mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #4306 from akva2/msw_assemble
add: MultisegmentWellAssemble
This commit is contained in:
commit
58cf299171
@ -90,6 +90,7 @@ list (APPEND MAIN_SOURCE_FILES
|
||||
opm/simulators/wells/GlobalWellInfo.cpp
|
||||
opm/simulators/wells/GroupState.cpp
|
||||
opm/simulators/wells/MSWellHelpers.cpp
|
||||
opm/simulators/wells/MultisegmentWellAssemble.cpp
|
||||
opm/simulators/wells/MultisegmentWellEquations.cpp
|
||||
opm/simulators/wells/MultisegmentWellEval.cpp
|
||||
opm/simulators/wells/MultisegmentWellGeneric.cpp
|
||||
@ -372,6 +373,7 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/simulators/wells/MSWellHelpers.hpp
|
||||
opm/simulators/wells/MultisegmentWell.hpp
|
||||
opm/simulators/wells/MultisegmentWell_impl.hpp
|
||||
opm/simulators/wells/MultisegmentWellAssemble.hpp
|
||||
opm/simulators/wells/MultisegmentWellEquations.hpp
|
||||
opm/simulators/wells/MultisegmentWellEval.hpp
|
||||
opm/simulators/wells/MultisegmentWellGeneric.hpp
|
||||
|
370
opm/simulators/wells/MultisegmentWellAssemble.cpp
Normal file
370
opm/simulators/wells/MultisegmentWellAssemble.cpp
Normal file
@ -0,0 +1,370 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
Copyright 2016 - 2017 IRIS AS.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
|
||||
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
|
||||
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
||||
|
||||
#include <opm/models/blackoil/blackoilindices.hh>
|
||||
#include <opm/models/blackoil/blackoilonephaseindices.hh>
|
||||
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
|
||||
|
||||
#include <opm/simulators/wells/MultisegmentWellEquations.hpp>
|
||||
#include <opm/simulators/wells/WellAssemble.hpp>
|
||||
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
|
||||
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
//! \brief Class administering assembler access to equation system.
|
||||
template<class Scalar, int numWellEq, int numEq>
|
||||
class MultisegmentWellEquationAccess {
|
||||
public:
|
||||
//! \brief Constructor initializes reference to the equation system.
|
||||
MultisegmentWellEquationAccess(MultisegmentWellEquations<Scalar,numWellEq,numEq>& eqns)
|
||||
: eqns_(eqns)
|
||||
{}
|
||||
|
||||
using BVectorWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::BVectorWell;
|
||||
using DiagMatWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::DiagMatWell;
|
||||
using OffDiatMatWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::OffDiagMatWell;
|
||||
|
||||
//! \brief Returns a reference to residual vector.
|
||||
BVectorWell& residual()
|
||||
{
|
||||
return eqns_.resWell_;
|
||||
}
|
||||
|
||||
//! \brief Returns a reference to B matrix.
|
||||
OffDiatMatWell& B()
|
||||
{
|
||||
return eqns_.duneB_;
|
||||
}
|
||||
|
||||
//! \brief Returns a reference to C matrix.
|
||||
OffDiatMatWell& C()
|
||||
{
|
||||
return eqns_.duneC_;
|
||||
}
|
||||
|
||||
//! \brief Returns a reference to D matrix.
|
||||
DiagMatWell& D()
|
||||
{
|
||||
return eqns_.duneD_;
|
||||
}
|
||||
|
||||
private:
|
||||
MultisegmentWellEquations<Scalar,numWellEq,numEq>& eqns_; //!< Reference to equation system
|
||||
};
|
||||
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
|
||||
assembleControlEq(const WellState& well_state,
|
||||
const GroupState& group_state,
|
||||
const Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const Well::InjectionControls& inj_controls,
|
||||
const Well::ProductionControls& prod_controls,
|
||||
const double rho,
|
||||
const EvalWell& wqTotal,
|
||||
const EvalWell& bhp,
|
||||
const std::function<EvalWell(const int)>& getQs,
|
||||
Equations& eqns1,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
static constexpr int Gas = BlackoilPhases::Vapour;
|
||||
static constexpr int Oil = BlackoilPhases::Liquid;
|
||||
static constexpr int Water = BlackoilPhases::Aqua;
|
||||
|
||||
EvalWell control_eq(0.0);
|
||||
|
||||
const auto& well = well_.wellEcl();
|
||||
|
||||
auto getRates = [&]() {
|
||||
std::vector<EvalWell> rates(3, 0.0);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
}
|
||||
return rates;
|
||||
};
|
||||
|
||||
if (well_.wellIsStopped()) {
|
||||
control_eq = wqTotal;
|
||||
} else if (well_.isInjector() ) {
|
||||
// Find scaling factor to get injection rate,
|
||||
const InjectorType injectorType = inj_controls.injector_type;
|
||||
double scaling = 1.0;
|
||||
const auto& pu = well_.phaseUsage();
|
||||
switch (injectorType) {
|
||||
case InjectorType::WATER:
|
||||
{
|
||||
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
|
||||
break;
|
||||
}
|
||||
case InjectorType::OIL:
|
||||
{
|
||||
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
|
||||
break;
|
||||
}
|
||||
case InjectorType::GAS:
|
||||
{
|
||||
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
|
||||
}
|
||||
const EvalWell injection_rate = wqTotal / scaling;
|
||||
// Setup function for evaluation of BHP from THP (used only if needed).
|
||||
std::function<EvalWell()> bhp_from_thp = [&]() {
|
||||
const auto rates = getRates();
|
||||
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
|
||||
rates,
|
||||
well,
|
||||
summaryState,
|
||||
rho,
|
||||
deferred_logger);
|
||||
};
|
||||
// Call generic implementation.
|
||||
WellAssemble(well_).assembleControlEqInj(well_state,
|
||||
group_state,
|
||||
schedule,
|
||||
summaryState,
|
||||
inj_controls,
|
||||
bhp,
|
||||
injection_rate,
|
||||
bhp_from_thp,
|
||||
control_eq,
|
||||
deferred_logger);
|
||||
} else {
|
||||
// Find rates.
|
||||
const auto rates = getRates();
|
||||
// Setup function for evaluation of BHP from THP (used only if needed).
|
||||
std::function<EvalWell()> bhp_from_thp = [&]() {
|
||||
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
|
||||
rates,
|
||||
well,
|
||||
summaryState,
|
||||
rho,
|
||||
deferred_logger);
|
||||
};
|
||||
// Call generic implementation.
|
||||
WellAssemble(well_).assembleControlEqProd(well_state,
|
||||
group_state,
|
||||
schedule,
|
||||
summaryState,
|
||||
prod_controls,
|
||||
bhp,
|
||||
rates,
|
||||
bhp_from_thp,
|
||||
control_eq,
|
||||
deferred_logger);
|
||||
}
|
||||
|
||||
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
|
||||
// using control_eq to update the matrix and residuals
|
||||
eqns.residual()[0][SPres] = control_eq.value();
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
eqns.D()[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
}
|
||||
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
|
||||
assemblePressureLoss(const int seg,
|
||||
const int seg_upwind,
|
||||
const EvalWell& accelerationPressureLoss,
|
||||
Equations& eqns1) const
|
||||
{
|
||||
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
|
||||
eqns.residual()[seg][SPres] -= accelerationPressureLoss.value();
|
||||
eqns.D()[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq);
|
||||
eqns.D()[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq);
|
||||
if constexpr (has_wfrac_variable) {
|
||||
eqns.D()[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if constexpr (has_gfrac_variable) {
|
||||
eqns.D()[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
}
|
||||
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
|
||||
assemblePressureEq(const int seg,
|
||||
const int seg_upwind,
|
||||
const int outlet_segment_index,
|
||||
const EvalWell& pressure_equation,
|
||||
const EvalWell& outlet_pressure,
|
||||
Equations& eqns1,
|
||||
bool wfrac,
|
||||
bool gfrac) const
|
||||
{
|
||||
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
|
||||
eqns.residual()[seg][SPres] = pressure_equation.value();
|
||||
eqns.D()[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
|
||||
eqns.D()[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
|
||||
if (wfrac) {
|
||||
eqns.D()[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if (gfrac) {
|
||||
eqns.D()[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
|
||||
// contribution from the outlet segment
|
||||
eqns.residual()[seg][SPres] -= outlet_pressure.value();
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
eqns.D()[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
}
|
||||
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
|
||||
assembleTrivialEq(const int seg,
|
||||
const Scalar value,
|
||||
Equations& eqns1) const
|
||||
{
|
||||
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
|
||||
eqns.residual()[seg][SPres] = value;
|
||||
eqns.D()[seg][seg][SPres][WQTotal] = 1.;
|
||||
}
|
||||
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
|
||||
assembleAccumulationTerm(const int seg,
|
||||
const int comp_idx,
|
||||
const EvalWell& accumulation_term,
|
||||
Equations& eqns1) const
|
||||
{
|
||||
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
|
||||
eqns.residual()[seg][comp_idx] += accumulation_term.value();
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
eqns.D()[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
}
|
||||
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
|
||||
assembleOutflowTerm(const int seg,
|
||||
const int seg_upwind,
|
||||
const int comp_idx,
|
||||
const EvalWell& segment_rate,
|
||||
Equations& eqns1) const
|
||||
{
|
||||
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
|
||||
eqns.residual()[seg][comp_idx] -= segment_rate.value();
|
||||
eqns.D()[seg][seg][comp_idx][WQTotal] -= segment_rate.derivative(WQTotal + Indices::numEq);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
eqns.D()[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
eqns.D()[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
// pressure derivative should be zero
|
||||
}
|
||||
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
|
||||
assembleInflowTerm(const int seg,
|
||||
const int inlet,
|
||||
const int inlet_upwind,
|
||||
const int comp_idx,
|
||||
const EvalWell& inlet_rate,
|
||||
Equations& eqns1) const
|
||||
{
|
||||
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
|
||||
eqns.residual()[seg][comp_idx] += inlet_rate.value();
|
||||
eqns.D()[seg][inlet][comp_idx][WQTotal] += inlet_rate.derivative(WQTotal + Indices::numEq);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
eqns.D()[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
eqns.D()[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
// pressure derivative should be zero
|
||||
}
|
||||
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
|
||||
assemblePerforationEq(const int seg,
|
||||
const int cell_idx,
|
||||
const int comp_idx,
|
||||
const EvalWell& cq_s_effective,
|
||||
Equations& eqns1) const
|
||||
{
|
||||
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
|
||||
// subtract sum of phase fluxes in the well equations.
|
||||
eqns.residual()[seg][comp_idx] += cq_s_effective.value();
|
||||
|
||||
// assemble the jacobians
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
// also need to consider the efficiency factor when manipulating the jacobians.
|
||||
eqns.C()[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + Indices::numEq); // input in transformed matrix
|
||||
|
||||
// the index name for the D should be eq_idx / pv_idx
|
||||
eqns.D()[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
|
||||
for (int pv_idx = 0; pv_idx < Indices::numEq; ++pv_idx) {
|
||||
// also need to consider the efficiency factor when manipulating the jacobians.
|
||||
eqns.B()[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
|
||||
}
|
||||
}
|
||||
|
||||
#define INSTANCE(...) \
|
||||
template class MultisegmentWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
|
||||
|
||||
// One phase
|
||||
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
|
||||
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
|
||||
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
|
||||
|
||||
// Two phase
|
||||
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
|
||||
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
|
||||
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
|
||||
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
|
||||
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
|
||||
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
|
||||
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
|
||||
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
|
||||
|
||||
// Blackoil
|
||||
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
|
||||
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
|
||||
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
|
||||
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
|
||||
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
|
||||
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
|
||||
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
|
||||
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
|
||||
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
|
||||
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
|
||||
|
||||
}
|
140
opm/simulators/wells/MultisegmentWellAssemble.hpp
Normal file
140
opm/simulators/wells/MultisegmentWellAssemble.hpp
Normal file
@ -0,0 +1,140 @@
|
||||
/*
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
Copyright 2017 Statoil ASA.
|
||||
Copyright 2016 - 2017 IRIS AS.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef OPM_MULTISEGMENTWELL_ASSEMBLE_HEADER_INCLUDED
|
||||
#define OPM_MULTISEGMENTWELL_ASSEMBLE_HEADER_INCLUDED
|
||||
|
||||
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
|
||||
#include <opm/material/densead/Evaluation.hpp>
|
||||
|
||||
#include <functional>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class DeferredLogger;
|
||||
class GroupState;
|
||||
template<class Scalar, int numWellEq, int numEq> class MultisegmentWellEquations;
|
||||
class Schedule;
|
||||
class SummaryState;
|
||||
template<class FluidSystem, class Indices, class Scalar> class WellInterfaceIndices;
|
||||
class WellState;
|
||||
|
||||
//! \brief Class handling assemble of the equation system for MultisegmentWell.
|
||||
template<class FluidSystem, class Indices, class Scalar>
|
||||
class MultisegmentWellAssemble
|
||||
{
|
||||
static constexpr bool has_water = (Indices::waterSwitchIdx >= 0);
|
||||
static constexpr bool has_gas = (Indices::compositionSwitchIdx >= 0);
|
||||
static constexpr bool has_oil = (Indices::numPhases - has_gas - has_water) > 0;
|
||||
|
||||
// In the implementation, one should use has_wfrac_variable
|
||||
// rather than has_water to check if you should do something
|
||||
// with the variable at the WFrac location, similar for GFrac.
|
||||
static constexpr bool has_wfrac_variable = has_water && Indices::numPhases > 1;
|
||||
static constexpr bool has_gfrac_variable = has_gas && has_oil;
|
||||
|
||||
static constexpr int WQTotal = 0;
|
||||
static constexpr int WFrac = has_wfrac_variable ? 1 : -1000;
|
||||
static constexpr int GFrac = has_gfrac_variable ? has_wfrac_variable + 1 : -1000;
|
||||
static constexpr int SPres = has_wfrac_variable + has_gfrac_variable + 1;
|
||||
|
||||
public:
|
||||
static constexpr int numWellEq = Indices::numPhases+1;
|
||||
using Equations = MultisegmentWellEquations<Scalar,numWellEq,Indices::numEq>;
|
||||
using EvalWell = DenseAd::Evaluation<Scalar, numWellEq+Indices::numEq>;
|
||||
//! \brief Constructor initializes reference to well.
|
||||
MultisegmentWellAssemble(const WellInterfaceIndices<FluidSystem,Indices,Scalar>& well)
|
||||
: well_(well)
|
||||
{}
|
||||
|
||||
//! \brief Assemble control equation.
|
||||
void assembleControlEq(const WellState& well_state,
|
||||
const GroupState& group_state,
|
||||
const Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const Well::InjectionControls& inj_controls,
|
||||
const Well::ProductionControls& prod_controls,
|
||||
const double rho,
|
||||
const EvalWell& wqTotal,
|
||||
const EvalWell& bhp,
|
||||
const std::function<EvalWell(const int)>& getQs,
|
||||
Equations& eqns,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
|
||||
//! \brief Assemble pressure loss term.
|
||||
void assemblePressureLoss(const int seg,
|
||||
const int seg_upwind,
|
||||
const EvalWell& accelerationPressureLoss,
|
||||
Equations& eqns) const;
|
||||
|
||||
//! \brief Assemble pressure terms.
|
||||
void assemblePressureEq(const int seg,
|
||||
const int seg_upwind,
|
||||
const int outlet_segment_index,
|
||||
const EvalWell& pressure_equation,
|
||||
const EvalWell& outlet_pressure,
|
||||
Equations& eqns,
|
||||
bool wfrac = has_wfrac_variable,
|
||||
bool gfrac = has_gfrac_variable) const;
|
||||
|
||||
//! \brief Assembles a trivial equation.
|
||||
void assembleTrivialEq(const int seg,
|
||||
const Scalar value,
|
||||
Equations& eqns) const;
|
||||
|
||||
//! \brief Assemble accumulation term.
|
||||
void assembleAccumulationTerm(const int seg,
|
||||
const int comp_idx,
|
||||
const EvalWell& accumulation_term,
|
||||
Equations& eqns1) const;
|
||||
|
||||
//! \brief Assemble outflow term.
|
||||
void assembleOutflowTerm(const int seg,
|
||||
const int seg_upwind,
|
||||
const int comp_idx,
|
||||
const EvalWell& segment_rate,
|
||||
Equations& eqns1) const;
|
||||
|
||||
//! \brief Assemble inflow term.
|
||||
void assembleInflowTerm(const int seg,
|
||||
const int inlet,
|
||||
const int inlet_upwind,
|
||||
const int comp_idx,
|
||||
const EvalWell& inlet_rate,
|
||||
Equations& eqns) const;
|
||||
|
||||
//! \brief Assemble equation for a perforation.
|
||||
void assemblePerforationEq(const int seg,
|
||||
const int cell_idx,
|
||||
const int comp_idx,
|
||||
const EvalWell& cq_s_effective,
|
||||
Equations& eqns) const;
|
||||
|
||||
private:
|
||||
const WellInterfaceIndices<FluidSystem,Indices,Scalar>& well_; //!< Reference to well
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // OPM_STANDARDWELL_ASSEMBLE_HEADER_INCLUDED
|
@ -36,6 +36,7 @@ template<class M> class UMFPack;
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
template<class Scalar, int numWellEq, int numEq> class MultisegmentWellEquationAccess;
|
||||
template<class Scalar> class MultisegmentWellGeneric;
|
||||
class WellContributions;
|
||||
class WellInterfaceGeneric;
|
||||
@ -110,6 +111,14 @@ public:
|
||||
const int seg_pressure_var_ind,
|
||||
const WellState& well_state) const;
|
||||
|
||||
//! \brief Returns a const reference to the residual.
|
||||
const BVectorWell& residual() const
|
||||
{
|
||||
return resWell_;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class MultisegmentWellEquationAccess<Scalar,numWellEq,numEq>;
|
||||
// two off-diagonal matrices
|
||||
OffDiagMatWell duneB_;
|
||||
OffDiagMatWell duneC_;
|
||||
@ -119,12 +128,11 @@ public:
|
||||
/// \brief solver for diagonal matrix
|
||||
///
|
||||
/// This is a shared_ptr as MultisegmentWell is copied in computeWellPotentials...
|
||||
mutable std::shared_ptr<Dune::UMFPack<DiagMatWell> > duneDSolver_;
|
||||
mutable std::shared_ptr<Dune::UMFPack<DiagMatWell>> duneDSolver_;
|
||||
|
||||
// residuals of the well equations
|
||||
BVectorWell resWell_;
|
||||
|
||||
private:
|
||||
const MultisegmentWellGeneric<Scalar>& well_; //!< Reference to well
|
||||
};
|
||||
|
||||
|
@ -33,6 +33,7 @@
|
||||
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
|
||||
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
||||
#include <opm/simulators/wells/MSWellHelpers.hpp>
|
||||
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
|
||||
#include <opm/simulators/wells/RateConverter.hpp>
|
||||
#include <opm/simulators/wells/WellAssemble.hpp>
|
||||
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
|
||||
@ -112,7 +113,7 @@ getWellConvergence(const WellState& well_state,
|
||||
std::vector<std::vector<double>> abs_residual(this->numberOfSegments(), std::vector<double>(numWellEq, 0.0));
|
||||
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
|
||||
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
||||
abs_residual[seg][eq_idx] = std::abs(linSys_.resWell_[seg][eq_idx]);
|
||||
abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -177,7 +178,7 @@ getWellConvergence(const WellState& well_state,
|
||||
tolerance_wells,
|
||||
tolerance_wells,
|
||||
max_residual_allowed},
|
||||
std::abs(linSys_.resWell_[0][SPres]),
|
||||
std::abs(linSys_.residual()[0][SPres]),
|
||||
report,
|
||||
deferred_logger);
|
||||
|
||||
@ -1107,120 +1108,6 @@ getSegmentSurfaceVolume(const EvalWell& temperature,
|
||||
return volume / vol_ratio;
|
||||
}
|
||||
|
||||
template<typename FluidSystem, typename Indices, typename Scalar>
|
||||
void
|
||||
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
|
||||
assembleControlEq(const WellState& well_state,
|
||||
const GroupState& group_state,
|
||||
const Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const Well::InjectionControls& inj_controls,
|
||||
const Well::ProductionControls& prod_controls,
|
||||
const double rho,
|
||||
DeferredLogger& deferred_logger)
|
||||
{
|
||||
static constexpr int Gas = BlackoilPhases::Vapour;
|
||||
static constexpr int Oil = BlackoilPhases::Liquid;
|
||||
static constexpr int Water = BlackoilPhases::Aqua;
|
||||
|
||||
EvalWell control_eq(0.0);
|
||||
|
||||
const auto& well = baseif_.wellEcl();
|
||||
|
||||
auto getRates = [&]() {
|
||||
std::vector<EvalWell> rates(3, 0.0);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
}
|
||||
return rates;
|
||||
};
|
||||
|
||||
if (baseif_.wellIsStopped()) {
|
||||
control_eq = getWQTotal();
|
||||
} else if (baseif_.isInjector() ) {
|
||||
// Find scaling factor to get injection rate,
|
||||
const InjectorType injectorType = inj_controls.injector_type;
|
||||
double scaling = 1.0;
|
||||
const auto& pu = baseif_.phaseUsage();
|
||||
switch (injectorType) {
|
||||
case InjectorType::WATER:
|
||||
{
|
||||
scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
|
||||
break;
|
||||
}
|
||||
case InjectorType::OIL:
|
||||
{
|
||||
scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
|
||||
break;
|
||||
}
|
||||
case InjectorType::GAS:
|
||||
{
|
||||
scaling = baseif_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
|
||||
}
|
||||
const EvalWell injection_rate = getWQTotal() / scaling;
|
||||
// Setup function for evaluation of BHP from THP (used only if needed).
|
||||
std::function<EvalWell()> bhp_from_thp = [&]() {
|
||||
const auto rates = getRates();
|
||||
return WellBhpThpCalculator(baseif_).calculateBhpFromThp(well_state,
|
||||
rates,
|
||||
well,
|
||||
summaryState,
|
||||
rho,
|
||||
deferred_logger);
|
||||
};
|
||||
// Call generic implementation.
|
||||
WellAssemble(baseif_).assembleControlEqInj(well_state,
|
||||
group_state,
|
||||
schedule,
|
||||
summaryState,
|
||||
inj_controls,
|
||||
getBhp(),
|
||||
injection_rate,
|
||||
bhp_from_thp,
|
||||
control_eq,
|
||||
deferred_logger);
|
||||
} else {
|
||||
// Find rates.
|
||||
const auto rates = getRates();
|
||||
// Setup function for evaluation of BHP from THP (used only if needed).
|
||||
std::function<EvalWell()> bhp_from_thp = [&]() {
|
||||
return WellBhpThpCalculator(baseif_).calculateBhpFromThp(well_state,
|
||||
rates,
|
||||
well,
|
||||
summaryState,
|
||||
rho,
|
||||
deferred_logger);
|
||||
};
|
||||
// Call generic implementation.
|
||||
WellAssemble(baseif_).assembleControlEqProd(well_state,
|
||||
group_state,
|
||||
schedule,
|
||||
summaryState,
|
||||
prod_controls,
|
||||
getBhp(),
|
||||
rates,
|
||||
bhp_from_thp,
|
||||
control_eq,
|
||||
deferred_logger);
|
||||
}
|
||||
|
||||
// using control_eq to update the matrix and residuals
|
||||
linSys_.resWell_[0][SPres] = control_eq.value();
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
linSys_.duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename FluidSystem, typename Indices, typename Scalar>
|
||||
void
|
||||
MultisegmentWellEval<FluidSystem,Indices,Scalar>::
|
||||
@ -1262,15 +1149,8 @@ handleAccelerationPressureLoss(const int seg,
|
||||
auto& segments = well_state.well(baseif_.indexOfWell()).segments;
|
||||
segments.pressure_drop_accel[seg] = accelerationPressureLoss.value();
|
||||
|
||||
linSys_.resWell_[seg][SPres] -= accelerationPressureLoss.value();
|
||||
linSys_.duneD_[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq);
|
||||
linSys_.duneD_[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq);
|
||||
if (has_wfrac_variable) {
|
||||
linSys_.duneD_[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if (has_gfrac_variable) {
|
||||
linSys_.duneD_[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
|
||||
assemblePressureLoss(seg, seg_upwind, accelerationPressureLoss, linSys_);
|
||||
}
|
||||
|
||||
template<typename FluidSystem, typename Indices, typename Scalar>
|
||||
@ -1300,25 +1180,14 @@ assembleDefaultPressureEq(const int seg,
|
||||
segments.pressure_drop_friction[seg] = friction_pressure_drop.value();
|
||||
}
|
||||
|
||||
linSys_.resWell_[seg][SPres] = pressure_equation.value();
|
||||
const int seg_upwind = upwinding_segments_[seg];
|
||||
linSys_.duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
|
||||
linSys_.duneD_[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
|
||||
if (has_wfrac_variable) {
|
||||
linSys_.duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if (has_gfrac_variable) {
|
||||
linSys_.duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
|
||||
// contribution from the outlet segment
|
||||
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
|
||||
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
|
||||
|
||||
linSys_.resWell_[seg][SPres] -= outlet_pressure.value();
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
linSys_.duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
const int seg_upwind = upwinding_segments_[seg];
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
|
||||
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
|
||||
pressure_equation, outlet_pressure, linSys_);
|
||||
|
||||
if (this->accelerationalPressureLossConsidered()) {
|
||||
handleAccelerationPressureLoss(seg, well_state);
|
||||
@ -1535,8 +1404,8 @@ assembleICDPressureEq(const int seg,
|
||||
if (const auto& segment = this->segmentSet()[seg];
|
||||
(segment.segmentType() == Segment::SegmentType::VALVE) &&
|
||||
(segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve
|
||||
linSys_.resWell_[seg][SPres] = this->primary_variables_evaluation_[seg][WQTotal].value();
|
||||
linSys_.duneD_[seg][seg][SPres][WQTotal] = 1.;
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
|
||||
assembleTrivialEq(seg, this->primary_variables_evaluation_[seg][WQTotal].value(), linSys_);
|
||||
|
||||
auto& ws = well_state.well(baseif_.indexOfWell());
|
||||
ws.segments.pressure_drop_friction[seg] = 0.;
|
||||
@ -1569,25 +1438,17 @@ assembleICDPressureEq(const int seg,
|
||||
auto& ws = well_state.well(baseif_.indexOfWell());
|
||||
ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value();
|
||||
|
||||
const int seg_upwind = upwinding_segments_[seg];
|
||||
linSys_.resWell_[seg][SPres] = pressure_equation.value();
|
||||
linSys_.duneD_[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
|
||||
linSys_.duneD_[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
linSys_.duneD_[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
linSys_.duneD_[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
|
||||
// contribution from the outlet segment
|
||||
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
|
||||
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
|
||||
|
||||
linSys_.resWell_[seg][SPres] -= outlet_pressure.value();
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
linSys_.duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
const int seg_upwind = upwinding_segments_[seg];
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(baseif_).
|
||||
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
|
||||
pressure_equation, outlet_pressure,
|
||||
linSys_,
|
||||
FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
|
||||
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
||||
}
|
||||
|
||||
template<typename FluidSystem, typename Indices, typename Scalar>
|
||||
@ -1623,10 +1484,10 @@ getFiniteWellResiduals(const std::vector<Scalar>& B_avg,
|
||||
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
||||
double residual = 0.;
|
||||
if (eq_idx < baseif_.numComponents()) {
|
||||
residual = std::abs(linSys_.resWell_[seg][eq_idx]) * B_avg[eq_idx];
|
||||
residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx];
|
||||
} else {
|
||||
if (seg > 0) {
|
||||
residual = std::abs(linSys_.resWell_[seg][eq_idx]);
|
||||
residual = std::abs(linSys_.residual()[seg][eq_idx]);
|
||||
}
|
||||
}
|
||||
if (std::isnan(residual) || std::isinf(residual)) {
|
||||
@ -1643,7 +1504,7 @@ getFiniteWellResiduals(const std::vector<Scalar>& B_avg,
|
||||
|
||||
// handling the control equation residual
|
||||
{
|
||||
const double control_residual = std::abs(linSys_.resWell_[0][numWellEq - 1]);
|
||||
const double control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]);
|
||||
if (std::isnan(control_residual) || std::isinf(control_residual)) {
|
||||
deferred_logger.debug("nan or inf value for control residal get for well " + baseif_.name());
|
||||
return {false, residuals};
|
||||
|
@ -105,15 +105,6 @@ protected:
|
||||
void initMatrixAndVectors(const int num_cells);
|
||||
void initPrimaryVariablesEvaluation() const;
|
||||
|
||||
void assembleControlEq(const WellState& well_state,
|
||||
const GroupState& group_state,
|
||||
const Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const Well::InjectionControls& inj_controls,
|
||||
const Well::ProductionControls& prod_controls,
|
||||
const double rho,
|
||||
DeferredLogger& deferred_logger);
|
||||
|
||||
void assembleDefaultPressureEq(const int seg,
|
||||
WellState& well_state);
|
||||
|
||||
|
@ -19,6 +19,7 @@
|
||||
*/
|
||||
|
||||
|
||||
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
|
||||
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
|
||||
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
||||
#include <opm/input/eclipse/Schedule/MSW/Valve.hpp>
|
||||
@ -1562,30 +1563,18 @@ namespace Opm
|
||||
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
|
||||
const EvalWell accumulation_term = regularization_factor * (segment_surface_volume * this->surfaceVolumeFraction(seg, comp_idx)
|
||||
- segment_fluid_initial_[seg][comp_idx]) / dt;
|
||||
|
||||
this->linSys_.resWell_[seg][comp_idx] += accumulation_term.value();
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
this->linSys_.duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
|
||||
assembleAccumulationTerm(seg, comp_idx, accumulation_term, this->linSys_);
|
||||
}
|
||||
}
|
||||
// considering the contributions due to flowing out from the segment
|
||||
{
|
||||
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
|
||||
const EvalWell segment_rate = this->getSegmentRateUpwinding(seg, comp_idx) * this->well_efficiency_factor_;
|
||||
|
||||
const int seg_upwind = this->upwinding_segments_[seg];
|
||||
// segment_rate contains the derivatives with respect to WQTotal in seg,
|
||||
// and WFrac and GFrac in seg_upwind
|
||||
this->linSys_.resWell_[seg][comp_idx] -= segment_rate.value();
|
||||
this->linSys_.duneD_[seg][seg][comp_idx][WQTotal] -= segment_rate.derivative(WQTotal + Indices::numEq);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
this->linSys_.duneD_[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
this->linSys_.duneD_[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
// pressure derivative should be zero
|
||||
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
|
||||
const EvalWell segment_rate = this->getSegmentRateUpwinding(seg, comp_idx) *
|
||||
this->well_efficiency_factor_;
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
|
||||
assembleOutflowTerm(seg, seg_upwind, comp_idx, segment_rate, this->linSys_);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1594,19 +1583,9 @@ namespace Opm
|
||||
for (const int inlet : this->segment_inlets_[seg]) {
|
||||
for (int comp_idx = 0; comp_idx < this->num_components_; ++comp_idx) {
|
||||
const EvalWell inlet_rate = this->getSegmentRateUpwinding(inlet, comp_idx) * this->well_efficiency_factor_;
|
||||
|
||||
const int inlet_upwind = this->upwinding_segments_[inlet];
|
||||
// inlet_rate contains the derivatives with respect to WQTotal in inlet,
|
||||
// and WFrac and GFrac in inlet_upwind
|
||||
this->linSys_.resWell_[seg][comp_idx] += inlet_rate.value();
|
||||
this->linSys_.duneD_[seg][inlet][comp_idx][WQTotal] += inlet_rate.derivative(WQTotal + Indices::numEq);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
this->linSys_.duneD_[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + Indices::numEq);
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
this->linSys_.duneD_[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + Indices::numEq);
|
||||
}
|
||||
// pressure derivative should be zero
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
|
||||
assembleInflowTerm(seg, inlet, inlet_upwind, comp_idx, inlet_rate, this->linSys_);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1647,23 +1626,8 @@ namespace Opm
|
||||
|
||||
this->connectionRates_[perf][comp_idx] = Base::restrictEval(cq_s_effective);
|
||||
|
||||
// subtract sum of phase fluxes in the well equations.
|
||||
this->linSys_.resWell_[seg][comp_idx] += cq_s_effective.value();
|
||||
|
||||
// assemble the jacobians
|
||||
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
||||
|
||||
// also need to consider the efficiency factor when manipulating the jacobians.
|
||||
this->linSys_.duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + Indices::numEq); // intput in transformed matrix
|
||||
|
||||
// the index name for the D should be eq_idx / pv_idx
|
||||
this->linSys_.duneD_[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + Indices::numEq);
|
||||
}
|
||||
|
||||
for (int pv_idx = 0; pv_idx < Indices::numEq; ++pv_idx) {
|
||||
// also need to consider the efficiency factor when manipulating the jacobians.
|
||||
this->linSys_.duneB_[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
|
||||
}
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
|
||||
assemblePerforationEq(seg, cell_idx, comp_idx, cq_s_effective, this->linSys_);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1671,13 +1635,19 @@ namespace Opm
|
||||
if (seg == 0) { // top segment, pressure equation is the control equation
|
||||
const auto& summaryState = ebosSimulator.vanguard().summaryState();
|
||||
const Schedule& schedule = ebosSimulator.vanguard().schedule();
|
||||
this->assembleControlEq(well_state,
|
||||
std::function<EvalWell(const int)> gQ = [this](int a) { return this->getQs(a); };
|
||||
MultisegmentWellAssemble<FluidSystem,Indices,Scalar>(*this).
|
||||
assembleControlEq(well_state,
|
||||
group_state,
|
||||
schedule,
|
||||
summaryState,
|
||||
inj_controls,
|
||||
prod_controls,
|
||||
getRefDensity(),
|
||||
this->getWQTotal(),
|
||||
this->getBhp(),
|
||||
gQ,
|
||||
this->linSys_,
|
||||
deferred_logger);
|
||||
} else {
|
||||
const UnitSystem& unit_system = ebosSimulator.vanguard().eclState().getDeckUnitSystem();
|
||||
|
Loading…
Reference in New Issue
Block a user