||
transport_src.resize(nc, 0.0);
|
||||
// Well contributions.
|
||||
if (wells) {
|
||||
const int nw = wells->number_of_wells;
|
||||
const int np = wells->number_of_phases;
|
||||
if (np != 2) {
|
||||
OPM_THROW(std::runtime_error, "computeTransportSource() requires a 2 phase case.");
|
||||
}
|
||||
std::vector<double> A(np*np);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = wells->comp_frac + np*w;
|
||||
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
|
||||
const int perf_cell = wells->well_cells[perf];
|
||||
double perf_rate = well_state.perfRates()[perf];
|
||||
if (perf_rate > 0.0) {
|
||||
// perf_rate is a total inflow reservoir rate, we want a surface water rate.
|
||||
if (wells->type[w] != INJECTOR) {
|
||||
std::cout << "**** Warning: crossflow in well "
|
||||
<< w << " perf " << perf - wells->well_connpos[w]
|
||||
<< " ignored. Reservoir rate was "
|
||||
<< perf_rate/Opm::unit::day << " m^3/day." << std::endl;
|
||||
perf_rate = 0.0;
|
||||
} else {
|
||||
assert(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6);
|
||||
perf_rate *= comp_frac[0]; // Water reservoir volume rate.
|
||||
}
|
||||
}
|
||||
transport_src[perf_cell] += perf_rate;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injected and produced polymer mass - in the compressible case.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] state state variables (pressure, fluxes etc.)
|
||||
/// @param[in] transport_src if < 0: total reservoir volume outflow,
|
||||
/// if > 0: first phase *surface volume* inflow.
|
||||
/// @param[in] inj_c injected concentration by cell
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/transport_src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// @param[out] polyinj injected mass of polymer
|
||||
/// @param[out] polyprod produced mass of polymer
|
||||
// This function need a incompProps based on Ad.
|
||||
/*
|
||||
void computeInjectedProduced(const IncompPropsAdInterface& props,
|
||||
const Opm::PolymerPropsAd& polymer_props,
|
||||
const PolymerState& state,
|
||||
const std::vector<double>& transport_src,
|
||||
const std::vector<double>& inj_c,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced,
|
||||
double& polyinj,
|
||||
double& polyprod)
|
||||
{
|
||||
const int num_cells = transport_src.size();
|
||||
if (props.numCells() != num_cells) {
|
||||
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
|
||||
}
|
||||
const int np = props.numPhases();
|
||||
if (int(state.saturation().size()) != num_cells*np) {
|
||||
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
|
||||
}
|
||||
std::vector<int> cells(num_cells);
|
||||
const V p = Eigen::Map<const V>(&state.pressure()[0], num_cells, 1);
|
||||
const DataBlock s = Eigen::Map<const DataBlock>(&state.saturation()[0], num_cells, np);
|
||||
const V sw = s.col(0);
|
||||
const V so = s.col(1);
|
||||
const V c = Eigen::Map<const V>(&state.concentration()[0], num_cells, 1);
|
||||
const V cmax = Eigen::Map<const V>(&state.maxconcentration()[0], num_cells, 1);
|
||||
const V trans_src = Eigen::Map<const V>(&transport_src[0], num_cells, 1);
|
||||
V src = V::Constant(num_cells, -1.0); // negative is injec, positive is producer.
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
cells[cell] = cell;
|
||||
if(transport_src[cell] > 0.0) {
|
||||
src[cell] = 1.0;
|
||||
}
|
||||
}
|
||||
const Selector<double> src_selector(src);
|
||||
const V one = V::Constant(num_cells, 1.0);
|
||||
const V zero = V::Zero(num_cells);
|
||||
const std::vector<V> kr = props.relperm(sw, so, cells);
|
||||
|
||||
const V krw_eff = polymer_props.effectiveRelPerm(c, cmax, kr[0]);
|
||||
const double* mus = props.viscosity();
|
||||
const V inv_muw_eff = polymer_props.effectiveInvWaterVisc(c, mus);
|
||||
std::vector<V> mob(np);
|
||||
mob[0] = krw_eff * inv_muw_eff;
|
||||
mob[1] = kr[1] / mus[1];
|
||||
|
||||
const V watmob_c = src_selector.select(mob[0], one);
|
||||
const V oilmob_c = src_selector.select(mob[1], zero);
|
||||
const V flux = trans_src * dt;
|
||||
const V totmob_c = watmob_c + oilmob_c;
|
||||
const V wat_src = flux * (watmob_c / totmob_c);
|
||||
const V oil_src = flux * (oilmob_c / totmob_c);
|
||||
const V mc = polymer_props.polymerWaterVelocityRatio(c);
|
||||
|
||||
polyinj = 0.0;
|
||||
polyprod = 0.0;
|
||||
std::fill(injected, injected + np , 0.0);
|
||||
std::fill(produced, produced + np , 0.0);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
if (wat_src[cell] < 0) {
|
||||
injected[0] += wat_src[cell];
|
||||
polyinj += injected[0] * inj_c[cell];
|
||||
} else {
|
||||
produced[0] += wat_src[cell];
|
||||
produced[1] += oil_src[cell];
|
||||
polyprod += produced[0] * mc[cell];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injected and produced polymer mass - in the compressible case.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] state state variables (pressure, fluxes etc.)
|
||||
/// @param[in] transport_src if < 0: total reservoir volume outflow,
|
||||
/// if > 0: first phase *surface volume* inflow.
|
||||
/// @param[in] inj_c injected concentration by cell
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/transport_src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// @param[out] polyinj injected mass of polymer
|
||||
/// @param[out] polyprod produced mass of polymer
|
||||
void computeInjectedProduced(const BlackoilPropsAdInterface& props,
|
||||
const Opm::PolymerPropsAd& polymer_props,
|
||||
const PolymerBlackoilState& state,
|
||||
const std::vector<double>& transport_src,
|
||||
const std::vector<double>& inj_c,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced,
|
||||
double& polyinj,
|
||||
double& polyprod)
|
||||
{
|
||||
const int num_cells = transport_src.size();
|
||||
if (props.numCells() != num_cells) {
|
||||
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
|
||||
}
|
||||
const int np = props.numPhases();
|
||||
if (int(state.saturation().size()) != num_cells*np) {
|
||||
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
|
||||
}
|
||||
std::vector<int> cells(num_cells);
|
||||
const V p = Eigen::Map<const V>(&state.pressure()[0], num_cells, 1);
|
||||
const DataBlock s = Eigen::Map<const DataBlock>(&state.saturation()[0], num_cells, np);
|
||||
const V sw = s.col(0);
|
||||
const V so = s.col(1);
|
||||
const V c = Eigen::Map<const V>(&state.concentration()[0], num_cells, 1);
|
||||
const V cmax = Eigen::Map<const V>(&state.maxconcentration()[0], num_cells, 1);
|
||||
const V trans_src = Eigen::Map<const V>(&transport_src[0], num_cells, 1);
|
||||
V src = V::Constant(num_cells, -1.0); // negative is injec, positive is producer.
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
cells[cell] = cell;
|
||||
if(transport_src[cell] > 0.0) {
|
||||
src[cell] = 1.0;
|
||||
}
|
||||
}
|
||||
//Add PhasePresence make muOil() happy.
|
||||
std::vector<PhasePresence> phaseCondition(num_cells);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
phaseCondition[c] = PhasePresence();
|
||||
phaseCondition[c].setFreeWater();
|
||||
phaseCondition[c].setFreeOil();
|
||||
}
|
||||
const Selector<double> src_selector(src);
|
||||
const V one = V::Constant(num_cells, 1.0);
|
||||
const V zero = V::Zero(num_cells);
|
||||
const std::vector<V> kr = props.relperm(sw, so, zero, cells);
|
||||
const V muw = props.muWat(p, cells);
|
||||
const V muo = props.muOil(p, zero, phaseCondition, cells);
|
||||
const V krw_eff = polymer_props.effectiveRelPerm(c, cmax, kr[0]);
|
||||
const V inv_muw_eff = polymer_props.effectiveInvWaterVisc(c, muw.data());
|
||||
std::vector<V> mob(np);
|
||||
mob[0] = krw_eff * inv_muw_eff;
|
||||
mob[1] = kr[1] / muo;
|
||||
|
||||
const V watmob_c = src_selector.select(mob[0], one);
|
||||
const V oilmob_c = src_selector.select(mob[1], zero);
|
||||
const V flux = trans_src * dt;
|
||||
const V totmob_c = watmob_c + oilmob_c;
|
||||
const V wat_src = flux * (watmob_c / totmob_c);
|
||||
const V oil_src = flux * (oilmob_c / totmob_c);
|
||||
const V mc = polymer_props.polymerWaterVelocityRatio(c);
|
||||
|
||||
polyinj = 0.0;
|
||||
polyprod = 0.0;
|
||||
std::fill(injected, injected + np , 0.0);
|
||||
std::fill(produced, produced + np , 0.0);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
if (wat_src[cell] < 0) {
|
||||
injected[0] += wat_src[cell];
|
||||
polyinj += injected[0] * inj_c[cell];
|
||||
} else {
|
||||
produced[0] += wat_src[cell];
|
||||
produced[1] += oil_src[cell];
|
||||
polyprod += produced[0] * mc[cell];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
} //namespace Opm
|
@ -1,133 +0,0 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2014 STATOIL ASA.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_UTILITIES_HEADER_INCLUDED
|
||||
#define OPM_UTILITIES_HEADER_INCLUDED
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
//#include <opm/autodiff/IncompPropsAdInterface.hpp>
|
||||
#include <opm/polymer/PolymerBlackoilState.hpp>
|
||||
#include <opm/polymer/PolymerState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/polymer/fullyimplicit/PolymerPropsAd.hpp>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
/// Compute two-phase transport source terms from well terms.
|
||||
/// Note: Unlike the incompressible version of this function,
|
||||
/// this version computes surface volume injection rates,
|
||||
/// production rates are still total reservoir volumes.
|
||||
/// \param[in] props Fluid and rock properties.
|
||||
/// \param[in] wells Wells data structure.
|
||||
/// \param[in] well_state Well pressures and fluxes.
|
||||
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
|
||||
/// (+) positive inflow of first (water) phase (reservoir volume),
|
||||
/// (-) negative total outflow of both phases (reservoir volume).
|
||||
void computeTransportSource(const BlackoilPropsAdInterface& props,
|
||||
const Wells* wells,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& transport_src);
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injected and produced polymer mass - in the compressible case.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] state state variables (pressure, fluxes etc.)
|
||||
/// @param[in] transport_src if < 0: total reservoir volume outflow,
|
||||
/// if > 0: first phase *surface volume* inflow.
|
||||
/// @param[in] inj_c injected concentration by cell
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/transport_src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// @param[out] polyinj injected mass of polymer
|
||||
/// @param[out] polyprod produced mass of polymer
|
||||
// This function need a incompProps based on Ad.
|
||||
/*
|
||||
void computeInjectedProduced(const IncompPropsAdInterface& props,
|
||||
const Opm::PolymerPropsAd& polymer_props,
|
||||
const PolymerState& state,
|
||||
const std::vector<double>& transport_src,
|
||||
const std::vector<double>& inj_c,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced,
|
||||
double& polyinj,
|
||||
double& polyprod);
|
||||
*/
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injected and produced polymer mass - in the compressible case.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] state state variables (pressure, fluxes etc.)
|
||||
/// @param[in] transport_src if < 0: total reservoir volume outflow,
|
||||
/// if > 0: first phase *surface volume* inflow.
|
||||
/// @param[in] inj_c injected concentration by cell
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/transport_src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// @param[out] polyinj injected mass of polymer
|
||||
/// @param[out] polyprod produced mass of polymer
|
||||
void computeInjectedProduced(const BlackoilPropsAdInterface& props,
|
||||
const Opm::PolymerPropsAd& polymer_props,
|
||||
const PolymerBlackoilState& state,
|
||||
const std::vector<double>& transport_src,
|
||||
const std::vector<double>& inj_c,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced,
|
||||
double& polyinj,
|
||||
double& polyprod);
|
||||
|
||||
} //namespace Opm
|
||||
|
||||
#endif //OPM_UTILITIES_HEADER_INCLUDED
|
Loading…
Reference in New Issue
Block a user