diff --git a/CMakeLists_files.cmake b/CMakeLists_files.cmake
index 0ccd767c1..af9783ff1 100644
--- a/CMakeLists_files.cmake
+++ b/CMakeLists_files.cmake
@@ -90,6 +90,7 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/wells/GlobalWellInfo.cpp
opm/simulators/wells/GroupState.cpp
opm/simulators/wells/MSWellHelpers.cpp
+ opm/simulators/wells/MultisegmentWellAssemble.cpp
opm/simulators/wells/MultisegmentWellEquations.cpp
opm/simulators/wells/MultisegmentWellEval.cpp
opm/simulators/wells/MultisegmentWellGeneric.cpp
@@ -372,6 +373,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/simulators/wells/MSWellHelpers.hpp
opm/simulators/wells/MultisegmentWell.hpp
opm/simulators/wells/MultisegmentWell_impl.hpp
+ opm/simulators/wells/MultisegmentWellAssemble.hpp
opm/simulators/wells/MultisegmentWellEquations.hpp
opm/simulators/wells/MultisegmentWellEval.hpp
opm/simulators/wells/MultisegmentWellGeneric.hpp
diff --git a/opm/simulators/wells/MultisegmentWellAssemble.cpp b/opm/simulators/wells/MultisegmentWellAssemble.cpp
new file mode 100644
index 000000000..5a8382bfd
--- /dev/null
+++ b/opm/simulators/wells/MultisegmentWellAssemble.cpp
@@ -0,0 +1,370 @@
+/*
+ Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
+ Copyright 2017 Statoil ASA.
+ Copyright 2016 - 2017 IRIS AS.
+
+ This file is part of the Open Porous Media project (OPM).
+
+ OPM is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ OPM is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with OPM. If not, see .
+*/
+
+#include
+#include
+
+#include
+
+#include
+
+#include
+#include
+#include
+
+#include
+#include
+#include
+#include
+
+namespace Opm {
+
+//! \brief Class administering assembler access to equation system.
+template
+class MultisegmentWellEquationAccess {
+public:
+ //! \brief Constructor initializes reference to the equation system.
+ MultisegmentWellEquationAccess(MultisegmentWellEquations& eqns)
+ : eqns_(eqns)
+ {}
+
+ using BVectorWell = typename MultisegmentWellEquations::BVectorWell;
+ using DiagMatWell = typename MultisegmentWellEquations::DiagMatWell;
+ using OffDiatMatWell = typename MultisegmentWellEquations::OffDiagMatWell;
+
+ //! \brief Returns a reference to residual vector.
+ BVectorWell& residual()
+ {
+ return eqns_.resWell_;
+ }
+
+ //! \brief Returns a reference to B matrix.
+ OffDiatMatWell& B()
+ {
+ return eqns_.duneB_;
+ }
+
+ //! \brief Returns a reference to C matrix.
+ OffDiatMatWell& C()
+ {
+ return eqns_.duneC_;
+ }
+
+ //! \brief Returns a reference to D matrix.
+ DiagMatWell& D()
+ {
+ return eqns_.duneD_;
+ }
+
+private:
+ MultisegmentWellEquations& eqns_; //!< Reference to equation system
+};
+
+template
+void MultisegmentWellAssemble::
+assembleControlEq(const WellState& well_state,
+ const GroupState& group_state,
+ const Schedule& schedule,
+ const SummaryState& summaryState,
+ const Well::InjectionControls& inj_controls,
+ const Well::ProductionControls& prod_controls,
+ const double rho,
+ const EvalWell& wqTotal,
+ const EvalWell& bhp,
+ const std::function& getQs,
+ Equations& eqns1,
+ DeferredLogger& deferred_logger) const
+{
+ static constexpr int Gas = BlackoilPhases::Vapour;
+ static constexpr int Oil = BlackoilPhases::Liquid;
+ static constexpr int Water = BlackoilPhases::Aqua;
+
+ EvalWell control_eq(0.0);
+
+ const auto& well = well_.wellEcl();
+
+ auto getRates = [&]() {
+ std::vector rates(3, 0.0);
+ if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
+ rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
+ }
+ if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
+ rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
+ }
+ if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
+ rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
+ }
+ return rates;
+ };
+
+ if (well_.wellIsStopped()) {
+ control_eq = wqTotal;
+ } else if (well_.isInjector() ) {
+ // Find scaling factor to get injection rate,
+ const InjectorType injectorType = inj_controls.injector_type;
+ double scaling = 1.0;
+ const auto& pu = well_.phaseUsage();
+ switch (injectorType) {
+ case InjectorType::WATER:
+ {
+ scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
+ break;
+ }
+ case InjectorType::OIL:
+ {
+ scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
+ break;
+ }
+ case InjectorType::GAS:
+ {
+ scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
+ break;
+ }
+ default:
+ throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
+ }
+ const EvalWell injection_rate = wqTotal / scaling;
+ // Setup function for evaluation of BHP from THP (used only if needed).
+ std::function bhp_from_thp = [&]() {
+ const auto rates = getRates();
+ return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
+ rates,
+ well,
+ summaryState,
+ rho,
+ deferred_logger);
+ };
+ // Call generic implementation.
+ WellAssemble(well_).assembleControlEqInj(well_state,
+ group_state,
+ schedule,
+ summaryState,
+ inj_controls,
+ bhp,
+ injection_rate,
+ bhp_from_thp,
+ control_eq,
+ deferred_logger);
+ } else {
+ // Find rates.
+ const auto rates = getRates();
+ // Setup function for evaluation of BHP from THP (used only if needed).
+ std::function bhp_from_thp = [&]() {
+ return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
+ rates,
+ well,
+ summaryState,
+ rho,
+ deferred_logger);
+ };
+ // Call generic implementation.
+ WellAssemble(well_).assembleControlEqProd(well_state,
+ group_state,
+ schedule,
+ summaryState,
+ prod_controls,
+ bhp,
+ rates,
+ bhp_from_thp,
+ control_eq,
+ deferred_logger);
+ }
+
+ MultisegmentWellEquationAccess eqns(eqns1);
+ // using control_eq to update the matrix and residuals
+ eqns.residual()[0][SPres] = control_eq.value();
+ for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
+ eqns.D()[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
+ }
+}
+
+template
+void MultisegmentWellAssemble::
+assemblePressureLoss(const int seg,
+ const int seg_upwind,
+ const EvalWell& accelerationPressureLoss,
+ Equations& eqns1) const
+{
+ MultisegmentWellEquationAccess eqns(eqns1);
+ eqns.residual()[seg][SPres] -= accelerationPressureLoss.value();
+ eqns.D()[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq);
+ eqns.D()[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq);
+ if constexpr (has_wfrac_variable) {
+ eqns.D()[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq);
+ }
+ if constexpr (has_gfrac_variable) {
+ eqns.D()[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq);
+ }
+}
+
+template
+void MultisegmentWellAssemble::
+assemblePressureEq(const int seg,
+ const int seg_upwind,
+ const int outlet_segment_index,
+ const EvalWell& pressure_equation,
+ const EvalWell& outlet_pressure,
+ Equations& eqns1,
+ bool wfrac,
+ bool gfrac) const
+{
+ MultisegmentWellEquationAccess eqns(eqns1);
+ eqns.residual()[seg][SPres] = pressure_equation.value();
+ eqns.D()[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
+ eqns.D()[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
+ if (wfrac) {
+ eqns.D()[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
+ }
+ if (gfrac) {
+ eqns.D()[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
+ }
+
+ // contribution from the outlet segment
+ eqns.residual()[seg][SPres] -= outlet_pressure.value();
+ for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
+ eqns.D()[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq);
+ }
+}
+
+template
+void MultisegmentWellAssemble::
+assembleTrivialEq(const int seg,
+ const Scalar value,
+ Equations& eqns1) const
+{
+ MultisegmentWellEquationAccess eqns(eqns1);
+ eqns.residual()[seg][SPres] = value;
+ eqns.D()[seg][seg][SPres][WQTotal] = 1.;
+}
+
+template
+void MultisegmentWellAssemble::
+assembleAccumulationTerm(const int seg,
+ const int comp_idx,
+ const EvalWell& accumulation_term,
+ Equations& eqns1) const
+{
+ MultisegmentWellEquationAccess eqns(eqns1);
+ eqns.residual()[seg][comp_idx] += accumulation_term.value();
+ for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
+ eqns.D()[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + Indices::numEq);
+ }
+}
+
+template
+void MultisegmentWellAssemble::
+assembleOutflowTerm(const int seg,
+ const int seg_upwind,
+ const int comp_idx,
+ const EvalWell& segment_rate,
+ Equations& eqns1) const
+{
+ MultisegmentWellEquationAccess eqns(eqns1);
+ eqns.residual()[seg][comp_idx] -= segment_rate.value();
+ eqns.D()[seg][seg][comp_idx][WQTotal] -= segment_rate.derivative(WQTotal + Indices::numEq);
+ if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
+ eqns.D()[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + Indices::numEq);
+ }
+ if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
+ eqns.D()[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + Indices::numEq);
+ }
+ // pressure derivative should be zero
+}
+
+template
+void MultisegmentWellAssemble::
+assembleInflowTerm(const int seg,
+ const int inlet,
+ const int inlet_upwind,
+ const int comp_idx,
+ const EvalWell& inlet_rate,
+ Equations& eqns1) const
+ {
+ MultisegmentWellEquationAccess eqns(eqns1);
+ eqns.residual()[seg][comp_idx] += inlet_rate.value();
+ eqns.D()[seg][inlet][comp_idx][WQTotal] += inlet_rate.derivative(WQTotal + Indices::numEq);
+ if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
+ eqns.D()[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + Indices::numEq);
+ }
+ if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
+ eqns.D()[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + Indices::numEq);
+ }
+ // pressure derivative should be zero
+}
+
+template
+void MultisegmentWellAssemble::
+assemblePerforationEq(const int seg,
+ const int cell_idx,
+ const int comp_idx,
+ const EvalWell& cq_s_effective,
+ Equations& eqns1) const
+{
+ MultisegmentWellEquationAccess eqns(eqns1);
+ // subtract sum of phase fluxes in the well equations.
+ eqns.residual()[seg][comp_idx] += cq_s_effective.value();
+
+ // assemble the jacobians
+ for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
+ // also need to consider the efficiency factor when manipulating the jacobians.
+ eqns.C()[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + Indices::numEq); // input in transformed matrix
+
+ // the index name for the D should be eq_idx / pv_idx
+ eqns.D()[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + Indices::numEq);
+ }
+
+ for (int pv_idx = 0; pv_idx < Indices::numEq; ++pv_idx) {
+ // also need to consider the efficiency factor when manipulating the jacobians.
+ eqns.B()[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
+ }
+}
+
+#define INSTANCE(...) \
+template class MultisegmentWellAssemble,__VA_ARGS__,double>;
+
+// One phase
+INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
+INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
+INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
+
+// Two phase
+INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
+INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
+INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
+INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
+INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
+INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
+INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
+INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
+
+// Blackoil
+INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
+INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
+INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
+INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
+INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
+INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
+INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
+INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
+INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
+INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
+
+}
diff --git a/opm/simulators/wells/MultisegmentWellAssemble.hpp b/opm/simulators/wells/MultisegmentWellAssemble.hpp
new file mode 100644
index 000000000..693aa0c0e
--- /dev/null
+++ b/opm/simulators/wells/MultisegmentWellAssemble.hpp
@@ -0,0 +1,140 @@
+/*
+ Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
+ Copyright 2017 Statoil ASA.
+ Copyright 2016 - 2017 IRIS AS.
+
+ This file is part of the Open Porous Media project (OPM).
+
+ OPM is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ OPM is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with OPM. If not, see .
+*/
+
+
+#ifndef OPM_MULTISEGMENTWELL_ASSEMBLE_HEADER_INCLUDED
+#define OPM_MULTISEGMENTWELL_ASSEMBLE_HEADER_INCLUDED
+
+#include
+#include
+
+#include
+
+namespace Opm
+{
+
+class DeferredLogger;
+class GroupState;
+template class MultisegmentWellEquations;
+class Schedule;
+class SummaryState;
+template class WellInterfaceIndices;
+class WellState;
+
+//! \brief Class handling assemble of the equation system for MultisegmentWell.
+template
+class MultisegmentWellAssemble
+{
+ static constexpr bool has_water = (Indices::waterSwitchIdx >= 0);
+ static constexpr bool has_gas = (Indices::compositionSwitchIdx >= 0);
+ static constexpr bool has_oil = (Indices::numPhases - has_gas - has_water) > 0;
+
+ // In the implementation, one should use has_wfrac_variable
+ // rather than has_water to check if you should do something
+ // with the variable at the WFrac location, similar for GFrac.
+ static constexpr bool has_wfrac_variable = has_water && Indices::numPhases > 1;
+ static constexpr bool has_gfrac_variable = has_gas && has_oil;
+
+ static constexpr int WQTotal = 0;
+ static constexpr int WFrac = has_wfrac_variable ? 1 : -1000;
+ static constexpr int GFrac = has_gfrac_variable ? has_wfrac_variable + 1 : -1000;
+ static constexpr int SPres = has_wfrac_variable + has_gfrac_variable + 1;
+
+public:
+ static constexpr int numWellEq = Indices::numPhases+1;
+ using Equations = MultisegmentWellEquations;
+ using EvalWell = DenseAd::Evaluation;
+ //! \brief Constructor initializes reference to well.
+ MultisegmentWellAssemble(const WellInterfaceIndices& well)
+ : well_(well)
+ {}
+
+ //! \brief Assemble control equation.
+ void assembleControlEq(const WellState& well_state,
+ const GroupState& group_state,
+ const Schedule& schedule,
+ const SummaryState& summaryState,
+ const Well::InjectionControls& inj_controls,
+ const Well::ProductionControls& prod_controls,
+ const double rho,
+ const EvalWell& wqTotal,
+ const EvalWell& bhp,
+ const std::function& getQs,
+ Equations& eqns,
+ DeferredLogger& deferred_logger) const;
+
+
+ //! \brief Assemble pressure loss term.
+ void assemblePressureLoss(const int seg,
+ const int seg_upwind,
+ const EvalWell& accelerationPressureLoss,
+ Equations& eqns) const;
+
+ //! \brief Assemble pressure terms.
+ void assemblePressureEq(const int seg,
+ const int seg_upwind,
+ const int outlet_segment_index,
+ const EvalWell& pressure_equation,
+ const EvalWell& outlet_pressure,
+ Equations& eqns,
+ bool wfrac = has_wfrac_variable,
+ bool gfrac = has_gfrac_variable) const;
+
+ //! \brief Assembles a trivial equation.
+ void assembleTrivialEq(const int seg,
+ const Scalar value,
+ Equations& eqns) const;
+
+ //! \brief Assemble accumulation term.
+ void assembleAccumulationTerm(const int seg,
+ const int comp_idx,
+ const EvalWell& accumulation_term,
+ Equations& eqns1) const;
+
+ //! \brief Assemble outflow term.
+ void assembleOutflowTerm(const int seg,
+ const int seg_upwind,
+ const int comp_idx,
+ const EvalWell& segment_rate,
+ Equations& eqns1) const;
+
+ //! \brief Assemble inflow term.
+ void assembleInflowTerm(const int seg,
+ const int inlet,
+ const int inlet_upwind,
+ const int comp_idx,
+ const EvalWell& inlet_rate,
+ Equations& eqns) const;
+
+ //! \brief Assemble equation for a perforation.
+ void assemblePerforationEq(const int seg,
+ const int cell_idx,
+ const int comp_idx,
+ const EvalWell& cq_s_effective,
+ Equations& eqns) const;
+
+private:
+ const WellInterfaceIndices& well_; //!< Reference to well
+};
+
+}
+
+#endif // OPM_STANDARDWELL_ASSEMBLE_HEADER_INCLUDED
diff --git a/opm/simulators/wells/MultisegmentWellEquations.hpp b/opm/simulators/wells/MultisegmentWellEquations.hpp
index 9bdb79d0a..671d61459 100644
--- a/opm/simulators/wells/MultisegmentWellEquations.hpp
+++ b/opm/simulators/wells/MultisegmentWellEquations.hpp
@@ -36,6 +36,7 @@ template class UMFPack;
namespace Opm
{
+template class MultisegmentWellEquationAccess;
template class MultisegmentWellGeneric;
class WellContributions;
class WellInterfaceGeneric;
@@ -110,6 +111,14 @@ public:
const int seg_pressure_var_ind,
const WellState& well_state) const;
+ //! \brief Returns a const reference to the residual.
+ const BVectorWell& residual() const
+ {
+ return resWell_;
+ }
+
+ private:
+ friend class MultisegmentWellEquationAccess;
// two off-diagonal matrices
OffDiagMatWell duneB_;
OffDiagMatWell duneC_;
@@ -119,12 +128,11 @@ public:
/// \brief solver for diagonal matrix
///
/// This is a shared_ptr as MultisegmentWell is copied in computeWellPotentials...
- mutable std::shared_ptr > duneDSolver_;
+ mutable std::shared_ptr> duneDSolver_;
// residuals of the well equations
BVectorWell resWell_;
-private:
const MultisegmentWellGeneric& well_; //!< Reference to well
};
diff --git a/opm/simulators/wells/MultisegmentWellEval.cpp b/opm/simulators/wells/MultisegmentWellEval.cpp
index 2514ef879..3db453e69 100644
--- a/opm/simulators/wells/MultisegmentWellEval.cpp
+++ b/opm/simulators/wells/MultisegmentWellEval.cpp
@@ -33,6 +33,7 @@
#include
#include
#include
+#include
#include
#include
#include
@@ -112,7 +113,7 @@ getWellConvergence(const WellState& well_state,
std::vector> abs_residual(this->numberOfSegments(), std::vector(numWellEq, 0.0));
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
- abs_residual[seg][eq_idx] = std::abs(linSys_.resWell_[seg][eq_idx]);
+ abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
@@ -177,7 +178,7 @@ getWellConvergence(const WellState& well_state,
tolerance_wells,
tolerance_wells,
max_residual_allowed},
- std::abs(linSys_.resWell_[0][SPres]),
+ std::abs(linSys_.residual()[0][SPres]),
report,
deferred_logger);
@@ -1107,120 +1108,6 @@ getSegmentSurfaceVolume(const EvalWell& temperature,
return volume / vol_ratio;
}
-template
-void
-MultisegmentWellEval::
-assembleControlEq(const WellState& well_state,
- const GroupState& group_state,
- const Schedule& schedule,
- const SummaryState& summaryState,
- const Well::InjectionControls& inj_controls,
- const Well::ProductionControls& prod_controls,
- const double rho,
- DeferredLogger& deferred_logger)
-{
- static constexpr int Gas = BlackoilPhases::Vapour;
- static constexpr int Oil = BlackoilPhases::Liquid;
- static constexpr int Water = BlackoilPhases::Aqua;
-
- EvalWell control_eq(0.0);
-
- const auto& well = baseif_.wellEcl();
-
- auto getRates = [&]() {
- std::vector rates(3, 0.0);
- if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
- rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
- }
- if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
- rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
- }
- if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
- rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
- }
- return rates;
- };
-
- if (baseif_.wellIsStopped()) {
- control_eq = getWQTotal();
- } else if (baseif_.isInjector() ) {
- // Find scaling factor to get injection rate,
- const InjectorType injectorType = inj_controls.injector_type;
- double scaling = 1.0;
- const auto& pu = baseif_.phaseUsage();
- switch (injectorType) {
- case InjectorType::WATER:
- {
- scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
- break;
- }
- case InjectorType::OIL:
- {
- scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
- break;
- }
- case InjectorType::GAS:
- {
- scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
- break;
- }
- default:
- throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
- }
- const EvalWell injection_rate = getWQTotal() / scaling;
- // Setup function for evaluation of BHP from THP (used only if needed).
- std::function bhp_from_thp = [&]() {
- const auto rates = getRates();
- return WellBhpThpCalculator(baseif_).calculateBhpFromThp(well_state,
- rates,
- well,
- summaryState,
- rho,
- deferred_logger);
- };
- // Call generic implementation.
- WellAssemble(baseif_).assembleControlEqInj(well_state,
- group_state,
- schedule,
- summaryState,
- inj_controls,
- getBhp(),
- injection_rate,
- bhp_from_thp,
- control_eq,
- deferred_logger);
- } else {
- // Find rates.
- const auto rates = getRates();
- // Setup function for evaluation of BHP from THP (used only if needed).
- std::function bhp_from_thp = [&]() {
- return WellBhpThpCalculator(baseif_).calculateBhpFromThp(well_state,
- rates,
- well,
- summaryState,
- rho,
- deferred_logger);
- };
- // Call generic implementation.
- WellAssemble(baseif_).assembleControlEqProd(well_state,
- group_state,
- schedule,
- summaryState,
- prod_controls,
- getBhp(),
- rates,
- bhp_from_thp,
- control_eq,
- deferred_logger);
- }
-
- // using control_eq to update the matrix and residuals
- linSys_.resWell_[0][SPres] = control_eq.value();
- for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
- linSys_.duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
- }
-}
-
template
void
MultisegmentWellEval::
@@ -1262,15 +1149,8 @@ handleAccelerationPressureLoss(const int seg,
auto& segments = well_state.well(baseif_.indexOfWell()).segments;
segments.pressure_drop_accel[seg] = accelerationPressureLoss.value();
- linSys_.resWell_[seg][SPres] -= accelerationPressureLoss.value();
- linSys_.duneD_[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq);
- linSys_.duneD_[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq);
- if (has_wfrac_variable) {
- linSys_.duneD_[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq);
- }
- if (has_gfrac_variable) {
- linSys_.duneD_[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq);
- }
+ MultisegmentWellAssemble(baseif_).
+ assemblePressureLoss(seg, seg_upwind, accelerationPressureLoss, linSys_);
}
template
@@ -1300,25 +1180,14 @@ assembleDefaultPressureEq(const int seg,
segments.pressure_drop_friction[seg] = friction_pressure_drop.value();
}
- linSys_.resWell_[seg][SPres] = pressure_equation.value();
- const int seg_upwind = upwinding_segments_[seg];
- linSys_.duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
- linSys_.duneD_[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
- if (has_wfrac_variable) {
- linSys_.duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
- }
- if (has_gfrac_variable) {
- linSys_.duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
- }
-
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
- linSys_.resWell_[seg][SPres] -= outlet_pressure.value();
- for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
- linSys_.duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq);
- }
+ const int seg_upwind = upwinding_segments_[seg];
+ MultisegmentWellAssemble(baseif_).
+ assemblePressureEq(seg, seg_upwind, outlet_segment_index,
+ pressure_equation, outlet_pressure, linSys_);
if (this->accelerationalPressureLossConsidered()) {
handleAccelerationPressureLoss(seg, well_state);
@@ -1535,8 +1404,8 @@ assembleICDPressureEq(const int seg,
if (const auto& segment = this->segmentSet()[seg];
(segment.segmentType() == Segment::SegmentType::VALVE) &&
(segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve
- linSys_.resWell_[seg][SPres] = this->primary_variables_evaluation_[seg][WQTotal].value();
- linSys_.duneD_[seg][seg][SPres][WQTotal] = 1.;
+ MultisegmentWellAssemble(baseif_).
+ assembleTrivialEq(seg, this->primary_variables_evaluation_[seg][WQTotal].value(), linSys_);
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = 0.;
@@ -1569,25 +1438,17 @@ assembleICDPressureEq(const int seg,
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value();
- const int seg_upwind = upwinding_segments_[seg];
- linSys_.resWell_[seg][SPres] = pressure_equation.value();
- linSys_.duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
- linSys_.duneD_[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
- if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
- linSys_.duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
- }
- if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
- linSys_.duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
- }
-
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
- linSys_.resWell_[seg][SPres] -= outlet_pressure.value();
- for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
- linSys_.duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq);
- }
+ const int seg_upwind = upwinding_segments_[seg];
+ MultisegmentWellAssemble(baseif_).
+ assemblePressureEq(seg, seg_upwind, outlet_segment_index,
+ pressure_equation, outlet_pressure,
+ linSys_,
+ FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
+ FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
}
template
@@ -1623,10 +1484,10 @@ getFiniteWellResiduals(const std::vector& B_avg,
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
double residual = 0.;
if (eq_idx < baseif_.numComponents()) {
- residual = std::abs(linSys_.resWell_[seg][eq_idx]) * B_avg[eq_idx];
+ residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx];
} else {
if (seg > 0) {
- residual = std::abs(linSys_.resWell_[seg][eq_idx]);
+ residual = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
if (std::isnan(residual) || std::isinf(residual)) {
@@ -1643,7 +1504,7 @@ getFiniteWellResiduals(const std::vector& B_avg,
// handling the control equation residual
{
- const double control_residual = std::abs(linSys_.resWell_[0][numWellEq - 1]);
+ const double control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]);
if (std::isnan(control_residual) || std::isinf(control_residual)) {
deferred_logger.debug("nan or inf value for control residal get for well " + baseif_.name());
return {false, residuals};
diff --git a/opm/simulators/wells/MultisegmentWellEval.hpp b/opm/simulators/wells/MultisegmentWellEval.hpp
index 82fc4dcec..af10baf0c 100644
--- a/opm/simulators/wells/MultisegmentWellEval.hpp
+++ b/opm/simulators/wells/MultisegmentWellEval.hpp
@@ -105,15 +105,6 @@ protected:
void initMatrixAndVectors(const int num_cells);
void initPrimaryVariablesEvaluation() const;
- void assembleControlEq(const WellState& well_state,
- const GroupState& group_state,
- const Schedule& schedule,
- const SummaryState& summaryState,
- const Well::InjectionControls& inj_controls,
- const Well::ProductionControls& prod_controls,
- const double rho,
- DeferredLogger& deferred_logger);
-
void assembleDefaultPressureEq(const int seg,
WellState& well_state);
diff --git a/opm/simulators/wells/MultisegmentWell_impl.hpp b/opm/simulators/wells/MultisegmentWell_impl.hpp
index 2608313df..dd08be69b 100644
--- a/opm/simulators/wells/MultisegmentWell_impl.hpp
+++ b/opm/simulators/wells/MultisegmentWell_impl.hpp
@@ -19,6 +19,7 @@
*/
+#include
#include
#include
#include
@@ -1562,30 +1563,18 @@ namespace Opm
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
const EvalWell accumulation_term = regularization_factor * (segment_surface_volume * this->surfaceVolumeFraction(seg, comp_idx)
- segment_fluid_initial_[seg][comp_idx]) / dt;
-
- this->linSys_.resWell_[seg][comp_idx] += accumulation_term.value();
- for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
- this->linSys_.duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + Indices::numEq);
- }
+ MultisegmentWellAssemble(*this).
+ assembleAccumulationTerm(seg, comp_idx, accumulation_term, this->linSys_);
}
}
// considering the contributions due to flowing out from the segment
{
+ const int seg_upwind = this->upwinding_segments_[seg];
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
- const EvalWell segment_rate = this->getSegmentRateUpwinding(seg, comp_idx) * this->well_efficiency_factor_;
-
- const int seg_upwind = this->upwinding_segments_[seg];
- // segment_rate contains the derivatives with respect to WQTotal in seg,
- // and WFrac and GFrac in seg_upwind
- this->linSys_.resWell_[seg][comp_idx] -= segment_rate.value();
- this->linSys_.duneD_[seg][seg][comp_idx][WQTotal] -= segment_rate.derivative(WQTotal + Indices::numEq);
- if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
- this->linSys_.duneD_[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + Indices::numEq);
- }
- if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
- this->linSys_.duneD_[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + Indices::numEq);
- }
- // pressure derivative should be zero
+ const EvalWell segment_rate = this->getSegmentRateUpwinding(seg, comp_idx) *
+ this->well_efficiency_factor_;
+ MultisegmentWellAssemble(*this).
+ assembleOutflowTerm(seg, seg_upwind, comp_idx, segment_rate, this->linSys_);
}
}
@@ -1594,19 +1583,9 @@ namespace Opm
for (const int inlet : this->segment_inlets_[seg]) {
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
const EvalWell inlet_rate = this->getSegmentRateUpwinding(inlet, comp_idx) * this->well_efficiency_factor_;
-
const int inlet_upwind = this->upwinding_segments_[inlet];
- // inlet_rate contains the derivatives with respect to WQTotal in inlet,
- // and WFrac and GFrac in inlet_upwind
- this->linSys_.resWell_[seg][comp_idx] += inlet_rate.value();
- this->linSys_.duneD_[seg][inlet][comp_idx][WQTotal] += inlet_rate.derivative(WQTotal + Indices::numEq);
- if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
- this->linSys_.duneD_[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + Indices::numEq);
- }
- if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
- this->linSys_.duneD_[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + Indices::numEq);
- }
- // pressure derivative should be zero
+ MultisegmentWellAssemble(*this).
+ assembleInflowTerm(seg, inlet, inlet_upwind, comp_idx, inlet_rate, this->linSys_);
}
}
}
@@ -1647,23 +1626,8 @@ namespace Opm
this->connectionRates_[perf][comp_idx] = Base::restrictEval(cq_s_effective);
- // subtract sum of phase fluxes in the well equations.
- this->linSys_.resWell_[seg][comp_idx] += cq_s_effective.value();
-
- // assemble the jacobians
- for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
-
- // also need to consider the efficiency factor when manipulating the jacobians.
- this->linSys_.duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + Indices::numEq); // intput in transformed matrix
-
- // the index name for the D should be eq_idx / pv_idx
- this->linSys_.duneD_[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + Indices::numEq);
- }
-
- for (int pv_idx = 0; pv_idx < Indices::numEq; ++pv_idx) {
- // also need to consider the efficiency factor when manipulating the jacobians.
- this->linSys_.duneB_[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
- }
+ MultisegmentWellAssemble(*this).
+ assemblePerforationEq(seg, cell_idx, comp_idx, cq_s_effective, this->linSys_);
}
}
@@ -1671,13 +1635,19 @@ namespace Opm
if (seg == 0) { // top segment, pressure equation is the control equation
const auto& summaryState = ebosSimulator.vanguard().summaryState();
const Schedule& schedule = ebosSimulator.vanguard().schedule();
- this->assembleControlEq(well_state,
+ std::function gQ = [this](int a) { return this->getQs(a); };
+ MultisegmentWellAssemble(*this).
+ assembleControlEq(well_state,
group_state,
schedule,
summaryState,
inj_controls,
prod_controls,
getRefDensity(),
+ this->getWQTotal(),
+ this->getBhp(),
+ gQ,
+ this->linSys_,
deferred_logger);
} else {
const UnitSystem& unit_system = ebosSimulator.vanguard().eclState().getDeckUnitSystem();