Merge pull request #4306 from akva2/msw_assemble

add: MultisegmentWellAssemble
This commit is contained in:
Bård Skaflestad 2022-12-05 15:45:23 +01:00 committed by GitHub
commit 58cf299171
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 562 additions and 220 deletions

View File

@ -90,6 +90,7 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/wells/GlobalWellInfo.cpp opm/simulators/wells/GlobalWellInfo.cpp
opm/simulators/wells/GroupState.cpp opm/simulators/wells/GroupState.cpp
opm/simulators/wells/MSWellHelpers.cpp opm/simulators/wells/MSWellHelpers.cpp
opm/simulators/wells/MultisegmentWellAssemble.cpp
opm/simulators/wells/MultisegmentWellEquations.cpp opm/simulators/wells/MultisegmentWellEquations.cpp
opm/simulators/wells/MultisegmentWellEval.cpp opm/simulators/wells/MultisegmentWellEval.cpp
opm/simulators/wells/MultisegmentWellGeneric.cpp opm/simulators/wells/MultisegmentWellGeneric.cpp
@ -372,6 +373,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/simulators/wells/MSWellHelpers.hpp opm/simulators/wells/MSWellHelpers.hpp
opm/simulators/wells/MultisegmentWell.hpp opm/simulators/wells/MultisegmentWell.hpp
opm/simulators/wells/MultisegmentWell_impl.hpp opm/simulators/wells/MultisegmentWell_impl.hpp
opm/simulators/wells/MultisegmentWellAssemble.hpp
opm/simulators/wells/MultisegmentWellEquations.hpp opm/simulators/wells/MultisegmentWellEquations.hpp
opm/simulators/wells/MultisegmentWellEval.hpp opm/simulators/wells/MultisegmentWellEval.hpp
opm/simulators/wells/MultisegmentWellGeneric.hpp opm/simulators/wells/MultisegmentWellGeneric.hpp

View File

@ -0,0 +1,370 @@
/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/wells/MultisegmentWellEquations.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
namespace Opm {
//! \brief Class administering assembler access to equation system.
template<class Scalar, int numWellEq, int numEq>
class MultisegmentWellEquationAccess {
public:
//! \brief Constructor initializes reference to the equation system.
MultisegmentWellEquationAccess(MultisegmentWellEquations<Scalar,numWellEq,numEq>& eqns)
: eqns_(eqns)
{}
using BVectorWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::BVectorWell;
using DiagMatWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::DiagMatWell;
using OffDiatMatWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::OffDiagMatWell;
//! \brief Returns a reference to residual vector.
BVectorWell& residual()
{
return eqns_.resWell_;
}
//! \brief Returns a reference to B matrix.
OffDiatMatWell& B()
{
return eqns_.duneB_;
}
//! \brief Returns a reference to C matrix.
OffDiatMatWell& C()
{
return eqns_.duneC_;
}
//! \brief Returns a reference to D matrix.
DiagMatWell& D()
{
return eqns_.duneD_;
}
private:
MultisegmentWellEquations<Scalar,numWellEq,numEq>& eqns_; //!< Reference to equation system
};
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const double rho,
const EvalWell& wqTotal,
const EvalWell& bhp,
const std::function<EvalWell(const int)>& getQs,
Equations& eqns1,
DeferredLogger& deferred_logger) const
{
static constexpr int Gas = BlackoilPhases::Vapour;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Water = BlackoilPhases::Aqua;
EvalWell control_eq(0.0);
const auto& well = well_.wellEcl();
auto getRates = [&]() {
std::vector<EvalWell> rates(3, 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (well_.wellIsStopped()) {
control_eq = wqTotal;
} else if (well_.isInjector() ) {
// Find scaling factor to get injection rate,
const InjectorType injectorType = inj_controls.injector_type;
double scaling = 1.0;
const auto& pu = well_.phaseUsage();
switch (injectorType) {
case InjectorType::WATER:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
break;
}
case InjectorType::OIL:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
break;
}
case InjectorType::GAS:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
const EvalWell injection_rate = wqTotal / scaling;
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
const auto rates = getRates();
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
WellAssemble(well_).assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
bhp,
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
WellAssemble(well_).assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
bhp,
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
// using control_eq to update the matrix and residuals
eqns.residual()[0][SPres] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.D()[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assemblePressureLoss(const int seg,
const int seg_upwind,
const EvalWell& accelerationPressureLoss,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][SPres] -= accelerationPressureLoss.value();
eqns.D()[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq);
eqns.D()[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq);
if constexpr (has_wfrac_variable) {
eqns.D()[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq);
}
if constexpr (has_gfrac_variable) {
eqns.D()[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assemblePressureEq(const int seg,
const int seg_upwind,
const int outlet_segment_index,
const EvalWell& pressure_equation,
const EvalWell& outlet_pressure,
Equations& eqns1,
bool wfrac,
bool gfrac) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][SPres] = pressure_equation.value();
eqns.D()[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
eqns.D()[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
if (wfrac) {
eqns.D()[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
}
if (gfrac) {
eqns.D()[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
}
// contribution from the outlet segment
eqns.residual()[seg][SPres] -= outlet_pressure.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.D()[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleTrivialEq(const int seg,
const Scalar value,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][SPres] = value;
eqns.D()[seg][seg][SPres][WQTotal] = 1.;
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleAccumulationTerm(const int seg,
const int comp_idx,
const EvalWell& accumulation_term,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][comp_idx] += accumulation_term.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.D()[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleOutflowTerm(const int seg,
const int seg_upwind,
const int comp_idx,
const EvalWell& segment_rate,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][comp_idx] -= segment_rate.value();
eqns.D()[seg][seg][comp_idx][WQTotal] -= segment_rate.derivative(WQTotal + Indices::numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
eqns.D()[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
eqns.D()[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + Indices::numEq);
}
// pressure derivative should be zero
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleInflowTerm(const int seg,
const int inlet,
const int inlet_upwind,
const int comp_idx,
const EvalWell& inlet_rate,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][comp_idx] += inlet_rate.value();
eqns.D()[seg][inlet][comp_idx][WQTotal] += inlet_rate.derivative(WQTotal + Indices::numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
eqns.D()[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
eqns.D()[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + Indices::numEq);
}
// pressure derivative should be zero
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assemblePerforationEq(const int seg,
const int cell_idx,
const int comp_idx,
const EvalWell& cq_s_effective,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
// subtract sum of phase fluxes in the well equations.
eqns.residual()[seg][comp_idx] += cq_s_effective.value();
// assemble the jacobians
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
eqns.C()[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + Indices::numEq); // input in transformed matrix
// the index name for the D should be eq_idx / pv_idx
eqns.D()[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + Indices::numEq);
}
for (int pv_idx = 0; pv_idx < Indices::numEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
eqns.B()[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
}
}
#define INSTANCE(...) \
template class MultisegmentWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
}

View File

@ -0,0 +1,140 @@
/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MULTISEGMENTWELL_ASSEMBLE_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELL_ASSEMBLE_HEADER_INCLUDED
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <functional>
namespace Opm
{
class DeferredLogger;
class GroupState;
template<class Scalar, int numWellEq, int numEq> class MultisegmentWellEquations;
class Schedule;
class SummaryState;
template<class FluidSystem, class Indices, class Scalar> class WellInterfaceIndices;
class WellState;
//! \brief Class handling assemble of the equation system for MultisegmentWell.
template<class FluidSystem, class Indices, class Scalar>
class MultisegmentWellAssemble
{
static constexpr bool has_water = (Indices::waterSwitchIdx >= 0);
static constexpr bool has_gas = (Indices::compositionSwitchIdx >= 0);
static constexpr bool has_oil = (Indices::numPhases - has_gas - has_water) > 0;
// In the implementation, one should use has_wfrac_variable
// rather than has_water to check if you should do something
// with the variable at the WFrac location, similar for GFrac.
static constexpr bool has_wfrac_variable = has_water && Indices::numPhases > 1;
static constexpr bool has_gfrac_variable = has_gas && has_oil;
static constexpr int WQTotal = 0;
static constexpr int WFrac = has_wfrac_variable ? 1 : -1000;
static constexpr int GFrac = has_gfrac_variable ? has_wfrac_variable + 1 : -1000;
static constexpr int SPres = has_wfrac_variable + has_gfrac_variable + 1;
public:
static constexpr int numWellEq = Indices::numPhases+1;
using Equations = MultisegmentWellEquations<Scalar,numWellEq,Indices::numEq>;
using EvalWell = DenseAd::Evaluation<Scalar, numWellEq+Indices::numEq>;
//! \brief Constructor initializes reference to well.
MultisegmentWellAssemble(const WellInterfaceIndices<FluidSystem,Indices,Scalar>& well)
: well_(well)
{}
//! \brief Assemble control equation.
void assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const double rho,
const EvalWell& wqTotal,
const EvalWell& bhp,
const std::function<EvalWell(const int)>& getQs,
Equations& eqns,
DeferredLogger& deferred_logger) const;
//! \brief Assemble pressure loss term.
void assemblePressureLoss(const int seg,
const int seg_upwind,
const EvalWell& accelerationPressureLoss,
Equations& eqns) const;
//! \brief Assemble pressure terms.
void assemblePressureEq(const int seg,
const int seg_upwind,
const int outlet_segment_index,
const EvalWell& pressure_equation,
const EvalWell& outlet_pressure,
Equations& eqns,
bool wfrac = has_wfrac_variable,
bool gfrac = has_gfrac_variable) const;
//! \brief Assembles a trivial equation.
void assembleTrivialEq(const int seg,
const Scalar value,
Equations& eqns) const;
//! \brief Assemble accumulation term.
void assembleAccumulationTerm(const int seg,
const int comp_idx,
const EvalWell& accumulation_term,
Equations& eqns1) const;
//! \brief Assemble outflow term.
void assembleOutflowTerm(const int seg,
const int seg_upwind,
const int comp_idx,
const EvalWell& segment_rate,
Equations& eqns1) const;
//! \brief Assemble inflow term.
void assembleInflowTerm(const int seg,
const int inlet,
const int inlet_upwind,
const int comp_idx,
const EvalWell& inlet_rate,
Equations& eqns) const;
//! \brief Assemble equation for a perforation.
void assemblePerforationEq(const int seg,
const int cell_idx,
const int comp_idx,
const EvalWell& cq_s_effective,
Equations& eqns) const;
private:
const WellInterfaceIndices<FluidSystem,Indices,Scalar>& well_; //!< Reference to well
};
}
#endif // OPM_STANDARDWELL_ASSEMBLE_HEADER_INCLUDED

View File

@ -36,6 +36,7 @@ template<class M> class UMFPack;
namespace Opm namespace Opm
{ {
template<class Scalar, int numWellEq, int numEq> class MultisegmentWellEquationAccess;
template<class Scalar> class MultisegmentWellGeneric; template<class Scalar> class MultisegmentWellGeneric;
class WellContributions; class WellContributions;
class WellInterfaceGeneric; class WellInterfaceGeneric;
@ -110,6 +111,14 @@ public:
const int seg_pressure_var_ind, const int seg_pressure_var_ind,
const WellState& well_state) const; const WellState& well_state) const;
//! \brief Returns a const reference to the residual.
const BVectorWell& residual() const
{
return resWell_;
}
private:
friend class MultisegmentWellEquationAccess<Scalar,numWellEq,numEq>;
// two off-diagonal matrices // two off-diagonal matrices
OffDiagMatWell duneB_; OffDiagMatWell duneB_;
OffDiagMatWell duneC_; OffDiagMatWell duneC_;
@ -119,12 +128,11 @@ public:
/// \brief solver for diagonal matrix /// \brief solver for diagonal matrix
/// ///
/// This is a shared_ptr as MultisegmentWell is copied in computeWellPotentials... /// This is a shared_ptr as MultisegmentWell is copied in computeWellPotentials...
mutable std::shared_ptr<Dune::UMFPack<DiagMatWell> > duneDSolver_; mutable std::shared_ptr<Dune::UMFPack<DiagMatWell>> duneDSolver_;
// residuals of the well equations // residuals of the well equations
BVectorWell resWell_; BVectorWell resWell_;
private:
const MultisegmentWellGeneric<Scalar>& well_; //!< Reference to well const MultisegmentWellGeneric<Scalar>& well_; //!< Reference to well
}; };

View File

@ -33,6 +33,7 @@
#include <opm/simulators/timestepping/ConvergenceReport.hpp> #include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp> #include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/MSWellHelpers.hpp> #include <opm/simulators/wells/MSWellHelpers.hpp>
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
#include <opm/simulators/wells/RateConverter.hpp> #include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/WellAssemble.hpp> #include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp> #include <opm/simulators/wells/WellBhpThpCalculator.hpp>
@ -112,7 +113,7 @@ getWellConvergence(const WellState& well_state,
std::vector<std::vector<double>> abs_residual(this->numberOfSegments(), std::vector<double>(numWellEq, 0.0)); std::vector<std::vector<double>> abs_residual(this->numberOfSegments(), std::vector<double>(numWellEq, 0.0));
for (int seg = 0; seg < this->numberOfSegments(); ++seg) { for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
abs_residual[seg][eq_idx] = std::abs(linSys_.resWell_[seg][eq_idx]); abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]);
} }
} }
@ -177,7 +178,7 @@ getWellConvergence(const WellState& well_state,
tolerance_wells, tolerance_wells,
tolerance_wells, tolerance_wells,
max_residual_allowed}, max_residual_allowed},
std::abs(linSys_.resWell_[0][SPres]), std::abs(linSys_.residual()[0][SPres]),
report, report,
deferred_logger); deferred_logger);
@ -1107,120 +1108,6 @@ getSegmentSurfaceVolume(const EvalWell& temperature,
return volume / vol_ratio; return volume / vol_ratio;
} }
template<typename FluidSystem, typename Indices, typename Scalar>
void
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const double rho,
DeferredLogger& deferred_logger)
{
static constexpr int Gas = BlackoilPhases::Vapour;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Water = BlackoilPhases::Aqua;
EvalWell control_eq(0.0);
const auto& well = baseif_.wellEcl();
auto getRates = [&]() {
std::vector<EvalWell> rates(3, 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (baseif_.wellIsStopped()) {
control_eq = getWQTotal();
} else if (baseif_.isInjector() ) {
// Find scaling factor to get injection rate,
const InjectorType injectorType = inj_controls.injector_type;
double scaling = 1.0;
const auto& pu = baseif_.phaseUsage();
switch (injectorType) {
case InjectorType::WATER:
{
scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
break;
}
case InjectorType::OIL:
{
scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
break;
}
case InjectorType::GAS:
{
scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
const EvalWell injection_rate = getWQTotal() / scaling;
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
const auto rates = getRates();
return WellBhpThpCalculator(baseif_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
WellAssemble(baseif_).assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
getBhp(),
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
return WellBhpThpCalculator(baseif_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
WellAssemble(baseif_).assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
getBhp(),
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
// using control_eq to update the matrix and residuals
linSys_.resWell_[0][SPres] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
linSys_.duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template<typename FluidSystem, typename Indices, typename Scalar> template<typename FluidSystem, typename Indices, typename Scalar>
void void
MultisegmentWellEval<FluidSystem,Indices,Scalar>:: MultisegmentWellEval<FluidSystem,Indices,Scalar>::
@ -1262,15 +1149,8 @@ handleAccelerationPressureLoss(const int seg,
auto& segments = well_state.well(baseif_.indexOfWell()).segments; auto& segments = well_state.well(baseif_.indexOfWell()).segments;
segments.pressure_drop_accel[seg] = accelerationPressureLoss.value(); segments.pressure_drop_accel[seg] = accelerationPressureLoss.value();
linSys_.resWell_[seg][SPres] -= accelerationPressureLoss.value(); MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
linSys_.duneD_[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq); assemblePressureLoss(seg, seg_upwind, accelerationPressureLoss, linSys_);
linSys_.duneD_[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq);
if (has_wfrac_variable) {
linSys_.duneD_[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq);
}
if (has_gfrac_variable) {
linSys_.duneD_[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq);
}
} }
template<typename FluidSystem, typename Indices, typename Scalar> template<typename FluidSystem, typename Indices, typename Scalar>
@ -1300,25 +1180,14 @@ assembleDefaultPressureEq(const int seg,
segments.pressure_drop_friction[seg] = friction_pressure_drop.value(); segments.pressure_drop_friction[seg] = friction_pressure_drop.value();
} }
linSys_.resWell_[seg][SPres] = pressure_equation.value();
const int seg_upwind = upwinding_segments_[seg];
linSys_.duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
linSys_.duneD_[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
if (has_wfrac_variable) {
linSys_.duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
}
if (has_gfrac_variable) {
linSys_.duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
}
// contribution from the outlet segment // contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index); const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
linSys_.resWell_[seg][SPres] -= outlet_pressure.value(); const int seg_upwind = upwinding_segments_[seg];
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
linSys_.duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq); assemblePressureEq(seg, seg_upwind, outlet_segment_index,
} pressure_equation, outlet_pressure, linSys_);
if (this->accelerationalPressureLossConsidered()) { if (this->accelerationalPressureLossConsidered()) {
handleAccelerationPressureLoss(seg, well_state); handleAccelerationPressureLoss(seg, well_state);
@ -1535,8 +1404,8 @@ assembleICDPressureEq(const int seg,
if (const auto& segment = this->segmentSet()[seg]; if (const auto& segment = this->segmentSet()[seg];
(segment.segmentType() == Segment::SegmentType::VALVE) && (segment.segmentType() == Segment::SegmentType::VALVE) &&
(segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve (segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve
linSys_.resWell_[seg][SPres] = this->primary_variables_evaluation_[seg][WQTotal].value(); MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
linSys_.duneD_[seg][seg][SPres][WQTotal] = 1.; assembleTrivialEq(seg, this->primary_variables_evaluation_[seg][WQTotal].value(), linSys_);
auto& ws = well_state.well(baseif_.indexOfWell()); auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = 0.; ws.segments.pressure_drop_friction[seg] = 0.;
@ -1569,25 +1438,17 @@ assembleICDPressureEq(const int seg,
auto& ws = well_state.well(baseif_.indexOfWell()); auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value(); ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value();
const int seg_upwind = upwinding_segments_[seg];
linSys_.resWell_[seg][SPres] = pressure_equation.value();
linSys_.duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
linSys_.duneD_[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
linSys_.duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
linSys_.duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
}
// contribution from the outlet segment // contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index); const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
linSys_.resWell_[seg][SPres] -= outlet_pressure.value(); const int seg_upwind = upwinding_segments_[seg];
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
linSys_.duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq); assemblePressureEq(seg, seg_upwind, outlet_segment_index,
} pressure_equation, outlet_pressure,
linSys_,
FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
} }
template<typename FluidSystem, typename Indices, typename Scalar> template<typename FluidSystem, typename Indices, typename Scalar>
@ -1623,10 +1484,10 @@ getFiniteWellResiduals(const std::vector<Scalar>& B_avg,
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
double residual = 0.; double residual = 0.;
if (eq_idx < baseif_.numComponents()) { if (eq_idx < baseif_.numComponents()) {
residual = std::abs(linSys_.resWell_[seg][eq_idx]) * B_avg[eq_idx]; residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx];
} else { } else {
if (seg > 0) { if (seg > 0) {
residual = std::abs(linSys_.resWell_[seg][eq_idx]); residual = std::abs(linSys_.residual()[seg][eq_idx]);
} }
} }
if (std::isnan(residual) || std::isinf(residual)) { if (std::isnan(residual) || std::isinf(residual)) {
@ -1643,7 +1504,7 @@ getFiniteWellResiduals(const std::vector<Scalar>& B_avg,
// handling the control equation residual // handling the control equation residual
{ {
const double control_residual = std::abs(linSys_.resWell_[0][numWellEq - 1]); const double control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]);
if (std::isnan(control_residual) || std::isinf(control_residual)) { if (std::isnan(control_residual) || std::isinf(control_residual)) {
deferred_logger.debug("nan or inf value for control residal get for well " + baseif_.name()); deferred_logger.debug("nan or inf value for control residal get for well " + baseif_.name());
return {false, residuals}; return {false, residuals};

View File

@ -105,15 +105,6 @@ protected:
void initMatrixAndVectors(const int num_cells); void initMatrixAndVectors(const int num_cells);
void initPrimaryVariablesEvaluation() const; void initPrimaryVariablesEvaluation() const;
void assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const double rho,
DeferredLogger& deferred_logger);
void assembleDefaultPressureEq(const int seg, void assembleDefaultPressureEq(const int seg,
WellState& well_state); WellState& well_state);

View File

@ -19,6 +19,7 @@
*/ */
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp> #include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp> #include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/input/eclipse/Schedule/MSW/Valve.hpp> #include <opm/input/eclipse/Schedule/MSW/Valve.hpp>
@ -1562,30 +1563,18 @@ namespace Opm
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) { for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
const EvalWell accumulation_term = regularization_factor * (segment_surface_volume * this->surfaceVolumeFraction(seg, comp_idx) const EvalWell accumulation_term = regularization_factor * (segment_surface_volume * this->surfaceVolumeFraction(seg, comp_idx)
- segment_fluid_initial_[seg][comp_idx]) / dt; - segment_fluid_initial_[seg][comp_idx]) / dt;
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
this->linSys_.resWell_[seg][comp_idx] += accumulation_term.value(); assembleAccumulationTerm(seg, comp_idx, accumulation_term, this->linSys_);
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
this->linSys_.duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + Indices::numEq);
}
} }
} }
// considering the contributions due to flowing out from the segment // considering the contributions due to flowing out from the segment
{ {
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
const EvalWell segment_rate = this->getSegmentRateUpwinding(seg, comp_idx) * this->well_efficiency_factor_;
const int seg_upwind = this->upwinding_segments_[seg]; const int seg_upwind = this->upwinding_segments_[seg];
// segment_rate contains the derivatives with respect to WQTotal in seg, for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
// and WFrac and GFrac in seg_upwind const EvalWell segment_rate = this->getSegmentRateUpwinding(seg, comp_idx) *
this->linSys_.resWell_[seg][comp_idx] -= segment_rate.value(); this->well_efficiency_factor_;
this->linSys_.duneD_[seg][seg][comp_idx][WQTotal] -= segment_rate.derivative(WQTotal + Indices::numEq); MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) { assembleOutflowTerm(seg, seg_upwind, comp_idx, segment_rate, this->linSys_);
this->linSys_.duneD_[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
this->linSys_.duneD_[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + Indices::numEq);
}
// pressure derivative should be zero
} }
} }
@ -1594,19 +1583,9 @@ namespace Opm
for (const int inlet : this->segment_inlets_[seg]) { for (const int inlet : this->segment_inlets_[seg]) {
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) { for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
const EvalWell inlet_rate = this->getSegmentRateUpwinding(inlet, comp_idx) * this->well_efficiency_factor_; const EvalWell inlet_rate = this->getSegmentRateUpwinding(inlet, comp_idx) * this->well_efficiency_factor_;
const int inlet_upwind = this->upwinding_segments_[inlet]; const int inlet_upwind = this->upwinding_segments_[inlet];
// inlet_rate contains the derivatives with respect to WQTotal in inlet, MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
// and WFrac and GFrac in inlet_upwind assembleInflowTerm(seg, inlet, inlet_upwind, comp_idx, inlet_rate, this->linSys_);
this->linSys_.resWell_[seg][comp_idx] += inlet_rate.value();
this->linSys_.duneD_[seg][inlet][comp_idx][WQTotal] += inlet_rate.derivative(WQTotal + Indices::numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
this->linSys_.duneD_[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
this->linSys_.duneD_[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + Indices::numEq);
}
// pressure derivative should be zero
} }
} }
} }
@ -1647,23 +1626,8 @@ namespace Opm
this->connectionRates_[perf][comp_idx] = Base::restrictEval(cq_s_effective); this->connectionRates_[perf][comp_idx] = Base::restrictEval(cq_s_effective);
// subtract sum of phase fluxes in the well equations. MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
this->linSys_.resWell_[seg][comp_idx] += cq_s_effective.value(); assemblePerforationEq(seg, cell_idx, comp_idx, cq_s_effective, this->linSys_);
// assemble the jacobians
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
this->linSys_.duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + Indices::numEq); // intput in transformed matrix
// the index name for the D should be eq_idx / pv_idx
this->linSys_.duneD_[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + Indices::numEq);
}
for (int pv_idx = 0; pv_idx < Indices::numEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
this->linSys_.duneB_[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
}
} }
} }
@ -1671,13 +1635,19 @@ namespace Opm
if (seg == 0) { // top segment, pressure equation is the control equation if (seg == 0) { // top segment, pressure equation is the control equation
const auto& summaryState = ebosSimulator.vanguard().summaryState(); const auto& summaryState = ebosSimulator.vanguard().summaryState();
const Schedule& schedule = ebosSimulator.vanguard().schedule(); const Schedule& schedule = ebosSimulator.vanguard().schedule();
this->assembleControlEq(well_state, std::function<EvalWell(const int)> gQ = [this](int a) { return this->getQs(a); };
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
assembleControlEq(well_state,
group_state, group_state,
schedule, schedule,
summaryState, summaryState,
inj_controls, inj_controls,
prod_controls, prod_controls,
getRefDensity(), getRefDensity(),
this->getWQTotal(),
this->getBhp(),
gQ,
this->linSys_,
deferred_logger); deferred_logger);
} else { } else {
const UnitSystem& unit_system = ebosSimulator.vanguard().eclState().getDeckUnitSystem(); const UnitSystem& unit_system = ebosSimulator.vanguard().eclState().getDeckUnitSystem();