Merge pull request #550 from akva2/ewoms_to_models

Move ewoms/* into an opm/models/* structure
This commit is contained in:
Atgeirr Flø Rasmussen 2019-09-19 14:23:42 +02:00 committed by GitHub
commit 596cb21e20
224 changed files with 44320 additions and 151 deletions

View File

@ -32,9 +32,9 @@
#include <opm/material/common/quad.hpp>
#endif
#include <ewoms/common/start.hh>
#include <ewoms/models/flash/flashmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/flash/flashmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionflash.hh"
#include "problems/co2injectionproblem.hh"

View File

@ -29,9 +29,9 @@
#include "config.h"
#include <opm/material/common/quad.hpp>
#include <ewoms/common/start.hh>
#include <ewoms/models/flash/flashmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/flash/flashmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionflash.hh"
#include "problems/co2injectionproblem.hh"

View File

@ -29,9 +29,9 @@
#include "config.h"
#include <opm/material/common/quad.hpp>
#include <ewoms/common/start.hh>
#include <ewoms/models/flash/flashmodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/flash/flashmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionflash.hh"
#include "problems/co2injectionproblem.hh"

View File

@ -32,9 +32,9 @@
#include <opm/material/common/quad.hpp>
#endif
#include <ewoms/common/start.hh>
#include <ewoms/models/flash/flashmodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/flash/flashmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionflash.hh"
#include "problems/co2injectionproblem.hh"

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/ncp/ncpmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/ncp/ncpmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/ncp/ncpmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/ncp/ncpmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/ncp/ncpmodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/ncp/ncpmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/ncp/ncpmodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/ncp/ncpmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/cuvetteproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/flash/flashmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/flash/flashmodel.hh>
#include "problems/diffusionproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/ncp/ncpmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/ncp/ncpmodel.hh>
#include "problems/diffusionproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/diffusionproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,9 +27,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/fingerproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,8 +28,8 @@
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/fingerproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,7 +27,7 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <opm/models/utils/start.hh>
#include "problems/fractureproblem.hh"
int main(int argc, char **argv)

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include "problems/groundwaterproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/infiltrationproblem.hh"
BEGIN_PROPERTIES

View File

@ -30,7 +30,7 @@
#include "lens_immiscible_ecfv_ad.hh"
#include <ewoms/common/start.hh>
#include <opm/models/utils/start.hh>
int main(int argc, char **argv)
{

View File

@ -29,8 +29,8 @@
#ifndef EWOMS_LENS_IMMISCIBLE_ECFV_AD_HH
#define EWOMS_LENS_IMMISCIBLE_ECFV_AD_HH
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/lensproblem.hh"
BEGIN_PROPERTIES

View File

@ -82,7 +82,7 @@ public:
END_PROPERTIES
#include <ewoms/common/start.hh>
#include <opm/models/utils/start.hh>
int main(int argc, char **argv)
{

View File

@ -36,7 +36,7 @@
#include "lens_immiscible_ecfv_ad.hh"
#include <ewoms/common/start.hh>
#include <opm/models/utils/start.hh>
// fake forward declaration to prevent esoteric compiler warning
int mainCU1(int argc, char **argv);

View File

@ -36,7 +36,7 @@
#include "lens_immiscible_ecfv_ad.hh"
#include <ewoms/common/start.hh>
#include <opm/models/utils/start.hh>
// fake forward declaration to prevent esoteric compiler warning
int mainCU2(int argc, char **argv);

View File

@ -28,8 +28,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include "problems/lensproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,8 +28,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include "problems/lensproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/richardslensproblem.hh"

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/richardslensproblem.hh"

View File

@ -28,8 +28,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include "problems/obstacleproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/ncp/ncpmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/ncp/ncpmodel.hh>
#include "problems/obstacleproblem.hh"

View File

@ -29,8 +29,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/obstacleproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/outflowproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include "problems/powerinjectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include "problems/powerinjectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include "problems/powerinjectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include "problems/powerinjectionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_CO2_INJECTION_PROBLEM_HH
#define EWOMS_CO2_INJECTION_PROBLEM_HH
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/simulators/linalg/parallelamgbackend.hh>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_CUVETTE_PROBLEM_HH
#define EWOMS_CUVETTE_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>

View File

@ -28,9 +28,9 @@
#ifndef EWOMS_POWER_INJECTION_PROBLEM_HH
#define EWOMS_POWER_INJECTION_PROBLEM_HH
#include <ewoms/models/ncp/ncpproperties.hh>
#include <opm/models/ncp/ncpproperties.hh>
#include <ewoms/io/cubegridvanguard.hh>
#include <opm/models/io/cubegridvanguard.hh>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_FINGER_PROBLEM_HH
#define EWOMS_FINGER_PROBLEM_HH
#include <ewoms/io/structuredgridvanguard.hh>
#include <opm/models/io/structuredgridvanguard.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
@ -41,8 +41,8 @@
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Air.hpp>
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <ewoms/disc/common/restrictprolong.hh>
#include <opm/models/immiscible/immiscibleproperties.hh>
#include <opm/models/discretization/common/restrictprolong.hh>
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>

View File

@ -38,7 +38,7 @@
#endif
#include <ewoms/models/discretefracture/discretefracturemodel.hh>
#include <ewoms/io/dgfvanguard.hh>
#include <opm/models/io/dgfvanguard.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_GROUND_WATER_PROBLEM_HH
#define EWOMS_GROUND_WATER_PROBLEM_HH
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <opm/models/immiscible/immiscibleproperties.hh>
#include <opm/simulators/linalg/parallelistlbackend.hh>
#include <opm/material/components/SimpleH2O.hpp>

View File

@ -27,7 +27,7 @@
#ifndef EWOMS_INFILTRATION_PROBLEM_HH
#define EWOMS_INFILTRATION_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>

View File

@ -28,10 +28,10 @@
#ifndef EWOMS_LENS_PROBLEM_HH
#define EWOMS_LENS_PROBLEM_HH
#include <ewoms/io/structuredgridvanguard.hh>
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <ewoms/disc/common/fvbaseadlocallinearizer.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/io/structuredgridvanguard.hh>
#include <opm/models/immiscible/immiscibleproperties.hh>
#include <opm/models/discretization/common/fvbaseadlocallinearizer.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_OBSTACLE_PROBLEM_HH
#define EWOMS_OBSTACLE_PROBLEM_HH
#include <ewoms/models/ncp/ncpproperties.hh>
#include <opm/models/ncp/ncpproperties.hh>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>

View File

@ -27,7 +27,7 @@
#ifndef EWOMS_OUTFLOW_PROBLEM_HH
#define EWOMS_OUTFLOW_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2ON2LiquidPhaseFluidSystem.hpp>

View File

@ -28,8 +28,8 @@
#ifndef EWOMS_POWER_INJECTION_PROBLEM_HH
#define EWOMS_POWER_INJECTION_PROBLEM_HH
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/io/cubegridvanguard.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/io/cubegridvanguard.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_RESERVOIR_PROBLEM_HH
#define EWOMS_RESERVOIR_PROBLEM_HH
#include <ewoms/models/blackoil/blackoilproperties.hh>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_RICHARDS_LENS_PROBLEM_HH
#define EWOMS_RICHARDS_LENS_PROBLEM_HH
#include <ewoms/models/richards/richardsmodel.hh>
#include <opm/models/richards/richardsmodel.hh>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/fluidsystems/LiquidPhase.hpp>

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_WATER_AIR_PROBLEM_HH
#define EWOMS_WATER_AIR_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/simulators/linalg/parallelistlbackend.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/blackoil/blackoilmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/blackoil/blackoilmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/reservoirproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,9 +27,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/blackoil/blackoilmodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/blackoil/blackoilmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/reservoirproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,9 +27,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/ncp/ncpmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/ncp/ncpmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/reservoirproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,9 +28,9 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/ncp/ncpmodel.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/ncp/ncpmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/reservoirproblem.hh"
BEGIN_PROPERTIES

View File

@ -27,7 +27,7 @@
* immisciblility.
*/
#include "config.h" /*@\label{tutorial1:include-begin}@*/
#include <ewoms/common/start.hh> /*@\label{tutorial1:include-end}@*/
#include <opm/models/utils/start.hh> /*@\label{tutorial1:include-end}@*/
#include "tutorial1problem.hh" /*@\label{tutorial1:include-problem-header}@*/
int main(int argc, char **argv)

View File

@ -29,10 +29,10 @@
#define EWOMS_TUTORIAL1_PROBLEM_HH /*@\label{tutorial1:guardian2}@*/
// The numerical model
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/models/immiscible/immisciblemodel.hh>
// The spatial discretization (VCFV == Vertex-Centered Finite Volumes)
#include <ewoms/disc/vcfv/vcfvdiscretization.hh> /*@\label{tutorial1:include-discretization}@*/
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh> /*@\label{tutorial1:include-discretization}@*/
// The chemical species that are used
#include <opm/material/components/SimpleH2O.hpp>
@ -45,7 +45,7 @@
// For the DUNE grid
#include <dune/grid/yaspgrid.hh> /*@\label{tutorial1:include-grid-manager}@*/
#include <ewoms/io/cubegridvanguard.hh> /*@\label{tutorial1:include-grid-manager}@*/
#include <opm/models/io/cubegridvanguard.hh> /*@\label{tutorial1:include-grid-manager}@*/
// For Dune::FieldMatrix
#include <dune/common/fmatrix.hh>

View File

@ -27,8 +27,8 @@
*/
#include "config.h"
#include <ewoms/common/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/utils/start.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/waterairproblem.hh"
BEGIN_PROPERTIES

View File

@ -0,0 +1,271 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilBoundaryRateVector
*/
#ifndef EWOMS_BLACK_OIL_BOUNDARY_RATE_VECTOR_HH
#define EWOMS_BLACK_OIL_BOUNDARY_RATE_VECTOR_HH
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include "blackoilintensivequantities.hh"
#include "blackoilenergymodules.hh"
namespace Opm {
/*!
* \ingroup BlackOilModel
*
* \brief Implements a boundary vector for the fully implicit black-oil model.
*/
template <class TypeTag>
class BlackOilBoundaryRateVector : public GET_PROP_TYPE(TypeTag, RateVector)
{
typedef typename GET_PROP_TYPE(TypeTag, RateVector) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, LocalResidual) LocalResidual;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) };
enum { enablePolymer = GET_PROP_VALUE(TypeTag, EnablePolymer) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { contiEnergyEqIdx = Indices::contiEnergyEqIdx };
enum { enableFoam = GET_PROP_VALUE(TypeTag, EnableFoam) };
static constexpr bool blackoilConserveSurfaceVolume = GET_PROP_VALUE(TypeTag, BlackoilConserveSurfaceVolume);
typedef Opm::BlackOilEnergyModule<TypeTag, enableEnergy> EnergyModule;
public:
/*!
* \brief Default constructor
*/
BlackOilBoundaryRateVector() : ParentType()
{}
/*!
* \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(Scalar)
*/
BlackOilBoundaryRateVector(Scalar value) : ParentType(value)
{}
/*!
* \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(const ImmiscibleBoundaryRateVector& )
*/
BlackOilBoundaryRateVector(const BlackOilBoundaryRateVector& value) = default;
BlackOilBoundaryRateVector& operator=(const BlackOilBoundaryRateVector& value) = default;
/*!
* \copydoc ImmiscibleBoundaryRateVector::setFreeFlow
*/
template <class Context, class FluidState>
void setFreeFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
ExtensiveQuantities extQuants;
extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState);
const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx);
unsigned focusDofIdx = context.focusDofIndex();
unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx);
////////
// advective fluxes of all components in all phases
////////
(*this) = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
const auto& pBoundary = fluidState.pressure(phaseIdx);
const Evaluation& pInside = insideIntQuants.fluidState().pressure(phaseIdx);
RateVector tmp;
// mass conservation
if (pBoundary < pInside)
// outflux
LocalResidual::template evalPhaseFluxes_<Evaluation>(tmp,
phaseIdx,
insideIntQuants.pvtRegionIndex(),
extQuants,
insideIntQuants.fluidState());
else if (pBoundary > pInside) {
typedef typename std::conditional<std::is_same<typename FluidState::Scalar, Evaluation>::value,
Evaluation, Scalar>::type RhsEval;
// influx
LocalResidual::template evalPhaseFluxes_<RhsEval>(tmp,
phaseIdx,
insideIntQuants.pvtRegionIndex(),
extQuants,
fluidState);
}
for (unsigned i = 0; i < tmp.size(); ++i)
(*this)[i] += tmp[i];
// energy conservation
if (enableEnergy) {
Evaluation density;
Evaluation specificEnthalpy;
if (pBoundary > pInside) {
if (focusDofIdx == interiorDofIdx) {
density = fluidState.density(phaseIdx);
specificEnthalpy = fluidState.enthalpy(phaseIdx);
}
else {
density = Opm::getValue(fluidState.density(phaseIdx));
specificEnthalpy = Opm::getValue(fluidState.enthalpy(phaseIdx));
}
}
else if (focusDofIdx == interiorDofIdx) {
density = insideIntQuants.fluidState().density(phaseIdx);
specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx);
}
else {
density = Opm::getValue(insideIntQuants.fluidState().density(phaseIdx));
specificEnthalpy = Opm::getValue(insideIntQuants.fluidState().enthalpy(phaseIdx));
}
Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy;
EnergyModule::addToEnthalpyRate(*this, enthalpyRate);
}
}
if (enableSolvent) {
(*this)[Indices::contiSolventEqIdx] = extQuants.solventVolumeFlux();
if (blackoilConserveSurfaceVolume)
(*this)[Indices::contiSolventEqIdx] *= insideIntQuants.solventInverseFormationVolumeFactor();
else
(*this)[Indices::contiSolventEqIdx] *= insideIntQuants.solventDensity();
}
if (enablePolymer) {
(*this)[Indices::contiPolymerEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.polymerConcentration();
}
// make sure that the right mass conservation quantities are used
LocalResidual::adaptMassConservationQuantities_(*this, insideIntQuants.pvtRegionIndex());
// heat conduction
if (enableEnergy)
EnergyModule::addToEnthalpyRate(*this, extQuants.energyFlux());
#ifndef NDEBUG
for (unsigned i = 0; i < numEq; ++i) {
Opm::Valgrind::CheckDefined((*this)[i]);
}
Opm::Valgrind::CheckDefined(*this);
#endif
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setInFlow
*/
template <class Context, class FluidState>
void setInFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
// we only allow fluxes in the direction opposite to the outer
// unit normal
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
Scalar& val = this->operator[](eqIdx);
val = std::min<Scalar>(0.0, val);
}
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setOutFlow
*/
template <class Context, class FluidState>
void setOutFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
// we only allow fluxes in the same direction as the outer
// unit normal
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
Scalar& val = this->operator[](eqIdx);
val = std::max( Scalar(0), val);
}
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setNoFlow
*/
void setNoFlow()
{ (*this) = Scalar(0); }
/*!
* \copydoc Specify an energy flux that corresponds to the thermal conduction from
* the domain boundary
*
* This means that a "thermal flow" boundary is a no-flow condition for mass and thermal
* conduction for energy.
*/
template <class Context, class FluidState>
void setThermalFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& boundaryFluidState)
{
// set the mass no-flow condition
setNoFlow();
if (!enableEnergy)
// if we do not conserve energy there is nothing we should do in addition
return;
ExtensiveQuantities extQuants;
extQuants.updateBoundary(context, bfIdx, timeIdx, boundaryFluidState);
(*this)[contiEnergyEqIdx] += extQuants.energyFlux();
#ifndef NDEBUG
for (unsigned i = 0; i < numEq; ++i)
Opm::Valgrind::CheckDefined((*this)[i]);
Opm::Valgrind::CheckDefined(*this);
#endif
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,100 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the default flux module of the blackoil model.
*
* It is neccessary to accomodate the extensions of the black-oil model.
*/
#ifndef EWOMS_BLACK_OIL_DARCY_FLUX_MODULE_HH
#define EWOMS_BLACK_OIL_DARCY_FLUX_MODULE_HH
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/common/darcyfluxmodule.hh>
#include <opm/models/utils/propertysystem.hh>
namespace Opm {
template <class TypeTag>
class BlackOilDarcyExtensiveQuantities;
/*!
* \ingroup FluxModules
* \brief Provides a Darcy flux module for the blackoil model
*/
template <class TypeTag>
struct BlackOilDarcyFluxModule
{
typedef DarcyIntensiveQuantities<TypeTag> FluxIntensiveQuantities;
typedef BlackOilDarcyExtensiveQuantities<TypeTag> FluxExtensiveQuantities;
typedef DarcyBaseProblem<TypeTag> FluxBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{ }
};
/*!
* \ingroup FluxModules
* \brief Specifies the extensive quantities for the black-oil model if using Darcy relation.
*
* This class basically forwards everything to the default Darcy flux module and adds a
* few methods needed by the extensions of the black-oil model. (i.e. the solvent and the
* polymer extensions.)
*/
template <class TypeTag>
class BlackOilDarcyExtensiveQuantities : public DarcyExtensiveQuantities<TypeTag>
{
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
public:
/*!
* \brief Update the extensive quantities which are specific to the solvent extension
* of the black-oil model.
*/
void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
asImp_().updateVolumeFluxPerm(elemCtx,
scvfIdx,
timeIdx);
}
void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{ asImp_().updateShearMultipliersPerm(elemCtx, scvfIdx, timeIdx); }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,624 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to extend the black-oil model by energy.
*/
#ifndef EWOMS_BLACK_OIL_ENERGY_MODULE_HH
#define EWOMS_BLACK_OIL_ENERGY_MODULE_HH
#include "blackoilproperties.hh"
#include <opm/models/io/vtkblackoilenergymodule.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Tabulated1DFunction.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <string>
namespace Opm {
/*!
* \ingroup BlackOil
* \brief Contains the high level supplements required to extend the black oil
* model by energy.
*/
template <class TypeTag, bool enableEnergyV = GET_PROP_VALUE(TypeTag, EnableEnergy)>
class BlackOilEnergyModule
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
static constexpr unsigned temperatureIdx = Indices::temperatureIdx;
static constexpr unsigned contiEnergyEqIdx = Indices::contiEnergyEqIdx;
static constexpr unsigned enableEnergy = enableEnergyV;
static constexpr unsigned numEq = GET_PROP_VALUE(TypeTag, NumEq);
static constexpr unsigned numPhases = FluidSystem::numPhases;
public:
/*!
* \brief Register all run-time parameters for the black-oil energy module.
*/
static void registerParameters()
{
if (!enableEnergy)
// energys have been disabled at compile time
return;
Opm::VtkBlackOilEnergyModule<TypeTag>::registerParameters();
}
/*!
* \brief Register all energy specific VTK and ECL output modules.
*/
static void registerOutputModules(Model& model,
Simulator& simulator)
{
if (!enableEnergy)
// energys have been disabled at compile time
return;
model.addOutputModule(new Opm::VtkBlackOilEnergyModule<TypeTag>(simulator));
}
static bool primaryVarApplies(unsigned pvIdx)
{
if (!enableEnergy)
// energys have been disabled at compile time
return false;
return pvIdx == temperatureIdx;
}
static std::string primaryVarName(unsigned pvIdx OPM_OPTIM_UNUSED)
{
assert(primaryVarApplies(pvIdx));
return "temperature";
}
static Scalar primaryVarWeight(unsigned pvIdx OPM_OPTIM_UNUSED)
{
assert(primaryVarApplies(pvIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
static bool eqApplies(unsigned eqIdx)
{
if (!enableEnergy)
return false;
return eqIdx == contiEnergyEqIdx;
}
static std::string eqName(unsigned eqIdx OPM_OPTIM_UNUSED)
{
assert(eqApplies(eqIdx));
return "conti^energy";
}
static Scalar eqWeight(unsigned eqIdx OPM_OPTIM_UNUSED)
{
assert(eqApplies(eqIdx));
return 1.0;
}
// must be called after water storage is computed
template <class LhsEval>
static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{
if (!enableEnergy)
return;
const auto& poro = Opm::decay<LhsEval>(intQuants.porosity());
// accumulate the internal energy of the fluids
const auto& fs = intQuants.fluidState();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& u = Opm::decay<LhsEval>(fs.internalEnergy(phaseIdx));
const auto& S = Opm::decay<LhsEval>(fs.saturation(phaseIdx));
const auto& rho = Opm::decay<LhsEval>(fs.density(phaseIdx));
storage[contiEnergyEqIdx] += poro*S*u*rho;
}
// add the internal energy of the rock
Scalar refPoro = intQuants.referencePorosity();
const auto& uRock = Opm::decay<LhsEval>(intQuants.rockInternalEnergy());
storage[contiEnergyEqIdx] += (1.0 - refPoro)*uRock;
storage[contiEnergyEqIdx] *= GET_PROP_VALUE(TypeTag, BlackOilEnergyScalingFactor);
}
static void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
if (!enableEnergy)
return;
flux[contiEnergyEqIdx] = 0.0;
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned focusIdx = elemCtx.focusDofIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
unsigned upIdx = extQuants.upstreamIndex(phaseIdx);
if (upIdx == focusIdx)
addPhaseEnthalpyFlux_<Evaluation>(flux, phaseIdx, elemCtx, scvfIdx, timeIdx);
else
addPhaseEnthalpyFlux_<Scalar>(flux, phaseIdx, elemCtx, scvfIdx, timeIdx);
}
// diffusive energy flux
flux[contiEnergyEqIdx] += extQuants.energyFlux();
flux[contiEnergyEqIdx] *= GET_PROP_VALUE(TypeTag, BlackOilEnergyScalingFactor);
}
template <class UpstreamEval>
static void addPhaseEnthalpyFlux_(RateVector& flux,
unsigned phaseIdx,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned upIdx = extQuants.upstreamIndex(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
const auto& fs = up.fluidState();
const auto& volFlux = extQuants.volumeFlux(phaseIdx);
flux[contiEnergyEqIdx] +=
Opm::decay<UpstreamEval>(fs.enthalpy(phaseIdx))
* Opm::decay<UpstreamEval>(fs.density(phaseIdx))
* volFlux;
}
static void addToEnthalpyRate(RateVector& flux,
const Evaluation& hRate)
{
if (!enableEnergy)
return;
flux[contiEnergyEqIdx] += hRate;
}
/*!
* \brief Assign the energy specific primary variables to a PrimaryVariables object
*/
static void assignPrimaryVars(PrimaryVariables& priVars,
Scalar temperature OPM_UNUSED)
{
if (!enableEnergy)
return;
priVars[temperatureIdx] = temperatureIdx;
}
/*!
* \brief Assign the energy specific primary variables to a PrimaryVariables object
*/
template <class FluidState>
static void assignPrimaryVars(PrimaryVariables& priVars,
const FluidState& fluidState)
{
if (!enableEnergy)
return;
priVars[temperatureIdx] = fluidState.temperature(/*phaseIdx=*/0);
}
/*!
* \brief Do a Newton-Raphson update the primary variables of the energys.
*/
static void updatePrimaryVars(PrimaryVariables& newPv,
const PrimaryVariables& oldPv,
const EqVector& delta)
{
if (!enableEnergy)
return;
// do a plain unchopped Newton update
newPv[temperatureIdx] = oldPv[temperatureIdx] - delta[temperatureIdx];
}
/*!
* \brief Return how much a Newton-Raphson update is considered an error
*/
static Scalar computeUpdateError(const PrimaryVariables& oldPv OPM_UNUSED,
const EqVector& delta OPM_UNUSED)
{
// do not consider consider the cange of energy primary variables for
// convergence
// TODO: maybe this should be changed
return static_cast<Scalar>(0.0);
}
/*!
* \brief Return how much a residual is considered an error
*/
static Scalar computeResidualError(const EqVector& resid)
{
// do not weight the residual of energy when it comes to convergence
return std::abs(Opm::scalarValue(resid[contiEnergyEqIdx]));
}
template <class DofEntity>
static void serializeEntity(const Model& model, std::ostream& outstream, const DofEntity& dof)
{
if (!enableEnergy)
return;
unsigned dofIdx = model.dofMapper().index(dof);
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
outstream << priVars[temperatureIdx];
}
template <class DofEntity>
static void deserializeEntity(Model& model, std::istream& instream, const DofEntity& dof)
{
if (!enableEnergy)
return;
unsigned dofIdx = model.dofMapper().index(dof);
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
instream >> priVars0[temperatureIdx];
// set the primary variables for the beginning of the current time step.
priVars1 = priVars0[temperatureIdx];
}
};
/*!
* \ingroup BlackOil
* \class Opm::BlackOilEnergyIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the equations needed by the
* energys extension of the black-oil model.
*/
template <class TypeTag, bool enableEnergyV = GET_PROP_VALUE(TypeTag, EnableEnergy)>
class BlackOilEnergyIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLaw) SolidEnergyLaw;
typedef typename GET_PROP_TYPE(TypeTag, ThermalConductionLaw) ThermalConductionLaw;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef BlackOilEnergyModule<TypeTag> EnergyModule;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
static constexpr int temperatureIdx = Indices::temperatureIdx;
static constexpr int waterPhaseIdx = FluidSystem::waterPhaseIdx;
public:
/*!
* \brief Update the temperature of the intensive quantity's fluid state
*
*/
void updateTemperature_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
auto& fs = asImp_().fluidState_;
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
// set temperature
fs.setTemperature(priVars.makeEvaluation(temperatureIdx, timeIdx));
}
/*!
* \brief Compute the intensive quantities needed to handle energy conservation
*
*/
void updateEnergyQuantities_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx,
const typename FluidSystem::template ParameterCache<Evaluation>& paramCache)
{
auto& fs = asImp_().fluidState_;
// compute the specific enthalpy of the fluids, the specific enthalpy of the rock
// and the thermal condictivity coefficients
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
fs.setEnthalpy(phaseIdx, 0.0);
continue;
}
const auto& h = FluidSystem::enthalpy(fs, paramCache, phaseIdx);
fs.setEnthalpy(phaseIdx, h);
}
const auto& solidEnergyLawParams = elemCtx.problem().solidEnergyLawParams(elemCtx, dofIdx, timeIdx);
rockInternalEnergy_ = SolidEnergyLaw::solidInternalEnergy(solidEnergyLawParams, fs);
const auto& thermalConductionLawParams = elemCtx.problem().thermalConductionLawParams(elemCtx, dofIdx, timeIdx);
totalThermalConductivity_ = ThermalConductionLaw::thermalConductivity(thermalConductionLawParams, fs);
}
const Evaluation& rockInternalEnergy() const
{ return rockInternalEnergy_; }
const Evaluation& totalThermalConductivity() const
{ return totalThermalConductivity_; }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
Evaluation rockInternalEnergy_;
Evaluation totalThermalConductivity_;
};
template <class TypeTag>
class BlackOilEnergyIntensiveQuantities<TypeTag, false>
{
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
static constexpr bool enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature);
public:
void updateTemperature_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
if (enableTemperature) {
// even if energy is conserved, the temperature can vary over the spatial
// domain if the EnableTemperature property is set to true
auto& fs = asImp_().fluidState_;
Scalar T = elemCtx.problem().temperature(elemCtx, dofIdx, timeIdx);
fs.setTemperature(T);
}
}
void updateEnergyQuantities_(const ElementContext& elemCtx OPM_UNUSED,
unsigned dofIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED,
const typename FluidSystem::template ParameterCache<Evaluation>& paramCache OPM_UNUSED)
{ }
const Evaluation& rockInternalEnergy() const
{ throw std::logic_error("Requested the rock internal energy, which is "
"unavailable because energy is not conserved"); }
const Evaluation& totalThermalConductivity() const
{ throw std::logic_error("Requested the total thermal conductivity, which is "
"unavailable because energy is not conserved"); }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
};
/*!
* \ingroup BlackOil
* \class Opm::BlackOilEnergyExtensiveQuantities
*
* \brief Provides the energy specific extensive quantities to the generic black-oil
* module's extensive quantities.
*/
template <class TypeTag, bool enableEnergyV = GET_PROP_VALUE(TypeTag, EnableEnergy)>
class BlackOilEnergyExtensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef BlackOilEnergyModule<TypeTag> EnergyModule;
static const int dimWorld = GridView::dimensionworld;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldVector<Evaluation, dimWorld> DimEvalVector;
public:
void updateEnergy(const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
Scalar faceArea = scvf.area();
unsigned inIdx = scvf.interiorIndex();
unsigned exIdx = scvf.exteriorIndex();
const auto& inIq = elemCtx.intensiveQuantities(inIdx, timeIdx);
const auto& exIq = elemCtx.intensiveQuantities(exIdx, timeIdx);
const auto& inFs = inIq.fluidState();
const auto& exFs = exIq.fluidState();
Evaluation deltaT;
if (elemCtx.focusDofIndex() == inIdx)
deltaT =
Opm::decay<Scalar>(exFs.temperature(/*phaseIdx=*/0))
- inFs.temperature(/*phaseIdx=*/0);
else if (elemCtx.focusDofIndex() == exIdx)
deltaT =
exFs.temperature(/*phaseIdx=*/0)
- Opm::decay<Scalar>(inFs.temperature(/*phaseIdx=*/0));
else
deltaT =
Opm::decay<Scalar>(exFs.temperature(/*phaseIdx=*/0))
- Opm::decay<Scalar>(inFs.temperature(/*phaseIdx=*/0));
Evaluation inLambda;
if (elemCtx.focusDofIndex() == inIdx)
inLambda = inIq.totalThermalConductivity();
else
inLambda = Opm::decay<Scalar>(inIq.totalThermalConductivity());
Evaluation exLambda;
if (elemCtx.focusDofIndex() == exIdx)
exLambda = exIq.totalThermalConductivity();
else
exLambda = Opm::decay<Scalar>(exIq.totalThermalConductivity());
auto distVec = elemCtx.pos(exIdx, timeIdx);
distVec -= elemCtx.pos(inIdx, timeIdx);
Evaluation H;
if (inLambda > 0.0 && exLambda > 0.0) {
// compute the "thermal transmissibility". In contrast to the normal
// transmissibility this cannot be done as a preprocessing step because the
// average thermal thermal conductivity is analogous to the permeability but
// depends on the solution.
Scalar alpha = elemCtx.problem().thermalHalfTransmissibility(elemCtx, scvfIdx, timeIdx);
const Evaluation& inH = inLambda*alpha;
const Evaluation& exH = exLambda*alpha;
H = 1.0/(1.0/inH + 1.0/exH);
}
else
H = 0.0;
energyFlux_ = deltaT * (-H/faceArea);
}
template <class Context, class BoundaryFluidState>
void updateEnergyBoundary(const Context& ctx,
unsigned scvfIdx,
unsigned timeIdx,
const BoundaryFluidState& boundaryFs)
{
const auto& stencil = ctx.stencil(timeIdx);
const auto& scvf = stencil.boundaryFace(scvfIdx);
unsigned inIdx = scvf.interiorIndex();
const auto& inIq = ctx.intensiveQuantities(inIdx, timeIdx);
const auto& inFs = inIq.fluidState();
Evaluation deltaT;
if (ctx.focusDofIndex() == inIdx)
deltaT =
boundaryFs.temperature(/*phaseIdx=*/0)
- inFs.temperature(/*phaseIdx=*/0);
else
deltaT =
Opm::decay<Scalar>(boundaryFs.temperature(/*phaseIdx=*/0))
- Opm::decay<Scalar>(inFs.temperature(/*phaseIdx=*/0));
Evaluation lambda;
if (ctx.focusDofIndex() == inIdx)
lambda = inIq.totalThermalConductivity();
else
lambda = Opm::decay<Scalar>(inIq.totalThermalConductivity());
auto distVec = scvf.integrationPos();
distVec -= ctx.pos(inIdx, timeIdx);
if (lambda > 0.0) {
// compute the "thermal transmissibility". In contrast to the normal
// transmissibility this cannot be done as a preprocessing step because the
// average thermal conductivity is analogous to the permeability but depends
// on the solution.
Scalar alpha = ctx.problem().thermalHalfTransmissibilityBoundary(ctx, scvfIdx);
energyFlux_ = deltaT*lambda*(-alpha);
}
else
energyFlux_ = 0.0;
}
const Evaluation& energyFlux() const
{ return energyFlux_; }
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
Evaluation energyFlux_;
};
template <class TypeTag>
class BlackOilEnergyExtensiveQuantities<TypeTag, false>
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
public:
void updateEnergy(const ElementContext& elemCtx OPM_UNUSED,
unsigned scvfIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
template <class Context, class BoundaryFluidState>
void updateEnergyBoundary(const Context& ctx OPM_UNUSED,
unsigned scvfIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED,
const BoundaryFluidState& boundaryFs OPM_UNUSED)
{}
const Evaluation& energyFlux() const
{ throw std::logic_error("Requested the energy flux, but energy is not conserved"); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,103 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilExtensiveQuantities
*/
#ifndef EWOMS_BLACK_OIL_EXTENSIVE_QUANTITIES_HH
#define EWOMS_BLACK_OIL_EXTENSIVE_QUANTITIES_HH
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilenergymodules.hh"
#include <opm/models/common/multiphasebaseextensivequantities.hh>
namespace Opm {
/*!
* \ingroup BlackOilModel
* \ingroup ExtensiveQuantities
*
* \brief This template class contains the data which is required to
* calculate the fluxes of the fluid phases over a face of a
* finite volume for the black-oil model.
*
* This means pressure and concentration gradients, phase densities at
* the intergration point, etc.
*/
template <class TypeTag>
class BlackOilExtensiveQuantities
: public MultiPhaseBaseExtensiveQuantities<TypeTag>
, public BlackOilSolventExtensiveQuantities<TypeTag>
, public BlackOilPolymerExtensiveQuantities<TypeTag>
, public BlackOilEnergyExtensiveQuantities<TypeTag>
{
typedef MultiPhaseBaseExtensiveQuantities<TypeTag> MultiPhaseParent;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
/*!
* \brief Update the extensive quantities for a given sub-control-volume-face.
*
* \param elemCtx Reference to the current element context.
* \param scvfIdx The local index of the sub-control-volume face for
* which the extensive quantities should be calculated.
* \param timeIdx The index used by the time discretization.
*/
void update(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
MultiPhaseParent::update(elemCtx, scvfIdx, timeIdx);
asImp_().updateSolvent(elemCtx, scvfIdx, timeIdx);
asImp_().updatePolymer(elemCtx, scvfIdx, timeIdx);
asImp_().updateEnergy(elemCtx, scvfIdx, timeIdx);
}
template <class Context, class FluidState>
void updateBoundary(const Context& ctx,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
MultiPhaseParent::updateBoundary(ctx, bfIdx, timeIdx, fluidState);
asImp_().updateEnergyBoundary(ctx, bfIdx, timeIdx, fluidState);
}
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,619 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to extend the black-oil model to include the effects of foam.
*/
#ifndef EWOMS_BLACK_OIL_FOAM_MODULE_HH
#define EWOMS_BLACK_OIL_FOAM_MODULE_HH
#include "blackoilproperties.hh"
//#include <opm/models/io/vtkblackoilfoammodule.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Tabulated1DFunction.hpp>
//#include <opm/material/common/IntervalTabulated2DFunction.hpp>
#if HAVE_ECL_INPUT
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/FoamadsTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/FoammobTable.hpp>
#endif
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <string>
#include <math.h>
namespace Opm {
/*!
* \ingroup BlackOil
* \brief Contains the high level supplements required to extend the black oil
* model to include the effects of foam.
*/
template <class TypeTag, bool enableFoamV = GET_PROP_VALUE(TypeTag, EnableFoam)>
class BlackOilFoamModule
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef typename Opm::Tabulated1DFunction<Scalar> TabulatedFunction;
static constexpr unsigned foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr unsigned contiFoamEqIdx = Indices::contiFoamEqIdx;
static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr unsigned enableFoam = enableFoamV;
static constexpr bool enableVtkOutput = GET_PROP_VALUE(TypeTag, EnableVtkOutput);
static constexpr unsigned numEq = GET_PROP_VALUE(TypeTag, NumEq);
static constexpr unsigned numPhases = FluidSystem::numPhases;
public:
// a struct containing constants to calculate change to relative permeability,
// based on model (1-9) in Table 1 of
// Kun Ma, Guangwei Ren, Khalid Mateen, Danielle Morel, and Philippe Cordelier:
// "Modeling techniques for foam flow in porous media", SPE Journal, 20(03):453470, jun 2015.
// The constants are provided by various deck keywords as shown in the comments below.
struct FoamCoefficients {
Scalar fm_min = 1e-20; // FOAMFSC
Scalar fm_mob = 1.0; // FOAMFRM
Scalar fm_surf = 1.0; // FOAMFSC
Scalar ep_surf = 1.0; // FOAMFSC
Scalar fm_oil = 1.0; // FOAMFSO
Scalar fl_oil = 0.0; // FOAMFSO
Scalar ep_oil = 0.0; // FOAMFSO
Scalar fm_cap = 1.0; // FOAMFCN
Scalar ep_cap = 0.0; // FOAMFCN
Scalar fm_dry = 1.0; // FOAMFSW
Scalar ep_dry = 0.0; // FOAMFSW
};
#if HAVE_ECL_INPUT
/*!
* \brief Initialize all internal data structures needed by the foam module
*/
static void initFromDeck(const Opm::Deck& deck, const Opm::EclipseState& eclState)
{
// some sanity checks: if foam is enabled, the FOAM keyword must be
// present, if foam is disabled the keyword must not be present.
if (enableFoam && !deck.hasKeyword("FOAM")) {
throw std::runtime_error("Non-trivial foam treatment requested at compile time, but "
"the deck does not contain the FOAM keyword");
}
else if (!enableFoam && deck.hasKeyword("FOAM")) {
throw std::runtime_error("Foam treatment disabled at compile time, but the deck "
"contains the FOAM keyword");
}
if (!deck.hasKeyword("FOAM")) {
return; // foam treatment is supposed to be disabled
}
// Check that only implemented options are used.
// We only support the default values of FOAMOPTS (GAS, TAB).
if (deck.hasKeyword("FOAMOPTS")) {
const auto kw = deck.getKeyword("FOAMOPTS");
if (kw.getRecord(0).getItem("TRANSPORT_PHASE").get<std::string>(0) != "GAS") {
throw std::runtime_error("In FOAMOPTS, only GAS is allowed for the transport phase.");
}
if (kw.getRecord(0).getItem("MODEL").get<std::string>(0) != "TAB") {
throw std::runtime_error("In FOAMOPTS, only TAB is allowed for the gas mobility factor reduction model.");
}
}
const auto& tableManager = eclState.getTableManager();
const unsigned int numSatRegions = tableManager.getTabdims().getNumSatTables();
setNumSatRegions(numSatRegions);
const unsigned int numPvtRegions = tableManager.getTabdims().getNumPVTTables();
setNumPvtRegions(numPvtRegions);
// Get and check FOAMROCK data.
const Opm::FoamConfig& foamConf = eclState.getInitConfig().getFoamConfig();
if (numSatRegions != foamConf.size()) {
throw std::runtime_error("Inconsistent sizes, number of saturation regions differ from the number of elements "
"in FoamConfig, which typically corresponds to the number of records in FOAMROCK.");
}
// Get and check FOAMADS data.
const auto& foamadsTables = tableManager.getFoamadsTables();
if (foamadsTables.empty()) {
throw std::runtime_error("FOAMADS must be specified in FOAM runs");
}
if (numSatRegions != foamadsTables.size()) {
throw std::runtime_error("Inconsistent sizes, number of saturation regions differ from the "
"number of FOAMADS tables.");
}
// Set data that vary with saturation region.
for (std::size_t satReg = 0; satReg < numSatRegions; ++satReg) {
const auto& rec = foamConf.getRecord(satReg);
foamCoefficients_[satReg] = FoamCoefficients();
foamCoefficients_[satReg].fm_min = rec.minimumSurfactantConcentration();
foamCoefficients_[satReg].fm_surf = rec.referenceSurfactantConcentration();
foamCoefficients_[satReg].ep_surf = rec.exponent();
foamRockDensity_[satReg] = rec.rockDensity();
foamAllowDesorption_[satReg] = rec.allowDesorption();
const auto& foamadsTable = foamadsTables.template getTable<Opm::FoamadsTable>(satReg);
const auto& conc = foamadsTable.getFoamConcentrationColumn();
const auto& ads = foamadsTable.getAdsorbedFoamColumn();
adsorbedFoamTable_[satReg].setXYContainers(conc, ads);
}
// Get and check FOAMMOB data.
const auto& foammobTables = tableManager.getFoammobTables();
if (foammobTables.empty()) {
// When in the future adding support for the functional
// model, FOAMMOB will not be required anymore (functional
// family of keywords can be used instead, FOAMFSC etc.).
throw std::runtime_error("FOAMMOB must be specified in FOAM runs");
}
if (numPvtRegions != foammobTables.size()) {
throw std::runtime_error("Inconsistent sizes, number of PVT regions differ from the "
"number of FOAMMOB tables.");
}
// Set data that vary with PVT region.
for (std::size_t pvtReg = 0; pvtReg < numPvtRegions; ++pvtReg) {
const auto& foammobTable = foammobTables.template getTable<Opm::FoammobTable>(pvtReg);
const auto& conc = foammobTable.getFoamConcentrationColumn();
const auto& mobMult = foammobTable.getMobilityMultiplierColumn();
gasMobilityMultiplierTable_[pvtReg].setXYContainers(conc, mobMult);
}
}
#endif
/*!
* \brief Specify the number of saturation regions.
*/
static void setNumSatRegions(unsigned numRegions)
{
foamCoefficients_.resize(numRegions);
foamRockDensity_.resize(numRegions);
foamAllowDesorption_.resize(numRegions);
adsorbedFoamTable_.resize(numRegions);
}
/*!
* \brief Specify the number of PVT regions.
*/
static void setNumPvtRegions(unsigned numRegions)
{
gasMobilityMultiplierTable_.resize(numRegions);
}
/*!
* \brief Register all run-time parameters for the black-oil foam module.
*/
static void registerParameters()
{
if (!enableFoam)
// foam has been disabled at compile time
return;
//Opm::VtkBlackOilFoamModule<TypeTag>::registerParameters();
}
/*!
* \brief Register all foam specific VTK and ECL output modules.
*/
static void registerOutputModules(Model& model,
Simulator& simulator)
{
if (!enableFoam)
// foam have been disabled at compile time
return;
if (enableVtkOutput) {
Opm::OpmLog::warning("VTK output requested, currently unsupported by the foam module.");
}
//model.addOutputModule(new Opm::VtkBlackOilFoamModule<TypeTag>(simulator));
}
static bool primaryVarApplies(unsigned pvIdx)
{
if (!enableFoam) {
return false;
} else {
return pvIdx == foamConcentrationIdx;
}
}
static std::string primaryVarName(unsigned pvIdx OPM_OPTIM_UNUSED)
{
assert(primaryVarApplies(pvIdx));
return "foam_concentration";
}
static Scalar primaryVarWeight(unsigned pvIdx OPM_OPTIM_UNUSED)
{
assert(primaryVarApplies(pvIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
static bool eqApplies(unsigned eqIdx)
{
if (!enableFoam)
return false;
return eqIdx == contiFoamEqIdx;
}
static std::string eqName(unsigned eqIdx)
{
assert(eqApplies(eqIdx));
return "conti^foam";
}
static Scalar eqWeight(unsigned eqIdx OPM_OPTIM_UNUSED)
{
assert(eqApplies(eqIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
// must be called after water storage is computed
template <class LhsEval>
static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{
if (!enableFoam)
return;
const auto& fs = intQuants.fluidState();
LhsEval surfaceVolumeFreeGas =
Toolbox::template decay<LhsEval>(fs.saturation(gasPhaseIdx))
* Toolbox::template decay<LhsEval>(fs.invB(gasPhaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
// Avoid singular matrix if no gas is present.
surfaceVolumeFreeGas = Opm::max(surfaceVolumeFreeGas, 1e-10);
// Foam/surfactant in gas phase.
const LhsEval gasFoam = surfaceVolumeFreeGas
* Toolbox::template decay<LhsEval>(intQuants.foamConcentration());
// Adsorbed foam/surfactant.
const LhsEval adsorbedFoam =
Toolbox::template decay<LhsEval>(1.0 - intQuants.porosity())
* Toolbox::template decay<LhsEval>(intQuants.foamRockDensity())
* Toolbox::template decay<LhsEval>(intQuants.foamAdsorbed());
LhsEval accumulationFoam = gasFoam + adsorbedFoam;
storage[contiFoamEqIdx] += accumulationFoam;
}
static void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
if (!enableFoam) {
return;
}
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const unsigned upIdx = extQuants.upstreamIndex(FluidSystem::gasPhaseIdx);
const unsigned inIdx = extQuants.interiorIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
// The effect of the gas mobility reduction factor is
// incorporated in the mobility, so the oil (if vaporized oil
// is active) and gas fluxes do not need modification here.
if (upIdx == inIdx) {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(gasPhaseIdx)
*up.fluidState().invB(gasPhaseIdx)
*up.foamConcentration();
} else {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(gasPhaseIdx)
*Opm::decay<Scalar>(up.fluidState().invB(gasPhaseIdx))
*Opm::decay<Scalar>(up.foamConcentration());
}
}
/*!
* \brief Return how much a Newton-Raphson update is considered an error
*/
static Scalar computeUpdateError(const PrimaryVariables& oldPv OPM_UNUSED,
const EqVector& delta OPM_UNUSED)
{
// do not consider the change of foam primary variables for convergence
// TODO: maybe this should be changed
return static_cast<Scalar>(0.0);
}
template <class DofEntity>
static void serializeEntity(const Model& model, std::ostream& outstream, const DofEntity& dof)
{
if (!enableFoam)
return;
unsigned dofIdx = model.dofMapper().index(dof);
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
outstream << priVars[foamConcentrationIdx];
}
template <class DofEntity>
static void deserializeEntity(Model& model, std::istream& instream, const DofEntity& dof)
{
if (!enableFoam)
return;
unsigned dofIdx = model.dofMapper().index(dof);
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
instream >> priVars0[foamConcentrationIdx];
// set the primary variables for the beginning of the current time step.
priVars1[foamConcentrationIdx] = priVars0[foamConcentrationIdx];
}
static const Scalar foamRockDensity(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return foamRockDensity_[satnumRegionIdx];
}
static bool foamAllowDesorption(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return foamAllowDesorption_[satnumRegionIdx];
}
static const TabulatedFunction& adsorbedFoamTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return adsorbedFoamTable_[satnumRegionIdx];
}
static const TabulatedFunction& gasMobilityMultiplierTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return gasMobilityMultiplierTable_[pvtnumRegionIdx];
}
static const FoamCoefficients& foamCoefficients(const ElementContext& elemCtx,
const unsigned scvIdx,
const unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return foamCoefficients_[satnumRegionIdx];
}
private:
static std::vector<Scalar> foamRockDensity_;
static std::vector<bool> foamAllowDesorption_;
static std::vector<FoamCoefficients> foamCoefficients_;
static std::vector<TabulatedFunction> adsorbedFoamTable_;
static std::vector<TabulatedFunction> gasMobilityMultiplierTable_;
};
template <class TypeTag, bool enableFoam>
std::vector<typename BlackOilFoamModule<TypeTag, enableFoam>::Scalar>
BlackOilFoamModule<TypeTag, enableFoam>::foamRockDensity_;
template <class TypeTag, bool enableFoam>
std::vector<bool>
BlackOilFoamModule<TypeTag, enableFoam>::foamAllowDesorption_;
template <class TypeTag, bool enableFoam>
std::vector<typename BlackOilFoamModule<TypeTag, enableFoam>::FoamCoefficients>
BlackOilFoamModule<TypeTag, enableFoam>::foamCoefficients_;
template <class TypeTag, bool enableFoam>
std::vector<typename BlackOilFoamModule<TypeTag, enableFoam>::TabulatedFunction>
BlackOilFoamModule<TypeTag, enableFoam>::adsorbedFoamTable_;
template <class TypeTag, bool enableFoam>
std::vector<typename BlackOilFoamModule<TypeTag, enableFoam>::TabulatedFunction>
BlackOilFoamModule<TypeTag, enableFoam>::gasMobilityMultiplierTable_;
/*!
* \ingroup BlackOil
* \class Opm::BlackOilFoamIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the equations needed by the
* polymers extension of the black-oil model.
*/
template <class TypeTag, bool enableFoam = GET_PROP_VALUE(TypeTag, EnableFoam)>
class BlackOilFoamIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef BlackOilFoamModule<TypeTag> FoamModule;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
static constexpr int foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr unsigned oilPhaseIdx = FluidSystem::oilPhaseIdx;
static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx;
public:
/*!
* \brief Update the intensive properties needed to handle polymers from the
* primary variables
*
*/
void foamPropertiesUpdate_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
foamConcentration_ = priVars.makeEvaluation(foamConcentrationIdx, timeIdx);
const auto& fs = asImp_().fluidState_;
// Compute gas mobility reduction factor
Evaluation mobilityReductionFactor = 1.0;
if (false) {
// The functional model is used.
// TODO: allow this model.
// In order to do this we must allow transport to be in the water phase, not just the gas phase.
const auto& foamCoefficients = FoamModule::foamCoefficients(elemCtx, dofIdx, timeIdx);
const Scalar fm_mob = foamCoefficients.fm_mob;
const Scalar fm_surf = foamCoefficients.fm_surf;
const Scalar ep_surf = foamCoefficients.ep_surf;
const Scalar fm_oil = foamCoefficients.fm_oil;
const Scalar fl_oil = foamCoefficients.fl_oil;
const Scalar ep_oil = foamCoefficients.ep_oil;
const Scalar fm_dry = foamCoefficients.fm_dry;
const Scalar ep_dry = foamCoefficients.ep_dry;
const Scalar fm_cap = foamCoefficients.fm_cap;
const Scalar ep_cap = foamCoefficients.ep_cap;
const Evaluation C_surf = foamConcentration_;
const Evaluation Ca = 1e10; // TODO: replace with proper capillary number.
const Evaluation S_o = fs.saturation(oilPhaseIdx);
const Evaluation S_w = fs.saturation(waterPhaseIdx);
Evaluation F1 = pow(C_surf/fm_surf, ep_surf);
Evaluation F2 = pow((fm_oil-S_o)/(fm_oil-fl_oil), ep_oil);
Evaluation F3 = pow(fm_cap/Ca, ep_cap);
Evaluation F7 = 0.5 + atan(ep_dry*(S_w-fm_dry))/M_PI;
mobilityReductionFactor = 1./(1. + fm_mob*F1*F2*F3*F7);
} else {
// The tabular model is used.
// Note that the current implementation only includes the effect of foam concentration (FOAMMOB),
// and not the optional pressure dependence (FOAMMOBP) or shear dependence (FOAMMOBS).
const auto& gasMobilityMultiplier = FoamModule::gasMobilityMultiplierTable(elemCtx, dofIdx, timeIdx);
mobilityReductionFactor = gasMobilityMultiplier.eval(foamConcentration_, /* extrapolate = */ true);
}
// adjust gas mobility
asImp_().mobility_[gasPhaseIdx] *= mobilityReductionFactor;
foamRockDensity_ = FoamModule::foamRockDensity(elemCtx, dofIdx, timeIdx);
const auto& adsorbedFoamTable = FoamModule::adsorbedFoamTable(elemCtx, dofIdx, timeIdx);
foamAdsorbed_ = adsorbedFoamTable.eval(foamConcentration_, /*extrapolate=*/true);
if (!FoamModule::foamAllowDesorption(elemCtx, dofIdx, timeIdx)) {
throw std::runtime_error("Foam module does not support the 'no desorption' option.");
}
}
const Evaluation& foamConcentration() const
{ return foamConcentration_; }
Scalar foamRockDensity() const
{ return foamRockDensity_; }
const Evaluation& foamAdsorbed() const
{ return foamAdsorbed_; }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
Evaluation foamConcentration_;
Scalar foamRockDensity_;
Evaluation foamAdsorbed_;
};
template <class TypeTag>
class BlackOilFoamIntensiveQuantities<TypeTag, false>
{
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
void foamPropertiesUpdate_(const ElementContext& elemCtx OPM_UNUSED,
unsigned scvIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
const Evaluation& foamConcentration() const
{ throw std::runtime_error("foamConcentration() called but foam is disabled"); }
Scalar foamRockDensity() const
{ throw std::runtime_error("foamRockDensity() called but foam is disabled"); }
Scalar foamAdsorbed() const
{ throw std::runtime_error("foamAdsorbed() called but foam is disabled"); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,153 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilIndices
*/
#ifndef EWOMS_BLACK_OIL_INDICES_HH
#define EWOMS_BLACK_OIL_INDICES_HH
namespace Opm {
/*!
* \ingroup BlackOilModel
*
* \brief The primary variable and equation indices for the black-oil model.
*/
template <unsigned numSolventsV, unsigned numPolymersV, unsigned numEnergyV, bool enableFoam, unsigned PVOffset>
struct BlackOilIndices
{
//! Number of phases active at all times
static const int numPhases = 3;
//! All phases are enabled
static const bool oilEnabled = true;
static const bool waterEnabled = true;
static const bool gasEnabled = true;
//! Are solvents involved?
static const bool enableSolvent = numSolventsV > 0;
//! Are polymers involved?
static const bool enablePolymer = numPolymersV > 0;
//! Shall energy be conserved?
static const bool enableEnergy = numEnergyV > 0;
//! Number of solvent components to be considered
static const int numSolvents = enableSolvent ? numSolventsV : 0;
//! Number of polymer components to be considered
static const int numPolymers = enablePolymer ? numPolymersV : 0;
//! Number of energy equations to be considered
static const int numEnergy = enableEnergy ? numEnergyV : 0;
//! Number of foam equations to be considered
static const int numFoam = enableFoam? 1 : 0;
//! The number of equations
static const int numEq = numPhases + numSolvents + numPolymers + numEnergy + numFoam;
//! \brief returns the index of "active" component
static constexpr unsigned canonicalToActiveComponentIndex(unsigned compIdx)
{ return compIdx; }
static constexpr unsigned activeToCanonicalComponentIndex(unsigned compIdx)
{ return compIdx; }
////////
// Primary variable indices
////////
//! The index of the water saturation
static const int waterSaturationIdx = PVOffset + 0;
//! Index of the oil pressure in a vector of primary variables
static const int pressureSwitchIdx = PVOffset + 1;
/*!
* \brief Index of the switching variable which determines the composition of the
* hydrocarbon phases.
*
* Depending on the phases present, this variable is either interpreted as the
* saturation of the gas phase, as the mole fraction of the gas component in the oil
* phase or as the mole fraction of the oil component in the gas phase.
*/
static const int compositionSwitchIdx = PVOffset + 2;
//! Index of the primary variable for the first solvent
static const int solventSaturationIdx =
enableSolvent ? PVOffset + numPhases : -1000;
//! Index of the primary variable for the first polymer
static const int polymerConcentrationIdx =
enablePolymer ? PVOffset + numPhases + numSolvents : -1000;
//! Index of the primary variable for the second polymer primary variable (molecular weight)
static const int polymerMoleWeightIdx =
numPolymers > 1 ? polymerConcentrationIdx + 1 : -1000;
//! Index of the primary variable for the foam
static const int foamConcentrationIdx =
enableFoam ? PVOffset + numPhases + numSolvents + numPolymers : -1000;
//! Index of the primary variable for temperature
static const int temperatureIdx =
enableEnergy ? PVOffset + numPhases + numSolvents + numPolymers + numFoam : - 1000;
////////
// Equation indices
////////
//! Index of the continuity equation of the first phase
static const int conti0EqIdx = PVOffset + 0;
// two continuity equations follow
//! Index of the continuity equation for the first solvent component
static const int contiSolventEqIdx =
enableSolvent ? PVOffset + numPhases : -1000;
//! Index of the continuity equation for the first polymer component
static const int contiPolymerEqIdx =
enablePolymer ? PVOffset + numPhases + numSolvents : -1000;
//! Index of the continuity equation for the second polymer component (molecular weight)
static const int contiPolymerMWEqIdx =
numPolymers > 1 ? contiPolymerEqIdx + 1 : -1000;
//! Index of the continuity equation for the foam component
static const int contiFoamEqIdx =
enableFoam ? PVOffset + numPhases + numSolvents + numPolymers : -1000;
//! Index of the continuity equation for energy
static const int contiEnergyEqIdx =
enableEnergy ? PVOffset + numPhases + numSolvents + numPolymers + numFoam : -1000;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,445 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilIntensiveQuantities
*/
#ifndef EWOMS_BLACK_OIL_INTENSIVE_QUANTITIES_HH
#define EWOMS_BLACK_OIL_INTENSIVE_QUANTITIES_HH
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilfoammodules.hh"
#include "blackoilenergymodules.hh"
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fmatrix.hh>
#include <cstring>
#include <utility>
namespace Opm {
/*!
* \ingroup BlackOilModel
* \ingroup IntensiveQuantities
*
* \brief Contains the quantities which are are constant within a
* finite volume in the black-oil model.
*/
template <class TypeTag>
class BlackOilIntensiveQuantities
: public GET_PROP_TYPE(TypeTag, DiscIntensiveQuantities)
, public GET_PROP_TYPE(TypeTag, FluxModule)::FluxIntensiveQuantities
, public BlackOilSolventIntensiveQuantities<TypeTag>
, public BlackOilPolymerIntensiveQuantities<TypeTag>
, public BlackOilFoamIntensiveQuantities<TypeTag>
, public BlackOilEnergyIntensiveQuantities<TypeTag>
{
typedef typename GET_PROP_TYPE(TypeTag, DiscIntensiveQuantities) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, FluxModule) FluxModule;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) };
enum { enablePolymer = GET_PROP_VALUE(TypeTag, EnablePolymer) };
enum { enableFoam = GET_PROP_VALUE(TypeTag, EnableFoam) };
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { enableExperiments = GET_PROP_VALUE(TypeTag, EnableExperiments) };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { dimWorld = GridView::dimensionworld };
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
static const bool compositionSwitchEnabled = Indices::gasEnabled;
static const bool waterEnabled = Indices::waterEnabled;
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef typename FluxModule::FluxIntensiveQuantities FluxIntensiveQuantities;
typedef Opm::BlackOilFluidState<Evaluation, FluidSystem, enableTemperature, enableEnergy, compositionSwitchEnabled, Indices::numPhases > FluidState;
public:
BlackOilIntensiveQuantities()
{
if (compositionSwitchEnabled) {
fluidState_.setRs(0.0);
fluidState_.setRv(0.0);
}
}
BlackOilIntensiveQuantities(const BlackOilIntensiveQuantities& other) = default;
BlackOilIntensiveQuantities& operator=(const BlackOilIntensiveQuantities& other) = default;
/*!
* \copydoc IntensiveQuantities::update
*/
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, dofIdx, timeIdx);
const auto& problem = elemCtx.problem();
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
asImp_().updateTemperature_(elemCtx, dofIdx, timeIdx);
unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
unsigned pvtRegionIdx = priVars.pvtRegionIndex();
fluidState_.setPvtRegionIndex(pvtRegionIdx);
// extract the water and the gas saturations for convenience
Evaluation Sw = 0.0;
if (waterEnabled)
Sw = priVars.makeEvaluation(Indices::waterSaturationIdx, timeIdx);
Evaluation Sg = 0.0;
if (compositionSwitchEnabled)
{
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg)
// -> threephase case
Sg = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
// -> gas-water case
Sg = 1.0 - Sw;
// deal with solvent
if (enableSolvent)
Sg -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
}
else
{
assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs);
// -> oil-water case
Sg = 0.0;
}
}
Opm::Valgrind::CheckDefined(Sg);
Opm::Valgrind::CheckDefined(Sw);
Evaluation So = 1.0 - Sw - Sg;
// deal with solvent
if (enableSolvent)
So -= priVars.makeEvaluation(Indices::solventSaturationIdx, timeIdx);
if (FluidSystem::phaseIsActive(waterPhaseIdx))
fluidState_.setSaturation(waterPhaseIdx, Sw);
if (FluidSystem::phaseIsActive(gasPhaseIdx))
fluidState_.setSaturation(gasPhaseIdx, Sg);
if (FluidSystem::phaseIsActive(oilPhaseIdx))
fluidState_.setSaturation(oilPhaseIdx, So);
asImp_().solventPreSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
// now we compute all phase pressures
Evaluation pC[numPhases];
const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, timeIdx);
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
//oil is the reference phase for pressure
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv) {
const Evaluation& pg = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
if (FluidSystem::phaseIsActive(phaseIdx))
fluidState_.setPressure(phaseIdx, pg + (pC[phaseIdx] - pC[gasPhaseIdx]));
}
else {
const Evaluation& po = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
if (FluidSystem::phaseIsActive(phaseIdx))
fluidState_.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
}
// calculate relative permeabilities. note that we store the result into the
// mobility_ class attribute. the division by the phase viscosity happens later.
MaterialLaw::relativePermeabilities(mobility_, materialParams, fluidState_);
Opm::Valgrind::CheckDefined(mobility_);
// update the Saturation functions for the blackoil solvent module.
asImp_().solventPostSatFuncUpdate_(elemCtx, dofIdx, timeIdx);
const Evaluation& SoMax =
Opm::max(fluidState_.saturation(oilPhaseIdx),
elemCtx.problem().maxOilSaturation(globalSpaceIdx));
// take the meaning of the switiching primary variable into account for the gas
// and oil phase compositions
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
// in the threephase case, gas and oil phases are potentially present, i.e.,
// we use the compositions of the gas-saturated oil and oil-saturated gas.
if (FluidSystem::enableDissolvedGas()) {
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
const Evaluation& RsSat =
FluidSystem::saturatedDissolutionFactor(fluidState_,
oilPhaseIdx,
pvtRegionIdx,
SoMax);
fluidState_.setRs(Opm::min(RsMax, RsSat));
}
else if (compositionSwitchEnabled)
fluidState_.setRs(0.0);
if (FluidSystem::enableVaporizedOil()) {
Scalar RvMax = elemCtx.problem().maxOilVaporizationFactor(timeIdx, globalSpaceIdx);
const Evaluation& RvSat =
FluidSystem::saturatedDissolutionFactor(fluidState_,
gasPhaseIdx,
pvtRegionIdx,
SoMax);
fluidState_.setRv(Opm::min(RvMax, RvSat));
}
else if (compositionSwitchEnabled)
fluidState_.setRv(0.0);
}
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
// if the switching variable is the mole fraction of the gas component in the
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
// oil phase, we can directly set the composition of the oil phase
const auto& Rs = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
fluidState_.setRs(Opm::min(RsMax, Rs));
if (FluidSystem::enableVaporizedOil()) {
// the gas phase is not present, but we need to compute its "composition"
// for the gravity correction anyway
Scalar RvMax = elemCtx.problem().maxOilVaporizationFactor(timeIdx, globalSpaceIdx);
const auto& RvSat =
FluidSystem::saturatedDissolutionFactor(fluidState_,
gasPhaseIdx,
pvtRegionIdx,
SoMax);
fluidState_.setRv(Opm::min(RvMax, RvSat));
}
else
fluidState_.setRv(0.0);
}
else {
assert(priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv);
const auto& Rv = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
fluidState_.setRv(Rv);
if (FluidSystem::enableDissolvedGas()) {
// the oil phase is not present, but we need to compute its "composition" for
// the gravity correction anyway
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
const auto& RsSat =
FluidSystem::saturatedDissolutionFactor(fluidState_,
oilPhaseIdx,
pvtRegionIdx,
SoMax);
fluidState_.setRs(Opm::min(RsMax, RsSat));
}
else
fluidState_.setRs(0.0);
}
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
paramCache.setRegionIndex(pvtRegionIdx);
paramCache.setMaxOilSat(SoMax);
paramCache.updateAll(fluidState_);
// compute the phase densities and transform the phase permeabilities into mobilities
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState_, phaseIdx, pvtRegionIdx);
fluidState_.setInvB(phaseIdx, b);
const auto& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);
mobility_[phaseIdx] /= mu;
}
Opm::Valgrind::CheckDefined(mobility_);
// calculate the phase densities
Evaluation rho;
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
rho = fluidState_.invB(waterPhaseIdx);
rho *= FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
fluidState_.setDensity(waterPhaseIdx, rho);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
rho = fluidState_.invB(gasPhaseIdx);
rho *= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
if (FluidSystem::enableVaporizedOil()) {
rho +=
fluidState_.invB(gasPhaseIdx) *
fluidState_.Rv() *
FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
}
fluidState_.setDensity(gasPhaseIdx, rho);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
rho = fluidState_.invB(oilPhaseIdx);
rho *= FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
if (FluidSystem::enableDissolvedGas()) {
rho +=
fluidState_.invB(oilPhaseIdx) *
fluidState_.Rs() *
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
}
fluidState_.setDensity(oilPhaseIdx, rho);
}
// retrieve the porosity from the problem
referencePorosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
porosity_ = referencePorosity_;
// the porosity must be modified by the compressibility of the
// rock...
Scalar rockCompressibility = problem.rockCompressibility(elemCtx, dofIdx, timeIdx);
if (rockCompressibility > 0.0) {
Scalar rockRefPressure = problem.rockReferencePressure(elemCtx, dofIdx, timeIdx);
Evaluation x = rockCompressibility*(fluidState_.pressure(oilPhaseIdx) - rockRefPressure);
porosity_ *= 1.0 + x + 0.5*x*x;
}
if (enableExperiments)
// deal with water induced rock compaction
porosity_ *= problem.template rockCompPoroMultiplier<Evaluation>(*this, globalSpaceIdx);
asImp_().solventPvtUpdate_(elemCtx, dofIdx, timeIdx);
asImp_().polymerPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
asImp_().updateEnergyQuantities_(elemCtx, dofIdx, timeIdx, paramCache);
asImp_().foamPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
// update the quantities which are required by the chosen
// velocity model
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
#ifndef NDEBUG
// some safety checks in debug mode
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
assert(Opm::isfinite(fluidState_.density(phaseIdx)));
assert(Opm::isfinite(fluidState_.saturation(phaseIdx)));
assert(Opm::isfinite(fluidState_.temperature(phaseIdx)));
assert(Opm::isfinite(fluidState_.pressure(phaseIdx)));
assert(Opm::isfinite(fluidState_.invB(phaseIdx)));
}
assert(Opm::isfinite(fluidState_.Rs()));
assert(Opm::isfinite(fluidState_.Rv()));
#endif
}
/*!
* \copydoc ImmiscibleIntensiveQuantities::fluidState
*/
const FluidState& fluidState() const
{ return fluidState_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::mobility
*/
const Evaluation& mobility(unsigned phaseIdx) const
{ return mobility_[phaseIdx]; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::porosity
*/
const Evaluation& porosity() const
{ return porosity_; }
/*!
* \brief Returns the index of the PVT region used to calculate the thermodynamic
* quantities.
*
* This allows to specify different Pressure-Volume-Temperature (PVT) relations in
* different parts of the spatial domain. Note that this concept should be seen as a
* work-around of the fact that the black-oil model does not capture the
* thermodynamics well enough. (Because there is, err, only a single real world with
* in which all substances follow the same physical laws and hence the same
* thermodynamics.) Anyway: Since the ECL file format uses multiple PVT regions, we
* support it as well in our black-oil model. (Note that, if it is not explicitly
* specified, the PVT region index is 0.)
*/
auto pvtRegionIndex() const
-> decltype(std::declval<FluidState>().pvtRegionIndex())
{ return fluidState_.pvtRegionIndex(); }
/*!
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
*/
Evaluation relativePermeability(unsigned phaseIdx) const
{
// warning: slow
return fluidState_.viscosity(phaseIdx)*mobility(phaseIdx);
}
/*!
* \brief Returns the porosity of the rock at reference conditions.
*
* I.e., the porosity of rock which is not perturbed by pressure and temperature
* changes.
*/
Scalar referencePorosity() const
{ return referencePorosity_; }
private:
friend BlackOilSolventIntensiveQuantities<TypeTag>;
friend BlackOilPolymerIntensiveQuantities<TypeTag>;
friend BlackOilEnergyIntensiveQuantities<TypeTag>;
friend BlackOilFoamIntensiveQuantities<TypeTag>;
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
FluidState fluidState_;
Scalar referencePorosity_;
Evaluation porosity_;
Evaluation mobility_[numPhases];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,299 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilLocalResidual
*/
#ifndef EWOMS_BLACK_OIL_LOCAL_RESIDUAL_HH
#define EWOMS_BLACK_OIL_LOCAL_RESIDUAL_HH
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilenergymodules.hh"
#include "blackoilfoammodules.hh"
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
namespace Opm {
/*!
* \ingroup BlackOilModel
*
* \brief Calculates the local residual of the black oil model.
*/
template <class TypeTag>
class BlackOilLocalResidual : public GET_PROP_TYPE(TypeTag, DiscLocalResidual)
{
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
static const bool waterEnabled = Indices::waterEnabled;
static const bool gasEnabled = Indices::gasEnabled;
static const bool oilEnabled = Indices::oilEnabled;
static const bool compositionSwitchEnabled = (compositionSwitchIdx >= 0);
static constexpr bool blackoilConserveSurfaceVolume = GET_PROP_VALUE(TypeTag, BlackoilConserveSurfaceVolume);
static constexpr bool enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy);
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef BlackOilSolventModule<TypeTag> SolventModule;
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
typedef BlackOilEnergyModule<TypeTag> EnergyModule;
typedef BlackOilFoamModule<TypeTag> FoamModule;
public:
/*!
* \copydoc FvBaseLocalResidual::computeStorage
*/
template <class LhsEval>
void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx) const
{
// retrieve the intensive quantities for the SCV at the specified point in time
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
const auto& fs = intQuants.fluidState();
storage = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
if (Indices::numPhases == 3) { // add trivial equation for the pseudo phase
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
if (timeIdx == 0)
storage[conti0EqIdx + activeCompIdx] = Opm::variable<LhsEval>(0.0, conti0EqIdx + activeCompIdx);
else
storage[conti0EqIdx + activeCompIdx] = 0.0;
}
continue;
}
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
LhsEval surfaceVolume =
Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.invB(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
storage[conti0EqIdx + activeCompIdx] += surfaceVolume;
// account for dissolved gas
if (phaseIdx == oilPhaseIdx && FluidSystem::enableDissolvedGas()) {
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
storage[conti0EqIdx + activeGasCompIdx] +=
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rs())
* surfaceVolume;
}
// account for vaporized oil
if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedOil()) {
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
storage[conti0EqIdx + activeOilCompIdx] +=
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rv())
* surfaceVolume;
}
}
adaptMassConservationQuantities_(storage, intQuants.pvtRegionIndex());
// deal with solvents (if present)
SolventModule::addStorage(storage, intQuants);
// deal with polymer (if present)
PolymerModule::addStorage(storage, intQuants);
// deal with energy (if present)
EnergyModule::addStorage(storage, intQuants);
// deal with foam (if present)
FoamModule::addStorage(storage, intQuants);
}
/*!
* \copydoc FvBaseLocalResidual::computeFlux
*/
void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
assert(timeIdx == 0);
flux = 0.0;
const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned focusDofIdx = elemCtx.focusDofIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
unsigned pvtRegionIdx = up.pvtRegionIndex();
if (upIdx == focusDofIdx)
evalPhaseFluxes_<Evaluation>(flux, phaseIdx, pvtRegionIdx, extQuants, up.fluidState());
else
evalPhaseFluxes_<Scalar>(flux, phaseIdx, pvtRegionIdx, extQuants, up.fluidState());
}
// deal with solvents (if present)
SolventModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
// deal with polymer (if present)
PolymerModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
// deal with energy (if present)
EnergyModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
// deal with foam (if present)
FoamModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
}
/*!
* \copydoc FvBaseLocalResidual::computeSource
*/
void computeSource(RateVector& source,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx) const
{
// retrieve the source term intrinsic to the problem
elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
// scale the source term of the energy equation
if (enableEnergy)
source[Indices::contiEnergyEqIdx] *= GET_PROP_VALUE(TypeTag, BlackOilEnergyScalingFactor);
}
/*!
* \brief Helper function to calculate the flux of mass in terms of conservation
* quantities via specific fluid phase over a face.
*/
template <class UpEval, class FluidState>
static void evalPhaseFluxes_(RateVector& flux,
unsigned phaseIdx,
unsigned pvtRegionIdx,
const ExtensiveQuantities& extQuants,
const FluidState& upFs)
{
const auto& invB = Opm::getInvB_<FluidSystem, FluidState, UpEval>(upFs, phaseIdx, pvtRegionIdx);
const auto& surfaceVolumeFlux = invB*extQuants.volumeFlux(phaseIdx);
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
if (blackoilConserveSurfaceVolume)
flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux;
else
flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux*FluidSystem::referenceDensity(phaseIdx, pvtRegionIdx);
if (phaseIdx == oilPhaseIdx) {
// dissolved gas (in the oil phase).
if (FluidSystem::enableDissolvedGas()) {
const auto& Rs = Opm::BlackOil::getRs_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
if (blackoilConserveSurfaceVolume)
flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux;
else
flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux*FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
}
}
else if (phaseIdx == gasPhaseIdx) {
// vaporized oil (in the gas phase).
if (FluidSystem::enableVaporizedOil()) {
const auto& Rv = Opm::BlackOil::getRv_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
if (blackoilConserveSurfaceVolume)
flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux;
else
flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux*FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
}
}
}
/*!
* \brief Helper function to convert the mass-related parts of a Dune::FieldVector
* that stores conservation quantities in terms of "surface-volume" to the
* conservation quantities used by the model.
*
* Depending on the value of the BlackoilConserveSurfaceVolume property, the model
* either conserves mass by means of "surface volume" of the components or mass
* directly. In the former case, this method is a no-op; in the latter, the values
* passed are multiplied by their respective pure component's density at surface
* conditions.
*/
template <class Scalar>
static void adaptMassConservationQuantities_(Dune::FieldVector<Scalar, numEq>& container, unsigned pvtRegionIdx)
{
if (blackoilConserveSurfaceVolume)
return;
// convert "surface volume" to mass. this is complicated a bit by the fact that
// not all phases are necessarily enabled. (we here assume that if a fluid phase
// is disabled, its respective "main" component is not considered as well.)
if (waterEnabled) {
unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
container[conti0EqIdx + activeWaterCompIdx] *=
FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
}
if (gasEnabled) {
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
container[conti0EqIdx + activeGasCompIdx] *=
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
}
if (oilEnabled) {
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
container[conti0EqIdx + activeOilCompIdx] *=
FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
}
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,566 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilModel
*/
#ifndef EWOMS_BLACK_OIL_MODEL_HH
#define EWOMS_BLACK_OIL_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "blackoilproblem.hh"
#include "blackoilindices.hh"
#include "blackoiltwophaseindices.hh"
#include "blackoilextensivequantities.hh"
#include "blackoilprimaryvariables.hh"
#include "blackoilintensivequantities.hh"
#include "blackoilratevector.hh"
#include "blackoilboundaryratevector.hh"
#include "blackoillocalresidual.hh"
#include "blackoilnewtonmethod.hh"
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilfoammodules.hh"
#include "blackoildarcyfluxmodule.hh"
#include <opm/models/common/multiphasebasemodel.hh>
#include <opm/models/io/vtkcompositionmodule.hh>
#include <opm/models/io/vtkblackoilmodule.hh>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <sstream>
#include <string>
namespace Opm {
template <class TypeTag>
class BlackOilModel;
template <class TypeTag>
class EclVanguard;
}
BEGIN_PROPERTIES
//! The type tag for the black-oil problems
NEW_TYPE_TAG(BlackOilModel, INHERITS_FROM(MultiPhaseBaseModel,
VtkBlackOil,
VtkBlackOilSolvent,
VtkBlackOilPolymer,
VtkBlackOilEnergy,
VtkComposition));
//! Set the local residual function
SET_TYPE_PROP(BlackOilModel, LocalResidual,
Opm::BlackOilLocalResidual<TypeTag>);
//! Use the black-oil specific newton method
SET_TYPE_PROP(BlackOilModel, NewtonMethod, Opm::BlackOilNewtonMethod<TypeTag>);
//! The Model property
SET_TYPE_PROP(BlackOilModel, Model, Opm::BlackOilModel<TypeTag>);
//! The Problem property
SET_TYPE_PROP(BlackOilModel, BaseProblem, Opm::BlackOilProblem<TypeTag>);
//! the RateVector property
SET_TYPE_PROP(BlackOilModel, RateVector, Opm::BlackOilRateVector<TypeTag>);
//! the BoundaryRateVector property
SET_TYPE_PROP(BlackOilModel, BoundaryRateVector, Opm::BlackOilBoundaryRateVector<TypeTag>);
//! the PrimaryVariables property
SET_TYPE_PROP(BlackOilModel, PrimaryVariables, Opm::BlackOilPrimaryVariables<TypeTag>);
//! the IntensiveQuantities property
SET_TYPE_PROP(BlackOilModel, IntensiveQuantities, Opm::BlackOilIntensiveQuantities<TypeTag>);
//! the ExtensiveQuantities property
SET_TYPE_PROP(BlackOilModel, ExtensiveQuantities, Opm::BlackOilExtensiveQuantities<TypeTag>);
//! Use the the velocity module which is aware of the black-oil specific model extensions
//! (i.e., the polymer and solvent extensions)
SET_TYPE_PROP(BlackOilModel, FluxModule, Opm::BlackOilDarcyFluxModule<TypeTag>);
//! The indices required by the model
SET_TYPE_PROP(BlackOilModel, Indices,
Opm::BlackOilIndices<GET_PROP_VALUE(TypeTag, EnableSolvent),
GET_PROP_VALUE(TypeTag, EnablePolymer),
GET_PROP_VALUE(TypeTag, EnableEnergy),
GET_PROP_VALUE(TypeTag, EnableFoam),
/*PVOffset=*/0>);
//! Set the fluid system to the black-oil fluid system by default
SET_PROP(BlackOilModel, FluidSystem)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
public:
typedef Opm::BlackOilFluidSystem<Scalar> type;
};
// by default, all ECL extension modules are disabled
SET_BOOL_PROP(BlackOilModel, EnableSolvent, false);
SET_BOOL_PROP(BlackOilModel, EnablePolymer, false);
SET_BOOL_PROP(BlackOilModel, EnablePolymerMW, false);
SET_BOOL_PROP(BlackOilModel, EnableFoam, false);
//! By default, the blackoil model is isothermal and does not conserve energy
SET_BOOL_PROP(BlackOilModel, EnableTemperature, false);
SET_BOOL_PROP(BlackOilModel, EnableEnergy, false);
//! by default, scale the energy equation by the inverse of the energy required to heat
//! up one kg of water by 30 Kelvin. If we conserve surface volumes, this must be divided
//! by the weight of one cubic meter of water. This is required to make the "dumb" linear
//! solvers that do not weight the components of the solutions do the right thing.
//! by default, don't scale the energy equation, i.e. assume that a reasonable linear
//! solver is used. (Not scaling it makes debugging quite a bit easier.)
SET_PROP(BlackOilModel, BlackOilEnergyScalingFactor)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
static constexpr Scalar alpha = GET_PROP_VALUE(TypeTag, BlackoilConserveSurfaceVolume) ? 1000.0 : 1.0;
public:
typedef Scalar type;
static const Scalar value;
};
PROP_STATIC_CONST_MEMBER_DEFINITION_PREFIX_(BlackOilModel, BlackOilEnergyScalingFactor)
::value = 1.0/(30*4184.0*alpha);
// by default, ebos formulates the conservation equations in terms of mass not surface
// volumes
SET_BOOL_PROP(BlackOilModel, BlackoilConserveSurfaceVolume, false);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup BlackOilModel
* \brief A fully-implicit black-oil flow model.
*
* The black-oil model is a three-phase, three-component model widely
* used for oil reservoir simulation. The phases are denoted by lower
* index \f$\alpha \in \{ w, g, o \}\f$ ("water", "gas" and "oil") and
* the components by upper index \f$\kappa \in \{ W, G, O \}\f$
* ("Water", "Gas" and "Oil"). The model assumes partial miscibility:
*
* - Water and the gas phases are immisicible and are assumed to be
* only composed of the water and gas components respectively-
* - The oil phase is assumed to be a mixture of the gas and the oil
* components.
*
* The densities of the phases are determined by so-called
* <i>formation volume factors</i>:
*
* \f[
* B_\alpha := \frac{\varrho_\alpha(1\,\text{bar})}{\varrho_\alpha(p_\alpha)}
* \f]
*
* Since the gas and water phases are assumed to be immiscible, this
* is sufficint to calculate their density. For the formation volume
* factor of the the oil phase \f$B_o\f$ determines the density of
* *saturated* oil, i.e. the density of the oil phase if some gas
* phase is present.
*
* The composition of the oil phase is given by the <i>gas dissolution factor</i>
* \f$R_s\f$, which defined as the volume of gas at atmospheric pressure that is
* dissolved in a given amount of oil at reservoir pressure:
*
* \f[
* R_s := \frac{\varrho_{o}^G}{\varrho_o^O}\;.
* \f]
*
* This allows to calculate all quantities required for the
* mass-conservation equations for each component, i.e.
*
* \f[
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
* - q^\kappa = 0 \;,
* \f]
* where \f$\mathrm{v}_\alpha\f$ is the filter velocity of the phase
* \f$\alpha\f$.
*
* By default \f$\mathrm{v}_\alpha\f$ is determined by using the
* standard multi-phase Darcy approach, i.e.
* \f[ \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
*\left(\mathbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \;, \f]
* although the actual approach which is used can be specified via the
* \c FluxModule property. For example, the velocity model can by
* changed to the Forchheimer approach by
* \code
* SET_TYPE_PROP(MyProblemTypeTag, FluxModule, Opm::ForchheimerFluxModule<TypeTag>);
* \endcode
*
* The primary variables used by this model are:
* - The pressure of the phase with the lowest index
* - The two saturations of the phases with the lowest indices
*/
template<class TypeTag >
class BlackOilModel
: public MultiPhaseBaseModel<TypeTag>
{
typedef typename GET_PROP_TYPE(TypeTag, Model) Implementation;
typedef MultiPhaseBaseModel<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Discretization) Discretization;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = FluidSystem::numComponents };
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
static const bool compositionSwitchEnabled = Indices::gasEnabled;
static const bool waterEnabled = Indices::waterEnabled;
typedef BlackOilSolventModule<TypeTag> SolventModule;
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
typedef BlackOilEnergyModule<TypeTag> EnergyModule;
public:
BlackOilModel(Simulator& simulator)
: ParentType(simulator)
{}
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
SolventModule::registerParameters();
PolymerModule::registerParameters();
EnergyModule::registerParameters();
// register runtime parameters of the VTK output modules
Opm::VtkBlackOilModule<TypeTag>::registerParameters();
Opm::VtkCompositionModule<TypeTag>::registerParameters();
}
/*!
* \copydoc FvBaseDiscretization::name
*/
static std::string name()
{ return "blackoil"; }
/*!
* \copydoc FvBaseDiscretization::primaryVarName
*/
std::string primaryVarName(int pvIdx) const
{
std::ostringstream oss;
if (pvIdx == Indices::waterSaturationIdx)
oss << "saturation_" << FluidSystem::phaseName(FluidSystem::waterPhaseIdx);
else if (pvIdx == Indices::pressureSwitchIdx)
oss << "pressure_switching";
else if (static_cast<int>(pvIdx) == Indices::compositionSwitchIdx)
oss << "composition_switching";
else if (SolventModule::primaryVarApplies(pvIdx))
return SolventModule::primaryVarName(pvIdx);
else if (PolymerModule::primaryVarApplies(pvIdx))
return PolymerModule::primaryVarName(pvIdx);
else if (EnergyModule::primaryVarApplies(pvIdx))
return EnergyModule::primaryVarName(pvIdx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::eqName
*/
std::string eqName(int eqIdx) const
{
std::ostringstream oss;
if (Indices::conti0EqIdx <= eqIdx && eqIdx < Indices::conti0EqIdx + numComponents)
oss << "conti_" << FluidSystem::phaseName(eqIdx - Indices::conti0EqIdx);
else if (SolventModule::eqApplies(eqIdx))
return SolventModule::eqName(eqIdx);
else if (PolymerModule::eqApplies(eqIdx))
return PolymerModule::eqName(eqIdx);
else if (EnergyModule::eqApplies(eqIdx))
return EnergyModule::eqName(eqIdx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::primaryVarWeight
*/
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
{
// do not care about the auxiliary equations as they are supposed to scale
// themselves
if (globalDofIdx >= this->numGridDof())
return 1.0;
// saturations are always in the range [0, 1]!
if (int(Indices::waterSaturationIdx) == int(pvIdx))
return 1.0;
// oil pressures usually are in the range of 100 to 500 bars for typical oil
// reservoirs (which is the only relevant application for the black-oil model).
else if (int(Indices::pressureSwitchIdx) == int(pvIdx))
return 1.0/300e5;
// deal with primary variables stemming from the solvent module
else if (SolventModule::primaryVarApplies(pvIdx))
return SolventModule::primaryVarWeight(pvIdx);
// deal with primary variables stemming from the polymer module
else if (PolymerModule::primaryVarApplies(pvIdx))
return PolymerModule::primaryVarWeight(pvIdx);
// deal with primary variables stemming from the energy module
else if (EnergyModule::primaryVarApplies(pvIdx))
return EnergyModule::primaryVarWeight(pvIdx);
// if the primary variable is either the gas saturation, Rs or Rv
assert(int(Indices::compositionSwitchIdx) == int(pvIdx));
auto pvMeaning = this->solution(0)[globalDofIdx].primaryVarsMeaning();
if (pvMeaning == PrimaryVariables::Sw_po_Sg)
return 1.0; // gas saturation
else if (pvMeaning == PrimaryVariables::Sw_po_Rs)
return 1.0/250.; // gas dissolution factor
else {
assert(pvMeaning == PrimaryVariables::Sw_pg_Rv);
return 1.0/0.025; // oil vaporization factor
}
}
/*!
* \copydoc FvBaseDiscretization::eqWeight
*/
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
{
// do not care about the auxiliary equations as they are supposed to scale
// themselves
if (globalDofIdx >= this->numGridDof())
return 1.0;
// we do not care much about water, so it gets de-prioritized by a factor of 100
static constexpr Scalar waterPriority = 1e-2;
if (GET_PROP_VALUE(TypeTag, BlackoilConserveSurfaceVolume)) {
// Roughly convert the surface volume of the fluids from m^3 to kg. (in this
// context, it does not really matter if the actual densities are off by a
// factor of two or three.)
switch (eqIdx) {
case Indices::conti0EqIdx + FluidSystem::waterCompIdx:
return 1000.0*waterPriority;
case Indices::conti0EqIdx + FluidSystem::gasCompIdx:
return 1.0;
case Indices::conti0EqIdx + FluidSystem::oilCompIdx:
return 650.0;
}
}
if (SolventModule::eqApplies(eqIdx))
return SolventModule::eqWeight(eqIdx);
else if (PolymerModule::eqApplies(eqIdx))
return PolymerModule::eqWeight(eqIdx);
else if (EnergyModule::eqApplies(eqIdx))
return EnergyModule::eqWeight(eqIdx);
// it is said that all kilograms are born equal (except water)!
if (eqIdx == Indices::conti0EqIdx + FluidSystem::waterCompIdx)
return waterPriority;
return 1.0;
}
/*!
* \brief Write the current solution for a degree of freedom to a
* restart file.
*
* \param outstream The stream into which the vertex data should
* be serialized to
* \param dof The Dune entity which's data should be serialized
*/
template <class DofEntity>
void serializeEntity(std::ostream& outstream, const DofEntity& dof)
{
unsigned dofIdx = static_cast<unsigned>(asImp_().dofMapper().index(dof));
// write phase state
if (!outstream.good())
throw std::runtime_error("Could not serialize degree of freedom "+std::to_string(dofIdx));
// write the primary variables
const auto& priVars = this->solution(/*timeIdx=*/0)[dofIdx];
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
outstream << priVars[eqIdx] << " ";
// write the pseudo primary variables
outstream << priVars.primaryVarsMeaning() << " ";
outstream << priVars.pvtRegionIndex() << " ";
SolventModule::serializeEntity(*this, outstream, dof);
PolymerModule::serializeEntity(*this, outstream, dof);
EnergyModule::serializeEntity(*this, outstream, dof);
}
/*!
* \brief Reads the current solution variables for a degree of
* freedom from a restart file.
*
* \param instream The stream from which the vertex data should
* be deserialized from
* \param dof The Dune entity which's data should be deserialized
*/
template <class DofEntity>
void deserializeEntity(std::istream& instream,
const DofEntity& dof)
{
unsigned dofIdx = static_cast<unsigned>(asImp_().dofMapper().index(dof));
// read in the "real" primary variables of the DOF
auto& priVars = this->solution(/*timeIdx=*/0)[dofIdx];
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
if (!instream.good())
throw std::runtime_error("Could not deserialize degree of freedom "+std::to_string(dofIdx));
instream >> priVars[eqIdx];
}
// read the pseudo primary variables
unsigned primaryVarsMeaning;
instream >> primaryVarsMeaning;
unsigned pvtRegionIdx;
instream >> pvtRegionIdx;
if (!instream.good())
throw std::runtime_error("Could not deserialize degree of freedom "+std::to_string(dofIdx));
SolventModule::deserializeEntity(*this, instream, dof);
PolymerModule::deserializeEntity(*this, instream, dof);
EnergyModule::deserializeEntity(*this, instream, dof);
typedef typename PrimaryVariables::PrimaryVarsMeaning PVM;
priVars.setPrimaryVarsMeaning(static_cast<PVM>(primaryVarsMeaning));
priVars.setPvtRegionIndex(pvtRegionIdx);
}
/*!
* \brief Deserializes the state of the model.
*
* \tparam Restarter The type of the serializer class
*
* \param res The serializer object
*/
template <class Restarter>
void deserialize(Restarter& res)
{
ParentType::deserialize(res);
// set the PVT indices of the primary variables. This is also done by writing
// them into the restart file and re-reading them, but it is better to calculate
// them from scratch because the input could have been changed in this regard...
ElementContext elemCtx(this->simulator_);
auto elemIt = this->gridView().template begin</*codim=*/0>();
auto elemEndIt = this->gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
elemCtx.updateStencil(*elemIt);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timIdx=*/0); ++dofIdx) {
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timIdx=*/0);
updatePvtRegionIndex_(this->solution(/*timeIdx=*/0)[globalDofIdx],
elemCtx,
dofIdx,
/*timeIdx=*/0);
}
}
this->solution(/*timeIdx=*/1) = this->solution(/*timeIdx=*/0);
}
/*
// hack: this interferes with the static polymorphism trick
protected:
friend ParentType;
friend Discretization;
*/
template <class Context>
void supplementInitialSolution_(PrimaryVariables& priVars,
const Context& context,
unsigned dofIdx,
unsigned timeIdx)
{ updatePvtRegionIndex_(priVars, context, dofIdx, timeIdx); }
void registerOutputModules_()
{
ParentType::registerOutputModules_();
// add the VTK output modules which make sense for the blackoil model
SolventModule::registerOutputModules(*this, this->simulator_);
PolymerModule::registerOutputModules(*this, this->simulator_);
EnergyModule::registerOutputModules(*this, this->simulator_);
this->addOutputModule(new Opm::VtkBlackOilModule<TypeTag>(this->simulator_));
this->addOutputModule(new Opm::VtkCompositionModule<TypeTag>(this->simulator_));
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
template <class Context>
void updatePvtRegionIndex_(PrimaryVariables& priVars,
const Context& context,
unsigned dofIdx,
unsigned timeIdx)
{
unsigned regionIdx = context.problem().pvtRegionIndex(context, dofIdx, timeIdx);
priVars.setPvtRegionIndex(regionIdx);
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,324 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilNewtonMethod
*/
#ifndef EWOMS_BLACK_OIL_NEWTON_METHOD_HH
#define EWOMS_BLACK_OIL_NEWTON_METHOD_HH
#include "blackoilproperties.hh"
#include <opm/models/utils/signum.hh>
#include <opm/material/common/Unused.hpp>
BEGIN_PROPERTIES
NEW_PROP_TAG(DpMaxRel);
NEW_PROP_TAG(DsMax);
NEW_PROP_TAG(PriVarOscilationThreshold);
SET_SCALAR_PROP(NewtonMethod, DpMaxRel, 0.3);
SET_SCALAR_PROP(NewtonMethod, DsMax, 0.2);
SET_SCALAR_PROP(NewtonMethod, PriVarOscilationThreshold, 1e-5);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup BlackOilModel
*
* \brief A newton solver which is specific to the black oil model.
*/
template <class TypeTag>
class BlackOilNewtonMethod : public GET_PROP_TYPE(TypeTag, DiscNewtonMethod)
{
typedef typename GET_PROP_TYPE(TypeTag, DiscNewtonMethod) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector;
typedef typename GET_PROP_TYPE(TypeTag, GlobalEqVector) GlobalEqVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Linearizer) Linearizer;
static const unsigned numEq = GET_PROP_VALUE(TypeTag, NumEq);
public:
BlackOilNewtonMethod(Simulator& simulator) : ParentType(simulator)
{
priVarOscilationThreshold_ = EWOMS_GET_PARAM(TypeTag, Scalar, PriVarOscilationThreshold);
dpMaxRel_ = EWOMS_GET_PARAM(TypeTag, Scalar, DpMaxRel);
dsMax_ = EWOMS_GET_PARAM(TypeTag, Scalar, DsMax);
}
/*!
* \copydoc NewtonMethod::finishInit()
*/
void finishInit()
{
ParentType::finishInit();
wasSwitched_.resize(this->model().numTotalDof());
std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);
}
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, DpMaxRel, "Maximum relative change of pressure in a single iteration");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, DsMax, "Maximum absolute change of any saturation in a single iteration");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, PriVarOscilationThreshold,
"The threshold value for the primary variable switching conditions after its meaning has switched to hinder oscilations");
}
/*!
* \brief Returns the number of degrees of freedom for which the
* interpretation has changed for the most recent iteration.
*/
unsigned numPriVarsSwitched() const
{ return numPriVarsSwitched_; }
protected:
friend NewtonMethod<TypeTag>;
friend ParentType;
/*!
* \copydoc FvBaseNewtonMethod::beginIteration_
*/
void beginIteration_()
{
numPriVarsSwitched_ = 0;
ParentType::beginIteration_();
}
/*!
* \copydoc FvBaseNewtonMethod::endIteration_
*/
void endIteration_(SolutionVector& uCurrentIter,
const SolutionVector& uLastIter)
{
#if HAVE_MPI
// in the MPI enabled case we need to add up the number of DOF
// for which the interpretation changed over all processes.
int localSwitched = numPriVarsSwitched_;
MPI_Allreduce(&localSwitched,
&numPriVarsSwitched_,
/*num=*/1,
MPI_INT,
MPI_SUM,
MPI_COMM_WORLD);
#endif // HAVE_MPI
this->simulator_.model().newtonMethod().endIterMsg()
<< ", num switched=" << numPriVarsSwitched_;
ParentType::endIteration_(uCurrentIter, uLastIter);
}
public:
void update_(SolutionVector& nextSolution,
const SolutionVector& currentSolution,
const GlobalEqVector& solutionUpdate,
const GlobalEqVector& currentResidual)
{
const auto& comm = this->simulator_.gridView().comm();
int succeeded;
try {
ParentType::update_(nextSolution,
currentSolution,
solutionUpdate,
currentResidual);
succeeded = 1;
}
catch (...) {
std::cout << "Newton update threw an exception on rank "
<< comm.rank() << "\n";
succeeded = 0;
}
succeeded = comm.min(succeeded);
if (!succeeded)
throw Opm::NumericalIssue("A process did not succeed in adapting the primary variables");
numPriVarsSwitched_ = comm.sum(numPriVarsSwitched_);
}
protected:
/*!
* \copydoc FvBaseNewtonMethod::updatePrimaryVariables_
*/
void updatePrimaryVariables_(unsigned globalDofIdx,
PrimaryVariables& nextValue,
const PrimaryVariables& currentValue,
const EqVector& update,
const EqVector& currentResidual)
{
static constexpr bool enableSolvent = Indices::solventSaturationIdx >= 0;
static constexpr bool enablePolymer = Indices::polymerConcentrationIdx >= 0;
static constexpr bool enablePolymerWeight = Indices::polymerMoleWeightIdx >= 0;
static constexpr bool enableEnergy = Indices::temperatureIdx >= 0;
static constexpr bool enableFoam = Indices::foamConcentrationIdx >= 0;
currentValue.checkDefined();
Opm::Valgrind::CheckDefined(update);
Opm::Valgrind::CheckDefined(currentResidual);
// saturation delta for each phase
Scalar deltaSw = 0.0;
Scalar deltaSo = 0.0;
Scalar deltaSg = 0.0;
Scalar deltaSs = 0.0;
if (Indices::waterEnabled) {
deltaSw = update[Indices::waterSaturationIdx];
deltaSo = -deltaSw;
}
if (Indices::gasEnabled && currentValue.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg) {
deltaSg = update[Indices::compositionSwitchIdx];
deltaSo -= deltaSg;
}
if (enableSolvent) {
deltaSs = update[Indices::solventSaturationIdx];
deltaSo -= deltaSs;
}
// maximum saturation delta
Scalar maxSatDelta = std::max(std::abs(deltaSg), std::abs(deltaSo));
maxSatDelta = std::max(maxSatDelta, std::abs(deltaSw));
maxSatDelta = std::max(maxSatDelta, std::abs(deltaSs));
// scaling factor for saturation deltas to make sure that none of them exceeds
// the specified threshold value.
Scalar satAlpha = 1.0;
if (maxSatDelta > dsMax_)
satAlpha = dsMax_/maxSatDelta;
for (int pvIdx = 0; pvIdx < int(numEq); ++pvIdx) {
// calculate the update of the current primary variable. For the black-oil
// model we limit the pressure delta relative to the pressure's current
// absolute value (Default: 30%) and saturation deltas to an absolute change
// (Default: 20%). Further, we ensure that the R factors, solvent
// "saturation" and polymer concentration do not become negative after the
// update.
Scalar delta = update[pvIdx];
// limit pressure delta
if (pvIdx == Indices::pressureSwitchIdx) {
if (std::abs(delta) > dpMaxRel_*currentValue[pvIdx])
delta = Opm::signum(delta)*dpMaxRel_*currentValue[pvIdx];
}
// water saturation delta
else if (pvIdx == Indices::waterSaturationIdx)
delta *= satAlpha;
else if (pvIdx == Indices::compositionSwitchIdx) {
// the switching primary variable for composition is tricky because the
// "reasonable" value ranges it exhibits vary widely depending on its
// interpretation since it can represent Sg, Rs or Rv. For now, we only
// limit saturation deltas and ensure that the R factors do not become
// negative.
if (currentValue.primaryVarsMeaning() == PrimaryVariables::Sw_po_Sg)
delta *= satAlpha;
else {
if (delta > currentValue[Indices::compositionSwitchIdx])
delta = currentValue[Indices::compositionSwitchIdx];
}
}
else if (enableSolvent && pvIdx == Indices::solventSaturationIdx)
// solvent saturation updates are also subject to the Appleyard chop
delta *= satAlpha;
else if (enablePolymerWeight && pvIdx == Indices::polymerMoleWeightIdx) {
const double sign = delta >= 0. ? 1. : -1.;
// maximum change of polymer molecular weight, the unit is MDa.
// applying this limit to stabilize the simulation. The value itself is still experimental.
const double maxMolarWeightChange = 100.0;
delta = sign * std::min(std::abs(delta), maxMolarWeightChange);
delta *= satAlpha;
}
// do the actual update
nextValue[pvIdx] = currentValue[pvIdx] - delta;
// keep the solvent saturation between 0 and 1
if (enableSolvent && pvIdx == Indices::solventSaturationIdx)
nextValue[pvIdx] = std::min(std::max(nextValue[pvIdx], 0.0), 1.0);
// keep the polymer concentration above 0
if (enablePolymer && pvIdx == Indices::polymerConcentrationIdx)
nextValue[pvIdx] = std::max(nextValue[pvIdx], 0.0);
if (enablePolymerWeight && pvIdx == Indices::polymerMoleWeightIdx) {
nextValue[pvIdx] = std::max(nextValue[pvIdx], 0.0);
const double polymerConcentration = nextValue[Indices::polymerConcentrationIdx];
if (polymerConcentration < 1.e-10)
nextValue[pvIdx] = 0.0;
}
// keep the foam concentration above 0
if (enableFoam && pvIdx == Indices::foamConcentrationIdx)
nextValue[pvIdx] = std::max(nextValue[pvIdx], 0.0);
// keep the temperature above 100 and below 1000 Kelvin
if (enableEnergy && pvIdx == Indices::temperatureIdx)
nextValue[pvIdx] = std::max(std::min(nextValue[pvIdx], 1000.0), 100.0);
}
// switch the new primary variables to something which is physically meaningful.
// use a threshold value after a switch to make it harder to switch back
// immediately.
if (wasSwitched_[globalDofIdx])
wasSwitched_[globalDofIdx] = nextValue.adaptPrimaryVariables(this->problem(), globalDofIdx, priVarOscilationThreshold_);
else
wasSwitched_[globalDofIdx] = nextValue.adaptPrimaryVariables(this->problem(), globalDofIdx);
if (wasSwitched_[globalDofIdx])
++ numPriVarsSwitched_;
nextValue.checkDefined();
}
private:
int numPriVarsSwitched_;
Scalar priVarOscilationThreshold_;
Scalar dpMaxRel_;
Scalar dsMax_;
// keep track of cells where the primary variable meaning has changed
// to detect and hinder oscillations
std::vector<bool> wasSwitched_;
};
} // namespace Opm
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,647 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilPrimaryVariables
*/
#ifndef EWOMS_BLACK_OIL_PRIMARY_VARIABLES_HH
#define EWOMS_BLACK_OIL_PRIMARY_VARIABLES_HH
#include "blackoilproperties.hh"
#include "blackoilsolventmodules.hh"
#include "blackoilpolymermodules.hh"
#include "blackoilenergymodules.hh"
#include "blackoilfoammodules.hh"
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
#include <dune/common/fvector.hh>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidstates/SimpleModularFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/common/Valgrind.hpp>
namespace Opm {
template <class TypeTag, bool enableSolvent>
class BlackOilSolventModule;
template <class TypeTag, bool enablePolymer>
class BlackOilPolymerModule;
/*!
* \ingroup BlackOilModel
*
* \brief Represents the primary variables used by the black-oil model.
*/
template <class TypeTag>
class BlackOilPrimaryVariables : public FvBasePrimaryVariables<TypeTag>
{
typedef FvBasePrimaryVariables<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
// number of equations
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
// primary variable indices
enum { waterSaturationIdx = Indices::waterSaturationIdx };
enum { pressureSwitchIdx = Indices::pressureSwitchIdx };
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
static const bool compositionSwitchEnabled = Indices::gasEnabled;
static const bool waterEnabled = Indices::waterEnabled;
// phase indices from the fluid system
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
// component indices from the fluid system
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) };
enum { enablePolymer = GET_PROP_VALUE(TypeTag, EnablePolymer) };
enum { enableFoam = GET_PROP_VALUE(TypeTag, EnableFoam) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
typedef typename Opm::MathToolbox<Evaluation> Toolbox;
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
typedef BlackOilSolventModule<TypeTag, enableSolvent> SolventModule;
typedef BlackOilPolymerModule<TypeTag, enablePolymer> PolymerModule;
typedef BlackOilEnergyModule<TypeTag, enableEnergy> EnergyModule;
typedef BlackOilFoamModule<TypeTag, enableFoam> FoamModule;
static_assert(numPhases == 3, "The black-oil model assumes three phases!");
static_assert(numComponents == 3, "The black-oil model assumes three components!");
public:
enum PrimaryVarsMeaning {
Sw_po_Sg, // threephase case
Sw_po_Rs, // water + oil case
Sw_pg_Rv, // water + gas case
};
BlackOilPrimaryVariables()
: ParentType()
{
Opm::Valgrind::SetUndefined(*this);
pvtRegionIdx_ = 0;
}
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(Scalar)
*/
BlackOilPrimaryVariables(Scalar value)
: ParentType(value)
{
Opm::Valgrind::SetUndefined(primaryVarsMeaning_);
pvtRegionIdx_ = 0;
}
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(const ImmisciblePrimaryVariables& )
*/
BlackOilPrimaryVariables(const BlackOilPrimaryVariables& value) = default;
/*!
* \brief Set the index of the region which should be used for PVT properties.
*
* The concept of PVT regions is a hack to work around the fact that the
* pseudo-components used by the black oil model (i.e., oil, gas and water) change
* their composition within the spatial domain. We implement them because, the ECL
* file format mandates them.
*/
void setPvtRegionIndex(unsigned value)
{ pvtRegionIdx_ = static_cast<unsigned short>(value); }
/*!
* \brief Return the index of the region which should be used for PVT properties.
*/
unsigned pvtRegionIndex() const
{ return pvtRegionIdx_; }
/*!
* \brief Return the interpretation which should be applied to the switching primary
* variables.
*/
PrimaryVarsMeaning primaryVarsMeaning() const
{ return primaryVarsMeaning_; }
/*!
* \brief Set the interpretation which should be applied to the switching primary
* variables.
*/
void setPrimaryVarsMeaning(PrimaryVarsMeaning newMeaning)
{ primaryVarsMeaning_ = newMeaning; }
/*!
* \copydoc ImmisciblePrimaryVariables::assignMassConservative
*/
template <class FluidState>
void assignMassConservative(const FluidState& fluidState,
const MaterialLawParams& matParams,
bool isInEquilibrium = false)
{
typedef typename std::remove_reference<typename FluidState::Scalar>::type ConstEvaluation;
typedef typename std::remove_const<ConstEvaluation>::type FsEvaluation;
typedef typename Opm::MathToolbox<FsEvaluation> FsToolbox;
#ifndef NDEBUG
// make sure the temperature is the same in all fluid phases
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
Opm::Valgrind::CheckDefined(fluidState.temperature(0));
Opm::Valgrind::CheckDefined(fluidState.temperature(phaseIdx));
assert(fluidState.temperature(0) == fluidState.temperature(phaseIdx));
}
#endif // NDEBUG
// for the equilibrium case, we don't need complicated
// computations.
if (isInEquilibrium) {
assignNaive(fluidState);
return;
}
// If your compiler bails out here, you're probably not using a suitable black
// oil fluid system.
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.setRegionIndex(pvtRegionIdx_);
paramCache.setMaxOilSat(FsToolbox::value(fluidState.saturation(oilPhaseIdx)));
// create a mutable fluid state with well defined densities based on the input
typedef Opm::NcpFlash<Scalar, FluidSystem> NcpFlash;
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> FlashFluidState;
FlashFluidState fsFlash;
fsFlash.setTemperature(FsToolbox::value(fluidState.temperature(/*phaseIdx=*/0)));
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fsFlash.setPressure(phaseIdx, FsToolbox::value(fluidState.pressure(phaseIdx)));
fsFlash.setSaturation(phaseIdx, FsToolbox::value(fluidState.saturation(phaseIdx)));
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fsFlash.setMoleFraction(phaseIdx, compIdx, FsToolbox::value(fluidState.moleFraction(phaseIdx, compIdx)));
}
paramCache.updateAll(fsFlash);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
Scalar rho = FluidSystem::template density<FlashFluidState, Scalar>(fsFlash, paramCache, phaseIdx);
fsFlash.setDensity(phaseIdx, rho);
}
// calculate the "global molarities"
ComponentVector globalMolarities(0.0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
globalMolarities[compIdx] +=
fsFlash.saturation(phaseIdx) * fsFlash.molarity(phaseIdx, compIdx);
}
}
// use a flash calculation to calculate a fluid state in
// thermodynamic equilibrium
// run the flash calculation
NcpFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
// use the result to assign the primary variables
assignNaive(fsFlash);
}
/*!
* \copydoc ImmisciblePrimaryVariables::assignNaive
*/
template <class FluidState>
void assignNaive(const FluidState& fluidState)
{
typedef typename std::remove_reference<typename FluidState::Scalar>::type ConstEvaluation;
typedef typename std::remove_const<ConstEvaluation>::type FsEvaluation;
typedef typename Opm::MathToolbox<FsEvaluation> FsToolbox;
bool gasPresent = FluidSystem::phaseIsActive(gasPhaseIdx)?(fluidState.saturation(gasPhaseIdx) > 0.0):false;
bool oilPresent = FluidSystem::phaseIsActive(oilPhaseIdx)?(fluidState.saturation(oilPhaseIdx) > 0.0):false;
static const Scalar thresholdWaterFilledCell = 1.0 - 1e-6;
bool onlyWater = FluidSystem::phaseIsActive(waterPhaseIdx)?(fluidState.saturation(waterPhaseIdx) > thresholdWaterFilledCell):false;
// deal with the primary variables for the energy extension
EnergyModule::assignPrimaryVars(*this, fluidState);
// determine the meaning of the primary variables
if ((gasPresent && oilPresent) || onlyWater)
// gas and oil: both hydrocarbon phases are in equilibrium (i.e., saturated
// with the "protagonist" component of the other phase.)
primaryVarsMeaning_ = Sw_po_Sg;
else if (oilPresent) {
// only oil: if dissolved gas is enabled, we need to consider the oil phase
// composition, if it is disabled, the gas component must stick to its phase
if (FluidSystem::enableDissolvedGas())
primaryVarsMeaning_ = Sw_po_Rs;
else
primaryVarsMeaning_ = Sw_po_Sg;
}
else {
assert(gasPresent);
// only gas: if vaporized oil is enabled, we need to consider the gas phase
// composition, if it is disabled, the oil component must stick to its phase
if (FluidSystem::enableVaporizedOil())
primaryVarsMeaning_ = Sw_pg_Rv;
else
primaryVarsMeaning_ = Sw_po_Sg;
}
// assign the actual primary variables
if (primaryVarsMeaning() == Sw_po_Sg) {
if (waterEnabled)
(*this)[waterSaturationIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(oilPhaseIdx));
if( compositionSwitchEnabled )
(*this)[compositionSwitchIdx] = FsToolbox::value(fluidState.saturation(gasPhaseIdx));
}
else if (primaryVarsMeaning() == Sw_po_Rs) {
const auto& Rs = Opm::BlackOil::getRs_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
if (waterEnabled)
(*this)[waterSaturationIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(oilPhaseIdx));
if( compositionSwitchEnabled )
(*this)[compositionSwitchIdx] = Rs;
}
else {
assert(primaryVarsMeaning() == Sw_pg_Rv);
const auto& Rv = Opm::BlackOil::getRv_<FluidSystem, FluidState, Scalar>(fluidState, pvtRegionIdx_);
if (waterEnabled)
(*this)[waterSaturationIdx] = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
(*this)[pressureSwitchIdx] = FsToolbox::value(fluidState.pressure(gasPhaseIdx));
if( compositionSwitchEnabled )
(*this)[compositionSwitchIdx] = Rv;
}
checkDefined();
}
/*!
* \brief Adapt the interpretation of the switching variables to be physically
* meaningful.
*
* If the meaning of the primary variables changes, their values are also adapted in a
* meaningful manner. (e.g. if the gas phase appears and the composition switching
* variable changes its meaning from the gas dissolution factor Rs to the gas
* saturation Sg, the value for this variable is set to zero.)
* A Scalar eps can be passed to make the switching condition more strict.
* Useful for avoiding ocsilation in the primaryVarsMeaning.
*
* \return true Iff the interpretation of one of the switching variables was changed
*/
bool adaptPrimaryVariables(const Problem& problem, unsigned globalDofIdx, Scalar eps = 0.0)
{
static const Scalar thresholdWaterFilledCell = 1.0 - eps;
// this function accesses quite a few black-oil specific low-level functions
// directly for better performance (instead of going the canonical way through
// the IntensiveQuantities). The reason is that most intensive quantities are not
// required to be able to decide if the primary variables needs to be switched or
// not, so it would be a waste to compute them.
Scalar Sw = 0.0;
if (waterEnabled)
Sw = (*this)[Indices::waterSaturationIdx];
if (primaryVarsMeaning() == Sw_po_Sg) {
// special case for cells with almost only water
if (Sw >= thresholdWaterFilledCell) {
// make sure water saturations does not exceed 1.0
if (waterEnabled)
(*this)[Indices::waterSaturationIdx] = 1.0;
// the hydrocarbon gas saturation is set to 0.0
if (compositionSwitchEnabled)
(*this)[Indices::compositionSwitchIdx] = 0.0;
return false;
}
// phase equilibrium, i.e., both hydrocarbon phases are present.
Scalar Sg = 0.0;
if (compositionSwitchEnabled)
Sg = (*this)[Indices::compositionSwitchIdx];
Scalar So = 1.0 - Sw - Sg - solventSaturation_();
Scalar So2 = 1.0 - Sw - solventSaturation_();
if (Sg < -eps && So2 > 0.0 && FluidSystem::enableDissolvedGas()) {
// the hydrocarbon gas phase disappeared and some oil phase is left,
// i.e., switch the primary variables to { Sw, po, Rs }.
//
// by a "lucky" coincidence the pressure switching variable already
// represents the oil phase pressure, so we do not need to change
// this. For the gas dissolution factor, we use the low-level blackoil
// PVT objects to calculate the mole fraction of gas saturated oil.
Scalar po = (*this)[Indices::pressureSwitchIdx];
Scalar T = asImp_().temperature_();
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RsMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_,
T,
po,
So2,
SoMax);
setPrimaryVarsMeaning(Sw_po_Rs);
if (compositionSwitchEnabled)
(*this)[Indices::compositionSwitchIdx] =
std::min(RsMax, RsSat);
return true;
}
Scalar Sg2 = 1.0 - Sw - solventSaturation_();
if (So < -eps && Sg2 > 0.0 && FluidSystem::enableVaporizedOil()) {
// the oil phase disappeared and some hydrocarbon gas phase is still
// present, i.e., switch the primary variables to { Sw, pg, Rv }.
Scalar po = (*this)[Indices::pressureSwitchIdx];
// we only have the oil pressure readily available, but we need the gas
// pressure, i.e. we must determine capillary pressure
Scalar pC[numPhases] = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC, /*So=*/0.0, Sg2 + solventSaturation_(), Sw, matParams);
Scalar pg = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
// we start at the Rv value that corresponds to that of oil-saturated
// hydrocarbon gas
Scalar T = asImp_().temperature_();
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RvSat =
FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
T,
pg,
Scalar(0),
SoMax);
setPrimaryVarsMeaning(Sw_pg_Rv);
(*this)[Indices::pressureSwitchIdx] = pg;
if (compositionSwitchEnabled)
(*this)[Indices::compositionSwitchIdx] = std::min(RvMax, RvSat);
return true;
}
return false;
}
else if (primaryVarsMeaning() == Sw_po_Rs) {
assert(compositionSwitchEnabled);
// special case for cells with almost only water
if (Sw >= thresholdWaterFilledCell) {
// switch back to phase equilibrium mode if the oil phase vanishes (i.e.,
// the water-only case)
setPrimaryVarsMeaning(Sw_po_Sg);
if (waterEnabled)
(*this)[Indices::waterSaturationIdx] = 1.0; // water saturation
(*this)[Indices::compositionSwitchIdx] = 0.0; // hydrocarbon gas saturation
return true;
}
// Only the oil and the water phases are present. The hydrocarbon gas phase
// appears as soon as more of the gas component is present in the oil phase
// than what saturated oil can hold.
Scalar T = asImp_().temperature_();
Scalar po = (*this)[Indices::pressureSwitchIdx];
Scalar So = 1.0 - Sw - solventSaturation_();
Scalar SoMax = std::max(So, problem.maxOilSaturation(globalDofIdx));
Scalar RsMax = problem.maxGasDissolutionFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RsSat =
FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_,
T,
po,
So,
SoMax);
Scalar Rs = (*this)[Indices::compositionSwitchIdx];
if (Rs > std::min(RsMax, RsSat*(1.0 + eps))) {
// the gas phase appears, i.e., switch the primary variables to { Sw, po,
// Sg }.
setPrimaryVarsMeaning(Sw_po_Sg);
(*this)[Indices::compositionSwitchIdx] = 0.0; // hydrocarbon gas saturation
return true;
}
return false;
}
else {
assert(primaryVarsMeaning() == Sw_pg_Rv);
assert(compositionSwitchEnabled);
Scalar pg = (*this)[Indices::pressureSwitchIdx];
Scalar Sg = 1.0 - Sw - solventSaturation_();
// special case for cells with almost only water
if (Sw >= thresholdWaterFilledCell) {
// switch to phase equilibrium mode because the hydrocarbon gas phase
// disappears. here we need the capillary pressures to calculate the oil
// phase pressure using the gas phase pressure
Scalar pC[numPhases] = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC,
/*So=*/0.0,
/*Sg=*/Sg + solventSaturation_(),
Sw,
matParams);
Scalar po = pg + (pC[oilPhaseIdx] - pC[gasPhaseIdx]);
setPrimaryVarsMeaning(Sw_po_Sg);
if (waterEnabled)
(*this)[Indices::waterSaturationIdx] = 1.0;
(*this)[Indices::pressureSwitchIdx] = po;
(*this)[Indices::compositionSwitchIdx] = 0.0; // hydrocarbon gas saturation
return true;
}
// Only the gas and the water phases are present. The oil phase appears as
// soon as more of the oil component is present in the hydrocarbon gas phase
// than what saturated gas contains. Note that we use the blackoil specific
// low-level PVT objects here for performance reasons.
Scalar T = asImp_().temperature_();
Scalar SoMax = problem.maxOilSaturation(globalDofIdx);
Scalar RvMax = problem.maxOilVaporizationFactor(/*timeIdx=*/0, globalDofIdx);
Scalar RvSat =
FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_,
T,
pg,
/*So=*/Scalar(0.0),
SoMax);
Scalar Rv = (*this)[Indices::compositionSwitchIdx];
if (Rv > std::min(RvMax, RvSat*(1.0 + eps))) {
// switch to phase equilibrium mode because the oil phase appears. here
// we also need the capillary pressures to calculate the oil phase
// pressure using the gas phase pressure
Scalar pC[numPhases] = { 0.0 };
const MaterialLawParams& matParams = problem.materialLawParams(globalDofIdx);
computeCapillaryPressures_(pC,
/*So=*/0.0,
/*Sg=*/Sg + solventSaturation_(),
Sw,
matParams);
Scalar po = pg + (pC[oilPhaseIdx] - pC[gasPhaseIdx]);
setPrimaryVarsMeaning(Sw_po_Sg);
(*this)[Indices::pressureSwitchIdx] = po;
(*this)[Indices::compositionSwitchIdx] = Sg; // hydrocarbon gas saturation
return true;
}
return false;
}
assert(false);
return false;
}
BlackOilPrimaryVariables& operator=(const BlackOilPrimaryVariables& other) = default;
BlackOilPrimaryVariables& operator=(Scalar value)
{
for (unsigned i = 0; i < numEq; ++i)
(*this)[i] = value;
return *this;
}
/*!
* \brief Instruct valgrind to check the definedness of all attributes of this class.
*
* We cannot simply check the definedness of the whole object because there might be
* "alignedness holes" in the memory layout which are caused by the pseudo primary
* variables.
*/
void checkDefined() const
{
#ifndef NDEBUG
// check the "real" primary variables
for (unsigned i = 0; i < this->size(); ++i)
Opm::Valgrind::CheckDefined((*this)[i]);
// check the "pseudo" primary variables
Opm::Valgrind::CheckDefined(primaryVarsMeaning_);
Opm::Valgrind::CheckDefined(pvtRegionIdx_);
#endif // NDEBUG
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
Scalar solventSaturation_() const
{
if (!enableSolvent)
return 0.0;
return (*this)[Indices::solventSaturationIdx];
}
Scalar polymerConcentration_() const
{
if (!enablePolymer)
return 0.0;
return (*this)[Indices::polymerConcentrationIdx];
}
Scalar foamConcentration_() const
{
if (!enableFoam)
return 0.0;
return (*this)[Indices::foamConcentrationIdx];
}
Scalar temperature_() const
{
if (!enableEnergy)
return FluidSystem::reservoirTemperature();
return (*this)[Indices::temperatureIdx];
}
template <class Container>
void computeCapillaryPressures_(Container& result,
Scalar So,
Scalar Sg,
Scalar Sw,
const MaterialLawParams& matParams) const
{
typedef Opm::SimpleModularFluidState<Scalar,
numPhases,
numComponents,
FluidSystem,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false> SatOnlyFluidState;
SatOnlyFluidState fluidState;
fluidState.setSaturation(waterPhaseIdx, Sw);
fluidState.setSaturation(oilPhaseIdx, So);
fluidState.setSaturation(gasPhaseIdx, Sg);
MaterialLaw::capillaryPressures(result, matParams, fluidState);
}
PrimaryVarsMeaning primaryVarsMeaning_;
unsigned short pvtRegionIdx_;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,176 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilProblem
*/
#ifndef EWOMS_BLACKOIL_PROBLEM_HH
#define EWOMS_BLACKOIL_PROBLEM_HH
#include "blackoilproperties.hh"
#include <opm/models/common/multiphasebaseproblem.hh>
#include <opm/material/common/Unused.hpp>
namespace Opm {
/*!
* \ingroup BlackOilModel
* \brief Base class for all problems which use the black-oil model.
*/
template<class TypeTag>
class BlackOilProblem : public MultiPhaseBaseProblem<TypeTag>
{
private:
typedef MultiPhaseBaseProblem<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*
* \param simulator The manager object of the simulation
*/
BlackOilProblem(Simulator& simulator)
: ParentType(simulator)
{}
/*!
* \brief Returns the maximum value of the gas dissolution factor at the current time
* for a given degree of freedom.
*
* This is required for the DRSDT keyword.
*/
Scalar maxGasDissolutionFactor(unsigned timeIdx OPM_UNUSED, unsigned globalDofIdx OPM_UNUSED) const
{ return std::numeric_limits<Scalar>::max()/2; }
/*!
* \brief Returns the maximum value of the oil vaporization factor at the current
* time for a given degree of freedom.
*
* This is required for the DRVDT keyword.
*/
Scalar maxOilVaporizationFactor(unsigned timeIdx OPM_UNUSED, unsigned globalDofIdx OPM_UNUSED) const
{ return std::numeric_limits<Scalar>::max()/2; }
/*!
* \brief Returns the maximum value of the oil saturation seen at the current time
* for a given degree of freedom.
*
* This is required for the VAPPARS keyword.
*/
Scalar maxOilSaturation(unsigned globalDofIdx OPM_UNUSED) const
{ return 1.0; }
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned pvtRegionIndex(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0; }
/*!
* \brief Returns the index of the relevant region for saturation functions
*/
template <class Context>
unsigned satnumRegionIndex(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0; }
/*!
* \brief Returns the index of the relevant region for solvent mixing functions
*/
template <class Context>
unsigned miscnumRegionIndex(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0; }
/*!
* \brief Returns the index of the relevant region for polymer mixing functions
*/
template <class Context>
unsigned plmixnumRegionIndex(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0; }
/*!
* \brief Returns the compressibility of the porous medium of a cell
*/
template <class Context>
Scalar rockCompressibility(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0.0; }
/*!
* \brief Returns the reference pressure for rock the compressibility of a cell
*/
template <class Context>
Scalar rockReferencePressure(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 1e5; }
/*!
* \brief Returns the reference temperature
*
* This is only relevant for temperature dependent quantities, in particular those
* needed by the module for energy conservation.
*/
Scalar referenceTemperature() const
{ return 273.15 + 15.56; /* [K] */ }
/*!
* \brief Returns the porosity multiplier due to water-induced rock compaction
*
* This is a somewhat exotic feature. Most likely you will not need to touch this
* method.
*/
template <class Evaluation>
Scalar rockCompPoroMultiplier(const IntensiveQuantities& intQuants OPM_UNUSED,
unsigned globalSpaceIdx OPM_UNUSED) const
{ return 1.0; }
private:
//! Returns the implementation of the problem (i.e. static polymorphism)
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
//! \copydoc asImp_()
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,79 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \ingroup BlackOilModel
*
* \brief Declares the properties required by the black oil model.
*/
#ifndef EWOMS_BLACK_OIL_PROPERTIES_HH
#define EWOMS_BLACK_OIL_PROPERTIES_HH
#include <opm/models/common/multiphasebaseproperties.hh>
BEGIN_PROPERTIES
//! Specifies if the simulation should write output files that are
//! compatible with those produced by the commercial Eclipse simulator
NEW_PROP_TAG(EnableEclipseOutput);
//! The material law for thermal conduction
NEW_PROP_TAG(ThermalConductionLaw);
//! The parameters of the material law for thermal conduction
NEW_PROP_TAG(ThermalConductionLawParams);
//! The material law for energy storage of the rock
NEW_PROP_TAG(SolidEnergyLaw);
//! The parameters for material law for energy storage of the rock
NEW_PROP_TAG(SolidEnergyLawParams);
//! Enable the ECL-blackoil extension for solvents. ("Second gas")
NEW_PROP_TAG(EnableSolvent);
//! Enable the ECL-blackoil extension for polymer.
NEW_PROP_TAG(EnablePolymer);
//! Enable the tracking polymer molecular weight tracking and related functionalities
NEW_PROP_TAG(EnablePolymerMW);
//! Enable surface volume scaling
NEW_PROP_TAG(BlackoilConserveSurfaceVolume);
//! Enable the ECL-blackoil extension for foam
NEW_PROP_TAG(EnableFoam);
//! Allow the spatial and temporal domains to exhibit non-constant temperature
//! in the black-oil model
NEW_PROP_TAG(EnableTemperature);
//! Enable the ECL-blackoil extension for energy conservation
//!
//! Setting this property to true implies EnableTemperature.
NEW_PROP_TAG(EnableEnergy);
//! The relative weight of the residual of the energy equation compared to the mass
//! residuals
//!
//! this is basically a hack to work around the limitation that the convergence criterion
//! of unmodified dune-istl linear solvers cannot weight the individual equations. if the
//! energy equation is not scaled, its absolute value is normally several orders of
//! magnitude larger than that of the mass balance equations
NEW_PROP_TAG(BlackOilEnergyScalingFactor);
END_PROPERTIES
#endif

View File

@ -0,0 +1,213 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilRateVector
*/
#ifndef EWOMS_BLACK_OIL_RATE_VECTOR_HH
#define EWOMS_BLACK_OIL_RATE_VECTOR_HH
#include <dune/common/fvector.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include "blackoilintensivequantities.hh"
namespace Opm {
/*!
* \ingroup BlackOilModel
*
* \brief Implements a vector representing mass, molar or volumetric rates for
* the black oil model.
*
* This class is basically a Dune::FieldVector which can be set using
* either mass, molar or volumetric rates.
*/
template <class TypeTag>
class BlackOilRateVector
: public Dune::FieldVector<typename GET_PROP_TYPE(TypeTag, Evaluation),
GET_PROP_VALUE(TypeTag, NumEq)>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef BlackOilSolventModule<TypeTag> SolventModule;
typedef BlackOilPolymerModule<TypeTag> PolymerModule;
typedef BlackOilFoamModule<TypeTag> FoamModule;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { contiEnergyEqIdx = Indices::contiEnergyEqIdx };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { enableSolvent = GET_PROP_VALUE(TypeTag, EnableSolvent) };
enum { enablePolymer = GET_PROP_VALUE(TypeTag, EnablePolymer) };
enum { enablePolymerMolarWeight = GET_PROP_VALUE(TypeTag, EnablePolymerMW) };
enum { enableFoam = GET_PROP_VALUE(TypeTag, EnableFoam) };
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef Dune::FieldVector<Evaluation, numEq> ParentType;
public:
BlackOilRateVector() : ParentType()
{ Opm::Valgrind::SetUndefined(*this); }
/*!
* \copydoc ImmiscibleRateVector::ImmiscibleRateVector(Scalar)
*/
BlackOilRateVector(Scalar value) : ParentType(Toolbox::createConstant(value))
{}
template <class Eval = Evaluation>
BlackOilRateVector(const typename std::enable_if<std::is_same<Eval, Evaluation>::value, Evaluation>::type& value) : ParentType(value)
{}
/*!
* \copydoc ImmiscibleRateVector::ImmiscibleRateVector(const
* ImmiscibleRateVector& )
*/
BlackOilRateVector(const BlackOilRateVector& value) : ParentType(value)
{}
/*!
* \copydoc ImmiscibleRateVector::setMassRate
*/
void setMassRate(const ParentType& value, unsigned pvtRegionIdx = 0)
{
ParentType::operator=(value);
// convert to "surface volume" if requested
if (GET_PROP_VALUE(TypeTag, BlackoilConserveSurfaceVolume)) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
(*this)[FluidSystem::gasCompIdx] /=
FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
(*this)[FluidSystem::oilCompIdx] /=
FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx);
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
(*this)[FluidSystem::waterCompIdx] /=
FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, pvtRegionIdx);
}
if (enableSolvent) {
const auto& solventPvt = SolventModule::solventPvt();
(*this)[Indices::contiSolventEqIdx] /=
solventPvt.referenceDensity(pvtRegionIdx);
}
}
}
/*!
* \copydoc ImmiscibleRateVector::setMolarRate
*/
void setMolarRate(const ParentType& value, unsigned pvtRegionIdx = 0)
{
// first, assign molar rates
ParentType::operator=(value);
// then, convert them to mass rates
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
(*this)[conti0EqIdx + compIdx] *= FluidSystem::molarMass(compIdx, pvtRegionIdx);
const auto& solventPvt = SolventModule::solventPvt();
(*this)[Indices::contiSolventEqIdx] *= solventPvt.molarMass(pvtRegionIdx);
if ( enablePolymer ) {
if (enablePolymerMolarWeight )
throw std::logic_error("Set molar rate with polymer weight tracking not implemented");
(*this)[Indices::contiPolymerEqIdx] *= PolymerModule::molarMass(pvtRegionIdx);
}
if ( enableFoam ) {
throw std::logic_error("setMolarRate() not implemented for foam");
}
// convert to "surface volume" if requested
if (GET_PROP_VALUE(TypeTag, BlackoilConserveSurfaceVolume)) {
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
(*this)[FluidSystem::gasCompIdx] /=
FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
(*this)[FluidSystem::oilCompIdx] /=
FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx);
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
(*this)[FluidSystem::waterCompIdx] /=
FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, pvtRegionIdx);
}
if (enableSolvent) {
(*this)[Indices::contiSolventEqIdx] /=
solventPvt.referenceDensity(pvtRegionIdx);
}
}
}
/*!
* \copydoc ImmiscibleRateVector::setVolumetricRate
*/
template <class FluidState, class RhsEval>
void setVolumetricRate(const FluidState& fluidState,
unsigned phaseIdx,
const RhsEval& volume)
{
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
(*this)[conti0EqIdx + compIdx] =
fluidState.density(phaseIdx)
* fluidState.massFraction(phaseIdx, compIdx)
* volume;
}
/*!
* \brief Assignment operator from a scalar or a function evaluation
*/
template <class RhsEval>
BlackOilRateVector& operator=(const RhsEval& value)
{
for (unsigned i=0; i < this->size(); ++i)
(*this)[i] = value;
return *this;
}
/*!
* \brief Assignment operator from another rate vector
*/
BlackOilRateVector& operator=(const BlackOilRateVector& other)
{
for (unsigned i=0; i < this->size(); ++i)
(*this)[i] = other[i];
return *this;
}
};
} // namespace Opm
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,181 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilTwoPhaseIndices
*/
#ifndef EWOMS_BLACK_OIL_TWO_PHASE_INDICES_HH
#define EWOMS_BLACK_OIL_TWO_PHASE_INDICES_HH
#include <cassert>
namespace Opm {
/*!
* \ingroup BlackOilModel
*
* \brief The primary variable and equation indices for the black-oil model.
*/
template <unsigned numSolventsV, unsigned numPolymersV, unsigned numEnergyV, bool enableFoam, unsigned PVOffset, unsigned disabledCanonicalCompIdx>
struct BlackOilTwoPhaseIndices
{
//! Is phase enabled or not
static const bool oilEnabled = (disabledCanonicalCompIdx != 0);
static const bool waterEnabled = (disabledCanonicalCompIdx != 1);
static const bool gasEnabled = (disabledCanonicalCompIdx != 2);
//! Are solvents involved?
static const bool enableSolvent = numSolventsV > 0;
//! Are polymers involved?
static const bool enablePolymer = numPolymersV > 0;
//! Shall energy be conserved?
static const bool enableEnergy = numEnergyV > 0;
//! Number of solvent components to be considered
static const int numSolvents = enableSolvent ? numSolventsV : 0;
//! Number of polymer components to be considered
static const int numPolymers = enablePolymer ? numPolymersV : 0;
//! Number of energy equations to be considered
static const int numEnergy = enableEnergy ? numEnergyV : 0;
//! Number of foam equations to be considered
static const int numFoam = enableFoam? 1 : 0;
//! The number of fluid phases
static const int numPhases = 2;
//! The number of equations
static const int numEq = numPhases + numSolvents + numPolymers + numEnergy + numFoam;
//////////////////////////////
// Primary variable indices
//////////////////////////////
//! The index of the water saturation. For two-phase oil gas models this is disabled.
static const int waterSaturationIdx = waterEnabled ? PVOffset + 0 : -10000;
//! Index of the oil pressure in a vector of primary variables
static const int pressureSwitchIdx = waterEnabled ? PVOffset + 1 : PVOffset + 0;
/*!
* \brief Index of the switching variable which determines the composition of the
* hydrocarbon phases.
*
* \note For two-phase water oil models this is disabled.
*/
static const int compositionSwitchIdx = gasEnabled ? PVOffset + 1 : -10000;
//! Index of the primary variable for the first solvent
static const int solventSaturationIdx =
enableSolvent ? PVOffset + numPhases : -1000;
//! Index of the primary variable for the first polymer
static const int polymerConcentrationIdx =
enablePolymer ? PVOffset + numPhases + numSolvents : -1000;
//! Index of the primary variable for the second polymer primary variable (molecular weight)
static const int polymerMoleWeightIdx =
numPolymers > 1 ? polymerConcentrationIdx + 1 : -1000;
//! Index of the primary variable for the foam
static const int foamConcentrationIdx =
enableFoam ? polymerMoleWeightIdx + 1 : -1000;
//! Index of the primary variable for temperature
static const int temperatureIdx =
enableEnergy ? PVOffset + numPhases + numSolvents + numPolymers + numFoam : - 1000;
//////////////////////
// Equation indices
//////////////////////
//! \brief returns the index of "active" component
static unsigned canonicalToActiveComponentIndex(unsigned compIdx)
{
// assumes canonical oil = 0, water = 1, gas = 2;
if(!gasEnabled) {
assert(compIdx != 2);
// oil = 0, water = 1
return compIdx;
} else if (!waterEnabled) {
assert(compIdx != 1);
// oil = 0, gas = 1
return compIdx / 2;
} else {
assert(!oilEnabled);
assert(compIdx != 0);
}
// water = 0, gas = 1;
return compIdx-1;
}
static unsigned activeToCanonicalComponentIndex(unsigned compIdx)
{
// assumes canonical oil = 0, water = 1, gas = 2;
assert(compIdx < 2);
if(!gasEnabled) {
// oil = 0, water = 1
return compIdx;
} else if (!waterEnabled) {
// oil = 0, gas = 1
return compIdx * 2;
} else {
assert(!oilEnabled);
}
// water = 0, gas = 1;
return compIdx+1;
}
//! Index of the continuity equation of the first phase
static const int conti0EqIdx = PVOffset + 0;
// one continuity equation follows
//! Index of the continuity equation for the first solvent component
static const int contiSolventEqIdx =
enableSolvent ? PVOffset + numPhases : -1000;
//! Index of the continuity equation for the first polymer component
static const int contiPolymerEqIdx =
enablePolymer ? PVOffset + numPhases + numSolvents : -1000;
//! Index of the continuity equation for the second polymer component (molecular weight)
static const int contiPolymerMWEqIdx =
numPolymers > 1 ? contiPolymerEqIdx + 1 : -1000;
//! Index of the continuity equation for the foam component
static const int contiFoamEqIdx =
enableFoam ? contiPolymerMWEqIdx + 1 : -1000;
//! Index of the continuity equation for energy
static const int contiEnergyEqIdx =
enableEnergy ? PVOffset + numPhases + numSolvents + numPolymers + numFoam : -1000;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,569 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the necessary classes to calculate the
* volumetric fluxes out of a pressure potential gradient using the
* Darcy relation.
*/
#ifndef EWOMS_DARCY_FLUX_MODULE_HH
#define EWOMS_DARCY_FLUX_MODULE_HH
#include "multiphasebaseproperties.hh"
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <cmath>
BEGIN_PROPERTIES
NEW_PROP_TAG(MaterialLaw);
END_PROPERTIES
namespace Opm {
template <class TypeTag>
class DarcyIntensiveQuantities;
template <class TypeTag>
class DarcyExtensiveQuantities;
template <class TypeTag>
class DarcyBaseProblem;
/*!
* \ingroup FluxModules
* \brief Specifies a flux module which uses the Darcy relation.
*/
template <class TypeTag>
struct DarcyFluxModule
{
typedef DarcyIntensiveQuantities<TypeTag> FluxIntensiveQuantities;
typedef DarcyExtensiveQuantities<TypeTag> FluxExtensiveQuantities;
typedef DarcyBaseProblem<TypeTag> FluxBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{ }
};
/*!
* \ingroup FluxModules
* \brief Provides the defaults for the parameters required by the
* Darcy velocity approach.
*/
template <class TypeTag>
class DarcyBaseProblem
{ };
/*!
* \ingroup FluxModules
* \brief Provides the intensive quantities for the Darcy flux module
*/
template <class TypeTag>
class DarcyIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
void update_(const ElementContext& elemCtx OPM_UNUSED,
unsigned dofIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
};
/*!
* \ingroup FluxModules
* \brief Provides the Darcy flux module
*
* The commonly used Darcy relation looses its validity for Reynolds numbers \f$ Re <
* 1\f$. If one encounters flow velocities in porous media above this threshold, the
* Forchheimer approach can be used.
*
* The Darcy equation is given by the following relation:
*
* \f[
\vec{v}_\alpha =
\left( \nabla p_\alpha - \rho_\alpha \vec{g}\right)
\frac{\mu_\alpha}{k_{r,\alpha} K}
\f]
*/
template <class TypeTag>
class DarcyExtensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef typename Opm::MathToolbox<Evaluation> Toolbox;
typedef typename FluidSystem::template ParameterCache<Evaluation> ParameterCache;
typedef Dune::FieldVector<Evaluation, dimWorld> EvalDimVector;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \brief Returns the intrinsic permeability tensor for a given
* sub-control volume face.
*/
const DimMatrix& intrinsicPermability() const
{ return K_; }
/*!
* \brief Return the pressure potential gradient of a fluid phase
* at the face's integration point [Pa/m]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& potentialGrad(unsigned phaseIdx) const
{ return potentialGrad_[phaseIdx]; }
/*!
* \brief Return the filter velocity of a fluid phase at the
* face's integration point [m/s]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& filterVelocity(unsigned phaseIdx) const
{ return filterVelocity_[phaseIdx]; }
/*!
* \brief Return the volume flux of a fluid phase at the face's integration point
* \f$[m^3/s / m^2]\f$
*
* This is the fluid volume of a phase per second and per square meter of face
* area.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& volumeFlux(unsigned phaseIdx) const
{ return volumeFlux_[phaseIdx]; }
protected:
short upstreamIndex_(unsigned phaseIdx) const
{ return upstreamDofIdx_[phaseIdx]; }
short downstreamIndex_(unsigned phaseIdx) const
{ return downstreamDofIdx_[phaseIdx]; }
/*!
* \brief Calculate the gradients which are required to determine the volumetric fluxes
*
* The the upwind directions is also determined by method.
*/
void calculateGradients_(const ElementContext& elemCtx,
unsigned faceIdx,
unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::PressureCallback<TypeTag> pressureCallback(elemCtx);
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(faceIdx);
const auto& faceNormal = scvf.normal();
unsigned i = scvf.interiorIndex();
unsigned j = scvf.exteriorIndex();
interiorDofIdx_ = static_cast<short>(i);
exteriorDofIdx_ = static_cast<short>(j);
unsigned focusDofIdx = elemCtx.focusDofIndex();
// calculate the "raw" pressure gradient
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
pressureCallback.setPhaseIndex(phaseIdx);
gradCalc.calculateGradient(potentialGrad_[phaseIdx],
elemCtx,
faceIdx,
pressureCallback);
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
}
// correct the pressure gradients by the gravitational acceleration
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity)) {
// estimate the gravitational acceleration at a given SCV face
// using the arithmetic mean
const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
const auto& gEx = elemCtx.problem().gravity(elemCtx, j, timeIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx);
const auto& posIn = elemCtx.pos(i, timeIdx);
const auto& posEx = elemCtx.pos(j, timeIdx);
const auto& posFace = scvf.integrationPos();
// the distance between the centers of the control volumes
DimVector distVecIn(posIn);
DimVector distVecEx(posEx);
DimVector distVecTotal(posEx);
distVecIn -= posFace;
distVecEx -= posFace;
distVecTotal -= posIn;
Scalar absDistTotalSquared = distVecTotal.two_norm2();
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// calculate the hydrostatic pressure at the integration point of the face
Evaluation pStatIn;
if (std::is_same<Scalar, Evaluation>::value ||
interiorDofIdx_ == static_cast<int>(focusDofIdx))
{
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
pStatIn = - rhoIn*(gIn*distVecIn);
}
else {
Scalar rhoIn = Toolbox::value(intQuantsIn.fluidState().density(phaseIdx));
pStatIn = - rhoIn*(gIn*distVecIn);
}
// the quantities on the exterior side of the face do not influence the
// result for the TPFA scheme, so they can be treated as scalar values.
Evaluation pStatEx;
if (std::is_same<Scalar, Evaluation>::value ||
exteriorDofIdx_ == static_cast<int>(focusDofIdx))
{
const Evaluation& rhoEx = intQuantsEx.fluidState().density(phaseIdx);
pStatEx = - rhoEx*(gEx*distVecEx);
}
else {
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
pStatEx = - rhoEx*(gEx*distVecEx);
}
// compute the hydrostatic gradient between the two control volumes (this
// gradient exhibitis the same direction as the vector between the two
// control volume centers and the length (pStaticExterior -
// pStaticInterior)/distanceInteriorToExterior
Dune::FieldVector<Evaluation, dimWorld> f(distVecTotal);
f *= (pStatEx - pStatIn)/absDistTotalSquared;
// calculate the final potential gradient
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
potentialGrad_[phaseIdx][dimIdx] += f[dimIdx];
for (unsigned dimIdx = 0; dimIdx < potentialGrad_[phaseIdx].size(); ++dimIdx) {
if (!Opm::isfinite(potentialGrad_[phaseIdx][dimIdx])) {
throw Opm::NumericalIssue("Non-finite potential gradient for phase '"
+std::string(FluidSystem::phaseName(phaseIdx))+"'");
}
}
}
}
Opm::Valgrind::SetUndefined(K_);
elemCtx.problem().intersectionIntrinsicPermeability(K_, elemCtx, faceIdx, timeIdx);
Opm::Valgrind::CheckDefined(K_);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
// determine the upstream and downstream DOFs
Evaluation tmp = 0.0;
for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
tmp += potentialGrad_[phaseIdx][dimIdx]*faceNormal[dimIdx];
if (tmp > 0) {
upstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
downstreamDofIdx_[phaseIdx] = interiorDofIdx_;
}
else {
upstreamDofIdx_[phaseIdx] = interiorDofIdx_;
downstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
}
// we only carry the derivatives along if the upstream DOF is the one which
// we currently focus on
const auto& up = elemCtx.intensiveQuantities(upstreamDofIdx_[phaseIdx], timeIdx);
if (upstreamDofIdx_[phaseIdx] == static_cast<int>(focusDofIdx))
mobility_[phaseIdx] = up.mobility(phaseIdx);
else
mobility_[phaseIdx] = Toolbox::value(up.mobility(phaseIdx));
}
}
/*!
* \brief Calculate the gradients at the grid boundary which are required to
* determine the volumetric fluxes
*
* The the upwind directions is also determined by method.
*/
template <class FluidState>
void calculateBoundaryGradients_(const ElementContext& elemCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::BoundaryPressureCallback<TypeTag, FluidState> pressureCallback(elemCtx, fluidState);
// calculate the pressure gradient
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
pressureCallback.setPhaseIndex(phaseIdx);
gradCalc.calculateBoundaryGradient(potentialGrad_[phaseIdx],
elemCtx,
boundaryFaceIdx,
pressureCallback);
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
}
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(boundaryFaceIdx);
auto i = scvf.interiorIndex();
interiorDofIdx_ = static_cast<short>(i);
exteriorDofIdx_ = -1;
int focusDofIdx = elemCtx.focusDofIndex();
// calculate the intrinsic permeability
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
K_ = intQuantsIn.intrinsicPermeability();
// correct the pressure gradients by the gravitational acceleration
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity)) {
// estimate the gravitational acceleration at a given SCV face
// using the arithmetic mean
const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
const auto& posIn = elemCtx.pos(i, timeIdx);
const auto& posFace = scvf.integrationPos();
// the distance between the face center and the center of the control volume
DimVector distVecIn(posIn);
distVecIn -= posFace;
Scalar absDist = distVecIn.two_norm();
Scalar gTimesDist = gIn*distVecIn;
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// calculate the hydrostatic pressure at the integration point of the face
Evaluation rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Evaluation pStatIn = - gTimesDist*rhoIn;
Opm::Valgrind::CheckDefined(pStatIn);
// compute the hydrostatic gradient between the two control volumes (this
// gradient exhibitis the same direction as the vector between the two
// control volume centers and the length (pStaticExterior -
// pStaticInterior)/distanceInteriorToExterior. Note that for the
// boundary, 'pStaticExterior' is zero as the boundary pressure is
// defined on boundary face's integration point...
EvalDimVector f(distVecIn);
f *= - pStatIn/absDist;
// calculate the final potential gradient
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
potentialGrad_[phaseIdx][dimIdx] += f[dimIdx];
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
for (unsigned dimIdx = 0; dimIdx < potentialGrad_[phaseIdx].size(); ++dimIdx) {
if (!Opm::isfinite(potentialGrad_[phaseIdx][dimIdx])) {
throw Opm::NumericalIssue("Non finite potential gradient for phase '"
+std::string(FluidSystem::phaseName(phaseIdx))+"'");
}
}
}
}
// determine the upstream and downstream DOFs
const auto& faceNormal = scvf.normal();
const auto& matParams = elemCtx.problem().materialLawParams(elemCtx, i, timeIdx);
Scalar kr[numPhases];
MaterialLaw::relativePermeabilities(kr, matParams, fluidState);
Opm::Valgrind::CheckDefined(kr);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
Evaluation tmp = 0.0;
for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
tmp += potentialGrad_[phaseIdx][dimIdx]*faceNormal[dimIdx];
if (tmp > 0) {
upstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
downstreamDofIdx_[phaseIdx] = interiorDofIdx_;
}
else {
upstreamDofIdx_[phaseIdx] = interiorDofIdx_;
downstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
}
// take the phase mobility from the DOF in upstream direction
if (upstreamDofIdx_[phaseIdx] < 0) {
if (interiorDofIdx_ == focusDofIdx)
mobility_[phaseIdx] =
kr[phaseIdx] / fluidState.viscosity(phaseIdx);
else
mobility_[phaseIdx] =
Toolbox::value(kr[phaseIdx])
/ Toolbox::value(fluidState.viscosity(phaseIdx));
}
else if (upstreamDofIdx_[phaseIdx] != focusDofIdx)
mobility_[phaseIdx] = Toolbox::value(intQuantsIn.mobility(phaseIdx));
else
mobility_[phaseIdx] = intQuantsIn.mobility(phaseIdx);
Opm::Valgrind::CheckDefined(mobility_[phaseIdx]);
}
}
/*!
* \brief Calculate the volumetric fluxes of all phases
*
* The pressure potentials and upwind directions must already be
* determined before calling this method!
*/
void calculateFluxes_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
const DimVector& normal = scvf.normal();
Opm::Valgrind::CheckDefined(normal);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
filterVelocity_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
asImp_().calculateFilterVelocity_(phaseIdx);
Opm::Valgrind::CheckDefined(filterVelocity_[phaseIdx]);
volumeFlux_[phaseIdx] = 0.0;
for (unsigned i = 0; i < normal.size(); ++i)
volumeFlux_[phaseIdx] += filterVelocity_[phaseIdx][i] * normal[i];
}
}
/*!
* \brief Calculate the volumetric fluxes at a boundary face of all fluid phases
*
* The pressure potentials and upwind directions must already be determined before
* calling this method!
*/
void calculateBoundaryFluxes_(const ElementContext& elemCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx)
{
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(boundaryFaceIdx);
const DimVector& normal = scvf.normal();
Opm::Valgrind::CheckDefined(normal);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
filterVelocity_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
continue;
}
asImp_().calculateFilterVelocity_(phaseIdx);
Opm::Valgrind::CheckDefined(filterVelocity_[phaseIdx]);
volumeFlux_[phaseIdx] = 0.0;
for (unsigned i = 0; i < normal.size(); ++i)
volumeFlux_[phaseIdx] += filterVelocity_[phaseIdx][i] * normal[i];
}
}
void calculateFilterVelocity_(unsigned phaseIdx)
{
#ifndef NDEBUG
assert(Opm::isfinite(mobility_[phaseIdx]));
for (unsigned i = 0; i < K_.M(); ++ i)
for (unsigned j = 0; j < K_.N(); ++ j)
assert(std::isfinite(K_[i][j]));
#endif
K_.mv(potentialGrad_[phaseIdx], filterVelocity_[phaseIdx]);
filterVelocity_[phaseIdx] *= - mobility_[phaseIdx];
#ifndef NDEBUG
for (unsigned i = 0; i < filterVelocity_[phaseIdx].size(); ++ i)
assert(Opm::isfinite(filterVelocity_[phaseIdx][i]));
#endif
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
protected:
// intrinsic permeability tensor and its square root
DimMatrix K_;
// mobilities of all fluid phases [1 / (Pa s)]
Evaluation mobility_[numPhases];
// filter velocities of all phases [m/s]
EvalDimVector filterVelocity_[numPhases];
// the volumetric flux of all fluid phases over the control
// volume's face [m^3/s / m^2]
Evaluation volumeFlux_[numPhases];
// pressure potential gradients of all phases [Pa / m]
EvalDimVector potentialGrad_[numPhases];
// upstream, downstream, interior and exterior DOFs
short upstreamDofIdx_[numPhases];
short downstreamDofIdx_[numPhases];
short interiorDofIdx_;
short exteriorDofIdx_;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,496 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Classes required for molecular diffusion.
*/
#ifndef EWOMS_DIFFUSION_MODULE_HH
#define EWOMS_DIFFUSION_MODULE_HH
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
BEGIN_PROPERTIES
NEW_PROP_TAG(Indices);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup Diffusion
* \class Opm::DiffusionModule
* \brief Provides the auxiliary methods required for consideration of the
* diffusion equation.
*/
template <class TypeTag, bool enableDiffusion>
class DiffusionModule;
/*!
* \copydoc Opm::DiffusionModule
*/
template <class TypeTag>
class DiffusionModule<TypeTag, /*enableDiffusion=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
public:
/*!
* \brief Register all run-time parameters for the diffusion module.
*/
static void registerParameters()
{}
/*!
* \brief Adds the diffusive mass flux flux to the flux vector over a flux
* integration point.
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux OPM_UNUSED,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
};
/*!
* \copydoc Opm::DiffusionModule
*/
template <class TypeTag>
class DiffusionModule<TypeTag, /*enableDiffusion=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { conti0EqIdx = Indices::conti0EqIdx };
typedef Opm::MathToolbox<Evaluation> Toolbox;
public:
/*!
* \brief Register all run-time parameters for the diffusion module.
*/
static void registerParameters()
{}
/*!
* \brief Adds the mass flux due to molecular diffusion to the flux vector over the
* flux integration point.
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux, const Context& context,
unsigned spaceIdx, unsigned timeIdx)
{
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
const auto& fluidStateI = context.intensiveQuantities(extQuants.interiorIndex(), timeIdx).fluidState();
const auto& fluidStateJ = context.intensiveQuantities(extQuants.exteriorIndex(), timeIdx).fluidState();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// arithmetic mean of the phase's molar density
Evaluation rhoMolar = fluidStateI.molarDensity(phaseIdx);
rhoMolar += Toolbox::value(fluidStateJ.molarDensity(phaseIdx));
rhoMolar /= 2;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
// mass flux due to molecular diffusion
flux[conti0EqIdx + compIdx] +=
-rhoMolar
* extQuants.moleFractionGradientNormal(phaseIdx, compIdx)
* extQuants.effectiveDiffusionCoefficient(phaseIdx, compIdx);
}
}
};
/*!
* \ingroup Diffusion
* \class Opm::DiffusionIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the
* calculation of molecular diffusive fluxes.
*/
template <class TypeTag, bool enableDiffusion>
class DiffusionIntensiveQuantities;
/*!
* \copydoc Opm::DiffusionIntensiveQuantities
*/
template <class TypeTag>
class DiffusionIntensiveQuantities<TypeTag, /*enableDiffusion=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
/*!
* \brief Returns the tortuousity of the sub-domain of a fluid
* phase in the porous medium.
*/
Scalar tortuosity(unsigned phaseIdx OPM_UNUSED) const
{
throw std::logic_error("Method tortuosity() does not make sense "
"if diffusion is disabled");
}
/*!
* \brief Returns the molecular diffusion coefficient for a
* component in a phase.
*/
Scalar diffusionCoefficient(unsigned phaseIdx OPM_UNUSED, unsigned compIdx OPM_UNUSED) const
{
throw std::logic_error("Method diffusionCoefficient() does not "
"make sense if diffusion is disabled");
}
/*!
* \brief Returns the effective molecular diffusion coefficient of
* the porous medium for a component in a phase.
*/
Scalar effectiveDiffusionCoefficient(unsigned phaseIdx OPM_UNUSED, unsigned compIdx OPM_UNUSED) const
{
throw std::logic_error("Method effectiveDiffusionCoefficient() "
"does not make sense if diffusion is disabled");
}
protected:
/*!
* \brief Update the quantities required to calculate diffusive
* mass fluxes.
*/
template <class FluidState>
void update_(FluidState& fs OPM_UNUSED,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache OPM_UNUSED,
const ElementContext& elemCtx OPM_UNUSED,
unsigned dofIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
};
/*!
* \copydoc Opm::DiffusionIntensiveQuantities
*/
template <class TypeTag>
class DiffusionIntensiveQuantities<TypeTag, /*enableDiffusion=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
public:
/*!
* \brief Returns the molecular diffusion coefficient for a
* component in a phase.
*/
Evaluation diffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
{ return diffusionCoefficient_[phaseIdx][compIdx]; }
/*!
* \brief Returns the tortuousity of the sub-domain of a fluid
* phase in the porous medium.
*/
Evaluation tortuosity(unsigned phaseIdx) const
{ return tortuosity_[phaseIdx]; }
/*!
* \brief Returns the effective molecular diffusion coefficient of
* the porous medium for a component in a phase.
*/
Evaluation effectiveDiffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
{ return tortuosity_[phaseIdx] * diffusionCoefficient_[phaseIdx][compIdx]; }
protected:
/*!
* \brief Update the quantities required to calculate diffusive
* mass fluxes.
*/
template <class FluidState>
void update_(FluidState& fluidState,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
typedef Opm::MathToolbox<Evaluation> Toolbox;
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// TODO: let the problem do this (this is a constitutive
// relation of which the model should be free of from the
// abstraction POV!)
const Evaluation& base =
Toolbox::max(0.0001,
intQuants.porosity()
* intQuants.fluidState().saturation(phaseIdx));
tortuosity_[phaseIdx] =
1.0 / (intQuants.porosity() * intQuants.porosity())
* Toolbox::pow(base, 7.0/3.0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
diffusionCoefficient_[phaseIdx][compIdx] =
FluidSystem::diffusionCoefficient(fluidState,
paramCache,
phaseIdx,
compIdx);
}
}
}
private:
Evaluation tortuosity_[numPhases];
Evaluation diffusionCoefficient_[numPhases][numComponents];
};
/*!
* \ingroup Diffusion
* \class Opm::DiffusionExtensiveQuantities
*
* \brief Provides the quantities required to calculate diffusive mass fluxes.
*/
template <class TypeTag, bool enableDiffusion>
class DiffusionExtensiveQuantities;
/*!
* \copydoc Opm::DiffusionExtensiveQuantities
*/
template <class TypeTag>
class DiffusionExtensiveQuantities<TypeTag, /*enableDiffusion=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
/*!
* \brief Update the quantities required to calculate
* the diffusive mass fluxes.
*/
void update_(const ElementContext& elemCtx OPM_UNUSED,
unsigned faceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
template <class Context, class FluidState>
void updateBoundary_(const Context& context OPM_UNUSED,
unsigned bfIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED,
const FluidState& fluidState OPM_UNUSED)
{}
public:
/*!
* \brief The the gradient of the mole fraction times the face normal.
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Evaluation& moleFractionGradientNormal(unsigned phaseIdx OPM_UNUSED,
unsigned compIdx OPM_UNUSED) const
{
throw std::logic_error("The method moleFractionGradient() does not "
"make sense if diffusion is disabled.");
}
/*!
* \brief The effective diffusion coeffcient of a component in a
* fluid phase at the face's integration point
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Evaluation& effectiveDiffusionCoefficient(unsigned phaseIdx OPM_UNUSED,
unsigned compIdx OPM_UNUSED) const
{
throw std::logic_error("The method effectiveDiffusionCoefficient() "
"does not make sense if diffusion is disabled.");
}
};
/*!
* \copydoc Opm::DiffusionExtensiveQuantities
*/
template <class TypeTag>
class DiffusionExtensiveQuantities<TypeTag, /*enableDiffusion=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldVector<Evaluation, dimWorld> DimEvalVector;
protected:
/*!
* \brief Update the quantities required to calculate
* the diffusive mass fluxes.
*/
void update_(const ElementContext& elemCtx, unsigned faceIdx, unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::MoleFractionCallback<TypeTag> moleFractionCallback(elemCtx);
const auto& face = elemCtx.stencil(timeIdx).interiorFace(faceIdx);
const auto& normal = face.normal();
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, timeIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(extQuants.interiorIndex(), timeIdx);
const auto& intQuantsOutside = elemCtx.intensiveQuantities(extQuants.exteriorIndex(), timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
moleFractionCallback.setPhaseIndex(phaseIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
moleFractionCallback.setComponentIndex(compIdx);
DimEvalVector moleFractionGradient(0.0);
gradCalc.calculateGradient(moleFractionGradient,
elemCtx,
faceIdx,
moleFractionCallback);
moleFractionGradientNormal_[phaseIdx][compIdx] = 0.0;
for (unsigned i = 0; i < normal.size(); ++i)
moleFractionGradientNormal_[phaseIdx][compIdx] +=
normal[i]*moleFractionGradient[i];
Opm::Valgrind::CheckDefined(moleFractionGradientNormal_[phaseIdx][compIdx]);
// use the arithmetic average for the effective
// diffusion coefficients.
effectiveDiffusionCoefficient_[phaseIdx][compIdx] =
(intQuantsInside.effectiveDiffusionCoefficient(phaseIdx, compIdx)
+
intQuantsOutside.effectiveDiffusionCoefficient(phaseIdx, compIdx))
/ 2;
Opm::Valgrind::CheckDefined(effectiveDiffusionCoefficient_[phaseIdx][compIdx]);
}
}
}
template <class Context, class FluidState>
void updateBoundary_(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
const auto& stencil = context.stencil(timeIdx);
const auto& face = stencil.boundaryFace(bfIdx);
const auto& elemCtx = context.elementContext();
unsigned insideScvIdx = face.interiorIndex();
const auto& insideScv = stencil.subControlVolume(insideScvIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(insideScvIdx, timeIdx);
const auto& fluidStateInside = intQuantsInside.fluidState();
// distance between the center of the SCV and center of the boundary face
DimVector distVec = face.integrationPos();
distVec -= context.element().geometry().global(insideScv.localGeometry().center());
Scalar dist = distVec * face.normal();
// if the following assertation triggers, the center of the
// center of the interior SCV was not inside the element!
assert(dist > 0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
// calculate mole fraction gradient using two-point
// gradients
moleFractionGradientNormal_[phaseIdx][compIdx] =
(fluidState.moleFraction(phaseIdx, compIdx)
-
fluidStateInside.moleFraction(phaseIdx, compIdx))
/ dist;
Opm::Valgrind::CheckDefined(moleFractionGradientNormal_[phaseIdx][compIdx]);
// use effective diffusion coefficients of the interior finite
// volume.
effectiveDiffusionCoefficient_[phaseIdx][compIdx] =
intQuantsInside.effectiveDiffusionCoefficient(phaseIdx, compIdx);
Opm::Valgrind::CheckDefined(effectiveDiffusionCoefficient_[phaseIdx][compIdx]);
}
}
}
public:
/*!
* \brief The the gradient of the mole fraction times the face normal.
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Evaluation& moleFractionGradientNormal(unsigned phaseIdx, unsigned compIdx) const
{ return moleFractionGradientNormal_[phaseIdx][compIdx]; }
/*!
* \brief The effective diffusion coeffcient of a component in a
* fluid phase at the face's integration point
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Evaluation& effectiveDiffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
{ return effectiveDiffusionCoefficient_[phaseIdx][compIdx]; }
private:
Evaluation moleFractionGradientNormal_[numPhases][numComponents];
Evaluation effectiveDiffusionCoefficient_[numPhases][numComponents];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,859 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to consider energy as a
* conservation quantity in a multi-phase module.
*/
#ifndef EWOMS_ENERGY_MODULE_HH
#define EWOMS_ENERGY_MODULE_HH
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <string>
BEGIN_PROPERTIES
NEW_PROP_TAG(Indices);
NEW_PROP_TAG(EnableEnergy);
NEW_PROP_TAG(ThermalConductionLaw);
NEW_PROP_TAG(ThermalConductionLawParams);
NEW_PROP_TAG(SolidEnergyLaw);
NEW_PROP_TAG(SolidEnergyLawParams);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup Energy
* \brief Provides the auxiliary methods required for consideration of
* the energy equation.
*/
template <class TypeTag, bool enableEnergy>
class EnergyModule;
/*!
* \copydoc Opm::EnergyModule
*/
template <class TypeTag>
class EnergyModule<TypeTag, /*enableEnergy=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
typedef Dune::FieldVector<Evaluation, numEq> EvalEqVector;
public:
/*!
* \brief Register all run-time parameters for the energy module.
*/
static void registerParameters()
{}
/*!
* \brief Returns the name of a primary variable or an empty
* string if the specified primary variable index does not belong to
* the energy module.
*/
static std::string primaryVarName(unsigned pvIdx OPM_UNUSED)
{ return ""; }
/*!
* \brief Returns the name of an equation or an empty
* string if the specified equation index does not belong to
* the energy module.
*/
static std::string eqName(unsigned eqIdx OPM_UNUSED)
{ return ""; }
/*!
* \brief Returns the relative weight of a primary variable for
* calculating relative errors.
*/
static Scalar primaryVarWeight(const Model& model OPM_UNUSED,
unsigned globalDofIdx OPM_UNUSED,
unsigned pvIdx OPM_UNUSED)
{ return -1; }
/*!
* \brief Returns the relative weight of a equation of the residual.
*/
static Scalar eqWeight(const Model& model OPM_UNUSED,
unsigned globalDofIdx OPM_UNUSED,
unsigned eqIdx OPM_UNUSED)
{ return -1; }
/*!
* \brief Given a fluid state, set the temperature in the primary variables
*/
template <class FluidState>
static void setPriVarTemperatures(PrimaryVariables& priVars OPM_UNUSED,
const FluidState& fs OPM_UNUSED)
{}
/*!
* \brief Given a fluid state, set the enthalpy rate which emerges
* from a volumetric rate.
*/
template <class RateVector, class FluidState>
static void setEnthalpyRate(RateVector& rateVec OPM_UNUSED,
const FluidState& fluidState OPM_UNUSED,
unsigned phaseIdx OPM_UNUSED,
const Evaluation& volume OPM_UNUSED)
{}
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void setEnthalpyRate(RateVector& rateVec OPM_UNUSED,
const Evaluation& rate OPM_UNUSED)
{}
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void addToEnthalpyRate(RateVector& rateVec OPM_UNUSED,
const Evaluation& rate OPM_UNUSED)
{}
/*!
* \brief Add the rate of the conductive energy flux to a rate vector.
*/
static Scalar thermalConductionRate(const ExtensiveQuantities& extQuants OPM_UNUSED)
{ return 0.0; }
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage OPM_UNUSED,
const IntensiveQuantities& intQuants OPM_UNUSED,
unsigned phaseIdx OPM_UNUSED)
{}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval, class Scv>
static void addFracturePhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage OPM_UNUSED,
const IntensiveQuantities& intQuants OPM_UNUSED,
const Scv& scv OPM_UNUSED,
unsigned phaseIdx OPM_UNUSED)
{}
/*!
* \brief Add the energy storage term for the fracture part a fluid phase to an
* equation vector
*/
template <class LhsEval>
static void addSolidEnergyStorage(Dune::FieldVector<LhsEval, numEq>& storage OPM_UNUSED,
const IntensiveQuantities& intQuants OPM_UNUSED)
{}
/*!
* \brief Evaluates the advective energy fluxes over a face of a
* subcontrol volume and adds the result in the flux vector.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addAdvectiveFlux(RateVector& flux OPM_UNUSED,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
/*!
* \brief Evaluates the advective energy fluxes over a fracture
* which should be attributed to a face of a subcontrol
* volume and adds the result in the flux vector.
*/
template <class Context>
static void handleFractureFlux(RateVector& flux OPM_UNUSED,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
/*!
* \brief Adds the diffusive energy flux to the flux vector over the face of a
* sub-control volume.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux OPM_UNUSED,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
};
/*!
* \copydoc Opm::EnergyModule
*/
template <class TypeTag>
class EnergyModule<TypeTag, /*enableEnergy=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = FluidSystem::numPhases };
enum { energyEqIdx = Indices::energyEqIdx };
enum { temperatureIdx = Indices::temperatureIdx };
typedef Dune::FieldVector<Evaluation, numEq> EvalEqVector;
typedef Opm::MathToolbox<Evaluation> Toolbox;
public:
/*!
* \brief Register all run-time parameters for the energy module.
*/
static void registerParameters()
{}
/*!
* \brief Returns the name of a primary variable or an empty
* string if the specified primary variable index does not belong to
* the energy module.
*/
static std::string primaryVarName(unsigned pvIdx)
{
if (pvIdx == temperatureIdx)
return "temperature";
return "";
}
/*!
* \brief Returns the name of an equation or an empty
* string if the specified equation index does not belong to
* the energy module.
*/
static std::string eqName(unsigned eqIdx)
{
if (eqIdx == energyEqIdx)
return "energy";
return "";
}
/*!
* \brief Returns the relative weight of a primary variable for
* calculating relative errors.
*/
static Scalar primaryVarWeight(const Model& model, unsigned globalDofIdx, unsigned pvIdx)
{
if (pvIdx != temperatureIdx)
return -1;
// make the weight of the temperature primary variable inversly proportional to its value
return std::max(1.0/1000, 1.0/model.solution(/*timeIdx=*/0)[globalDofIdx][temperatureIdx]);
}
/*!
* \brief Returns the relative weight of a equation.
*/
static Scalar eqWeight(const Model& model OPM_UNUSED,
unsigned globalDofIdx OPM_UNUSED,
unsigned eqIdx)
{
if (eqIdx != energyEqIdx)
return -1;
// approximate change of internal energy of 1kg of liquid water for a temperature
// change of 30K
return 1.0 / (4.184e3 * 30.0);
}
/*!
* \brief Set the rate of energy flux of a rate vector.
*/
static void setEnthalpyRate(RateVector& rateVec, const Evaluation& rate)
{ rateVec[energyEqIdx] = rate; }
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void addToEnthalpyRate(RateVector& rateVec, const Evaluation& rate)
{ rateVec[energyEqIdx] += rate; }
/*!
* \brief Returns the conductive energy flux for a given flux integration point.
*/
static Evaluation thermalConductionRate(const ExtensiveQuantities& extQuants)
{ return -extQuants.temperatureGradNormal() * extQuants.thermalConductivity(); }
/*!
* \brief Given a fluid state, set the enthalpy rate which emerges
* from a volumetric rate.
*/
template <class RateVector, class FluidState>
static void setEnthalpyRate(RateVector& rateVec,
const FluidState& fluidState,
unsigned phaseIdx,
const Evaluation& volume)
{
rateVec[energyEqIdx] =
volume
* fluidState.density(phaseIdx)
* fluidState.enthalpy(phaseIdx);
}
/*!
* \brief Given a fluid state, set the temperature in the primary variables
*/
template <class FluidState>
static void setPriVarTemperatures(PrimaryVariables& priVars,
const FluidState& fs)
{
priVars[temperatureIdx] = Toolbox::value(fs.temperature(/*phaseIdx=*/0));
#ifndef NDEBUG
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
assert(std::abs(Toolbox::value(fs.temperature(/*phaseIdx=*/0))
- Toolbox::value(fs.temperature(phaseIdx))) < 1e-30);
}
#endif
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants,
unsigned phaseIdx)
{
const auto& fs = intQuants.fluidState();
storage[energyEqIdx] +=
Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.internalEnergy(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class Scv, class LhsEval>
static void addFracturePhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants,
const Scv& scv,
unsigned phaseIdx)
{
const auto& fs = intQuants.fractureFluidState();
storage[energyEqIdx] +=
Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.internalEnergy(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.fracturePorosity())
* Toolbox::template decay<LhsEval>(intQuants.fractureVolume())/scv.volume();
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addSolidEnergyStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{ storage[energyEqIdx] += Opm::decay<LhsEval>(intQuants.solidInternalEnergy()); }
/*!
* \brief Evaluates the advective energy fluxes for a flux integration point and adds
* the result in the flux vector.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addAdvectiveFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// advective energy flux in all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!context.model().phaseIsConsidered(phaseIdx))
continue;
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = context.intensiveQuantities(upIdx, timeIdx);
flux[energyEqIdx] +=
extQuants.volumeFlux(phaseIdx)
* up.fluidState().enthalpy(phaseIdx)
* up.fluidState().density(phaseIdx);
}
}
/*!
* \brief Evaluates the advective energy fluxes over a fracture which should be
* attributed to a face of a subcontrol volume and adds the result in the flux
* vector.
*/
template <class Context>
static void handleFractureFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& scvf = context.stencil(timeIdx).interiorFace(spaceIdx);
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// reduce the energy flux in the matrix by the half the width occupied by the
// fracture
flux[energyEqIdx] *=
1 - extQuants.fractureWidth()/(2*scvf.area());
// advective energy flux in all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!context.model().phaseIsConsidered(phaseIdx))
continue;
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = context.intensiveQuantities(upIdx, timeIdx);
flux[energyEqIdx] +=
extQuants.fractureVolumeFlux(phaseIdx)
* up.fluidState().enthalpy(phaseIdx)
* up.fluidState().density(phaseIdx);
}
}
/*!
* \brief Adds the diffusive energy flux to the flux vector over the face of a
* sub-control volume.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// diffusive energy flux
flux[energyEqIdx] +=
- extQuants.temperatureGradNormal()
* extQuants.thermalConductivity();
}
};
/*!
* \ingroup Energy
* \class Opm::EnergyIndices
*
* \brief Provides the indices required for the energy equation.
*/
template <unsigned PVOffset, bool enableEnergy>
struct EnergyIndices;
/*!
* \copydoc Opm::EnergyIndices
*/
template <unsigned PVOffset>
struct EnergyIndices<PVOffset, /*enableEnergy=*/false>
{
//! The index of the primary variable representing temperature
enum { temperatureIdx = -1000 };
//! The index of the equation representing the conservation of energy
enum { energyEqIdx = -1000 };
protected:
enum { numEq_ = 0 };
};
/*!
* \copydoc Opm::EnergyIndices
*/
template <unsigned PVOffset>
struct EnergyIndices<PVOffset, /*enableEnergy=*/true>
{
//! The index of the primary variable representing temperature
enum { temperatureIdx = PVOffset };
//! The index of the equation representing the conservation of energy
enum { energyEqIdx = PVOffset };
protected:
enum { numEq_ = 1 };
};
/*!
* \ingroup Energy
* \class Opm::EnergyIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the energy equation.
*/
template <class TypeTag, bool enableEnergy>
class EnergyIntensiveQuantities;
/*!
* \copydoc Opm::EnergyIntensiveQuantities
*/
template <class TypeTag>
class EnergyIntensiveQuantities<TypeTag, /*enableEnergy=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::MathToolbox<Evaluation> Toolbox;
public:
/*!
* \brief Returns the volumetric internal energy \f$\mathrm{[J/(m^3]}\f$ of the
* solid matrix in the sub-control volume.
*/
Evaluation solidInternalEnergy() const
{
throw std::logic_error("solidInternalEnergy() does not make sense for isothermal models");
}
/*!
* \brief Returns the total thermal conductivity \f$\mathrm{[W/m^2 / (K/m)]}\f$ of
* the solid matrix in the sub-control volume.
*/
Evaluation thermalConductivity() const
{
throw std::logic_error("thermalConductivity() does not make sense for isothermal models");
}
protected:
/*!
* \brief Update the temperatures of the fluids of a fluid state.
*/
template <class FluidState, class Context>
static void updateTemperatures_(FluidState& fluidState,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
Scalar T = context.problem().temperature(context, spaceIdx, timeIdx);
fluidState.setTemperature(Toolbox::createConstant(T));
}
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
template <class FluidState>
void update_(FluidState& fs OPM_UNUSED,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache OPM_UNUSED,
const ElementContext& elemCtx OPM_UNUSED,
unsigned dofIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
};
/*!
* \copydoc Opm::EnergyIntensiveQuantities
*/
template <class TypeTag>
class EnergyIntensiveQuantities<TypeTag, /*enableEnergy=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ThermalConductionLaw) ThermalConductionLaw;
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLaw) SolidEnergyLaw;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numPhases = FluidSystem::numPhases };
enum { energyEqIdx = Indices::energyEqIdx };
enum { temperatureIdx = Indices::temperatureIdx };
typedef Opm::MathToolbox<Evaluation> Toolbox;
protected:
/*!
* \brief Update the temperatures of the fluids of a fluid state.
*/
template <class FluidState, class Context>
static void updateTemperatures_(FluidState& fluidState,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& priVars = context.primaryVars(spaceIdx, timeIdx);
Evaluation val;
if (std::is_same<Evaluation, Scalar>::value) // finite differences
val = Toolbox::createConstant(priVars[temperatureIdx]);
else {
// automatic differentiation
if (timeIdx == 0)
val = Toolbox::createVariable(priVars[temperatureIdx], temperatureIdx);
else
val = Toolbox::createConstant(priVars[temperatureIdx]);
}
fluidState.setTemperature(val);
}
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
template <class FluidState>
void update_(FluidState& fs,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
// set the specific enthalpies of the fluids
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
fs.setEnthalpy(phaseIdx,
FluidSystem::enthalpy(fs, paramCache, phaseIdx));
}
// compute and set the volumetric internal energy of the solid phase
const auto& problem = elemCtx.problem();
const auto& solidEnergyParams = problem.solidEnergyLawParams(elemCtx, dofIdx, timeIdx);
const auto& thermalCondParams = problem.thermalConductionLawParams(elemCtx, dofIdx, timeIdx);
solidInternalEnergy_ = SolidEnergyLaw::solidInternalEnergy(solidEnergyParams, fs);
thermalConductivity_ = ThermalConductionLaw::thermalConductivity(thermalCondParams, fs);
Opm::Valgrind::CheckDefined(solidInternalEnergy_);
Opm::Valgrind::CheckDefined(thermalConductivity_);
}
public:
/*!
* \brief Returns the volumetric internal energy \f$\mathrm{[J/m^3]}\f$ of the
* solid matrix in the sub-control volume.
*/
const Evaluation& solidInternalEnergy() const
{ return solidInternalEnergy_; }
/*!
* \brief Returns the total conductivity capacity \f$\mathrm{[W/m^2 / (K/m)]}\f$ of
* the solid matrix in the sub-control volume.
*/
const Evaluation& thermalConductivity() const
{ return thermalConductivity_; }
private:
Evaluation solidInternalEnergy_;
Evaluation thermalConductivity_;
};
/*!
* \ingroup Energy
* \class Opm::EnergyExtensiveQuantities
*
* \brief Provides the quantities required to calculate energy fluxes.
*/
template <class TypeTag, bool enableEnergy>
class EnergyExtensiveQuantities;
/*!
* \copydoc Opm::EnergyExtensiveQuantities
*/
template <class TypeTag>
class EnergyExtensiveQuantities<TypeTag, /*enableEnergy=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
void update_(const ElementContext& elemCtx OPM_UNUSED,
unsigned faceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
template <class Context, class FluidState>
void updateBoundary_(const Context& context OPM_UNUSED,
unsigned bfIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED,
const FluidState& fs OPM_UNUSED)
{}
public:
/*!
* \brief The temperature gradient times the face normal [K m^2 / m]
*/
Scalar temperatureGradNormal() const
{
throw std::logic_error("Calling temperatureGradNormal() does not make sense "
"for isothermal models");
}
/*!
* \brief The total thermal conductivity at the face \f$\mathrm{[W/m^2 / (K/m)]}\f$
*/
Scalar thermalConductivity() const
{
throw std::logic_error("Calling thermalConductivity() does not make sense for "
"isothermal models");
}
};
/*!
* \copydoc Opm::EnergyExtensiveQuantities
*/
template <class TypeTag>
class EnergyExtensiveQuantities<TypeTag, /*enableEnergy=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
enum { dimWorld = GridView::dimensionworld };
typedef Dune::FieldVector<Evaluation, dimWorld> EvalDimVector;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
protected:
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
void update_(const ElementContext& elemCtx, unsigned faceIdx, unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::TemperatureCallback<TypeTag> temperatureCallback(elemCtx);
EvalDimVector temperatureGrad;
gradCalc.calculateGradient(temperatureGrad,
elemCtx,
faceIdx,
temperatureCallback);
// scalar product of temperature gradient and scvf normal
const auto& face = elemCtx.stencil(/*timeIdx=*/0).interiorFace(faceIdx);
temperatureGradNormal_ = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
temperatureGradNormal_ += (face.normal()[dimIdx]*temperatureGrad[dimIdx]);
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, timeIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(extQuants.interiorIndex(), timeIdx);
const auto& intQuantsOutside = elemCtx.intensiveQuantities(extQuants.exteriorIndex(), timeIdx);
// arithmetic mean
thermalConductivity_ =
0.5 * (intQuantsInside.thermalConductivity() + intQuantsOutside.thermalConductivity());
Opm::Valgrind::CheckDefined(thermalConductivity_);
}
template <class Context, class FluidState>
void updateBoundary_(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fs)
{
const auto& stencil = context.stencil(timeIdx);
const auto& face = stencil.boundaryFace(bfIdx);
const auto& elemCtx = context.elementContext();
unsigned insideScvIdx = face.interiorIndex();
const auto& insideScv = elemCtx.stencil(timeIdx).subControlVolume(insideScvIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(insideScvIdx, timeIdx);
const auto& fsInside = intQuantsInside.fluidState();
// distance between the center of the SCV and center of the boundary face
DimVector distVec = face.integrationPos();
distVec -= insideScv.geometry().center();
Scalar tmp = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
tmp += distVec[dimIdx] * face.normal()[dimIdx];
Scalar dist = tmp;
// if the following assertation triggers, the center of the
// center of the interior SCV was not inside the element!
assert(dist > 0);
// calculate the temperature gradient using two-point gradient
// appoximation
temperatureGradNormal_ =
(fs.temperature(/*phaseIdx=*/0) - fsInside.temperature(/*phaseIdx=*/0)) / dist;
// take the value for thermal conductivity from the interior finite volume
thermalConductivity_ = intQuantsInside.thermalConductivity();
}
public:
/*!
* \brief The temperature gradient times the face normal [K m^2 / m]
*/
const Evaluation& temperatureGradNormal() const
{ return temperatureGradNormal_; }
/*!
* \brief The total thermal conductivity at the face \f$\mathrm{[W/m^2 /
* (K/m)]}\f$
*/
const Evaluation& thermalConductivity() const
{ return thermalConductivity_; }
private:
Evaluation temperatureGradNormal_;
Evaluation thermalConductivity_;
};
} // namespace Opm
#endif

35
opm/models/common/flux.hh Normal file
View File

@ -0,0 +1,35 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the necessary classes to calculate the
* velocity out of a pressure potential gradient.
*/
#ifndef EWOMS_VELOCITY_MODULES_HH
#define EWOMS_VELOCITY_MODULES_HH
#include <opm/models/common/darcyfluxmodule.hh>
#include <opm/models/common/forchheimerfluxmodule.hh>
#endif

View File

@ -0,0 +1,583 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the necessary classes to calculate the
* volumetric fluxes out of a pressure potential gradient using the
* Forchhheimer approach.
*/
#ifndef EWOMS_FORCHHEIMER_FLUX_MODULE_HH
#define EWOMS_FORCHHEIMER_FLUX_MODULE_HH
#include "darcyfluxmodule.hh"
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <cmath>
BEGIN_PROPERTIES
NEW_PROP_TAG(MaterialLaw);
END_PROPERTIES
namespace Opm {
template <class TypeTag>
class ForchheimerIntensiveQuantities;
template <class TypeTag>
class ForchheimerExtensiveQuantities;
template <class TypeTag>
class ForchheimerBaseProblem;
/*!
* \ingroup FluxModules
* \brief Specifies a flux module which uses the Forchheimer relation.
*/
template <class TypeTag>
struct ForchheimerFluxModule
{
typedef ForchheimerIntensiveQuantities<TypeTag> FluxIntensiveQuantities;
typedef ForchheimerExtensiveQuantities<TypeTag> FluxExtensiveQuantities;
typedef ForchheimerBaseProblem<TypeTag> FluxBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{}
};
/*!
* \ingroup FluxModules
* \brief Provides the defaults for the parameters required by the
* Forchheimer velocity approach.
*/
template <class TypeTag>
class ForchheimerBaseProblem
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
public:
/*!
* \brief Returns the Ergun coefficient.
*
* The Ergun coefficient is a measure how much the velocity is
* reduced by turbolence. It is a quantity that does not depend on
* the fluid phase but only on the porous medium in question. A
* value of 0 means that the velocity is not influenced by
* turbolence.
*/
template <class Context>
Scalar ergunCoefficient(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::ergunCoefficient()");
}
/*!
* \brief Returns the ratio between the phase mobility
* \f$k_{r,\alpha}\f$ and its passability
* \f$\eta_{r,\alpha}\f$ for a given fluid phase
* \f$\alpha\f$.
*
* The passability coefficient specifies the influence of the
* other fluid phases on the turbolent behaviour of a given fluid
* phase. By default it is equal to the relative permeability. The
* mobility to passability ratio is the inverse of phase' the viscosity.
*/
template <class Context>
Evaluation mobilityPassabilityRatio(Context& context,
unsigned spaceIdx,
unsigned timeIdx,
unsigned phaseIdx) const
{
return 1.0 / context.intensiveQuantities(spaceIdx, timeIdx).fluidState().viscosity(phaseIdx);
}
};
/*!
* \ingroup FluxModules
* \brief Provides the intensive quantities for the Forchheimer module
*/
template <class TypeTag>
class ForchheimerIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
public:
/*!
* \brief Returns the Ergun coefficient.
*
* The Ergun coefficient is a measure how much the velocity is
* reduced by turbolence. A value of 0 means that it is not
* influenced.
*/
const Evaluation& ergunCoefficient() const
{ return ergunCoefficient_; }
/*!
* \brief Returns the passability of a phase.
*/
const Evaluation& mobilityPassabilityRatio(unsigned phaseIdx) const
{ return mobilityPassabilityRatio_[phaseIdx]; }
protected:
void update_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
const auto& problem = elemCtx.problem();
ergunCoefficient_ = problem.ergunCoefficient(elemCtx, dofIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
mobilityPassabilityRatio_[phaseIdx] =
problem.mobilityPassabilityRatio(elemCtx,
dofIdx,
timeIdx,
phaseIdx);
}
private:
Evaluation ergunCoefficient_;
Evaluation mobilityPassabilityRatio_[numPhases];
};
/*!
* \ingroup FluxModules
* \brief Provides the Forchheimer flux module
*
* The commonly used Darcy relation looses its validity for Reynolds numbers \f$ Re <
* 1\f$. If one encounters flow velocities in porous media above this threshold, the
* Forchheimer approach can be used. Like the Darcy approach, it is a relation of with
* the fluid velocity in terms of the gradient of pressure potential. However, this
* relation is not linear (as in the Darcy case) any more.
*
* Therefore, the Newton scheme is used to solve the Forchheimer equation. This velocity
* is then used like the Darcy velocity e.g. by the local residual.
*
* Note that for Reynolds numbers above \f$\approx 500\f$ the standard Forchheimer
* relation also looses it's validity.
*
* The Forchheimer equation is given by the following relation:
*
* \f[
\nabla p_\alpha - \rho_\alpha \vec{g} =
- \frac{\mu_\alpha}{k_{r,\alpha}} K^{-1}\vec{v}_\alpha
- \frac{\rho_\alpha C_E}{\eta_{r,\alpha}} \sqrt{K}^{-1}
\left| \vec{v}_\alpha \right| \vec{v}_\alpha
\f]
*
* Where \f$C_E\f$ is the modified Ergun parameter and \f$\eta_{r,\alpha}\f$ is the
* passability which is given by a closure relation (usually it is assumed to be
* identical to the relative permeability). To avoid numerical problems, the relation
* implemented by this class multiplies both sides with \f$\frac{k_{r_alpha}}{mu} K\f$,
* so we get
*
* \f[
\frac{k_{r_alpha}}{mu} K \left( \nabla p_\alpha - \rho_\alpha \vec{g}\right) =
- \vec{v}_\alpha
- \frac{\rho_\alpha C_E}{\eta_{r,\alpha}} \frac{k_{r_alpha}}{mu} \sqrt{K}
\left| \vec{v}_\alpha \right| \vec{v}_\alpha
\f]
*/
template <class TypeTag>
class ForchheimerExtensiveQuantities
: public DarcyExtensiveQuantities<TypeTag>
{
typedef DarcyExtensiveQuantities<TypeTag> DarcyExtQuants;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldVector<Evaluation, dimWorld> DimEvalVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef Dune::FieldMatrix<Evaluation, dimWorld, dimWorld> DimEvalMatrix;
public:
/*!
* \brief Return the Ergun coefficent at the face's integration point.
*/
const Evaluation& ergunCoefficient() const
{ return ergunCoefficient_; }
/*!
* \brief Return the ratio of the mobility divided by the passability at the face's
* integration point for a given fluid phase.
*
* Usually, that's the inverse of the viscosity.
*/
Evaluation& mobilityPassabilityRatio(unsigned phaseIdx) const
{ return mobilityPassabilityRatio_[phaseIdx]; }
protected:
void calculateGradients_(const ElementContext& elemCtx,
unsigned faceIdx,
unsigned timeIdx)
{
DarcyExtQuants::calculateGradients_(elemCtx, faceIdx, timeIdx);
auto focusDofIdx = elemCtx.focusDofIndex();
unsigned i = static_cast<unsigned>(this->interiorDofIdx_);
unsigned j = static_cast<unsigned>(this->exteriorDofIdx_);
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx);
// calculate the square root of the intrinsic permeability
assert(isDiagonal_(this->K_));
sqrtK_ = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
sqrtK_[dimIdx] = std::sqrt(this->K_[dimIdx][dimIdx]);
// obtain the Ergun coefficient. Lacking better ideas, we use its the arithmetic mean.
if (focusDofIdx == i) {
ergunCoefficient_ =
(intQuantsIn.ergunCoefficient() +
Opm::getValue(intQuantsEx.ergunCoefficient()))/2;
}
else if (focusDofIdx == j)
ergunCoefficient_ =
(Opm::getValue(intQuantsIn.ergunCoefficient()) +
intQuantsEx.ergunCoefficient())/2;
else
ergunCoefficient_ =
(Opm::getValue(intQuantsIn.ergunCoefficient()) +
Opm::getValue(intQuantsEx.ergunCoefficient()))/2;
// obtain the mobility to passability ratio for each phase.
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
unsigned upIdx = static_cast<unsigned>(this->upstreamIndex_(phaseIdx));
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (focusDofIdx == upIdx) {
density_[phaseIdx] =
up.fluidState().density(phaseIdx);
mobilityPassabilityRatio_[phaseIdx] =
up.mobilityPassabilityRatio(phaseIdx);
}
else {
density_[phaseIdx] =
Opm::getValue(up.fluidState().density(phaseIdx));
mobilityPassabilityRatio_[phaseIdx] =
Opm::getValue(up.mobilityPassabilityRatio(phaseIdx));
}
}
}
template <class FluidState>
void calculateBoundaryGradients_(const ElementContext& elemCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
DarcyExtQuants::calculateBoundaryGradients_(elemCtx,
boundaryFaceIdx,
timeIdx,
fluidState);
auto focusDofIdx = elemCtx.focusDofIndex();
unsigned i = static_cast<unsigned>(this->interiorDofIdx_);
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
// obtain the Ergun coefficient. Because we are on the boundary here, we will
// take the Ergun coefficient of the interior
if (focusDofIdx == i)
ergunCoefficient_ = intQuantsIn.ergunCoefficient();
else
ergunCoefficient_ = Opm::getValue(intQuantsIn.ergunCoefficient());
// calculate the square root of the intrinsic permeability
assert(isDiagonal_(this->K_));
sqrtK_ = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
sqrtK_[dimIdx] = std::sqrt(this->K_[dimIdx][dimIdx]);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
if (focusDofIdx == i) {
density_[phaseIdx] = intQuantsIn.fluidState().density(phaseIdx);
mobilityPassabilityRatio_[phaseIdx] = intQuantsIn.mobilityPassabilityRatio(phaseIdx);
}
else {
density_[phaseIdx] =
Opm::getValue(intQuantsIn.fluidState().density(phaseIdx));
mobilityPassabilityRatio_[phaseIdx] =
Opm::getValue(intQuantsIn.mobilityPassabilityRatio(phaseIdx));
}
}
}
/*!
* \brief Calculate the volumetric fluxes of all phases
*
* The pressure potentials and upwind directions must already be
* determined before calling this method!
*/
void calculateFluxes_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
auto focusDofIdx = elemCtx.focusDofIndex();
auto i = asImp_().interiorIndex();
auto j = asImp_().exteriorIndex();
const auto& intQuantsI = elemCtx.intensiveQuantities(i, timeIdx);
const auto& intQuantsJ = elemCtx.intensiveQuantities(j, timeIdx);
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
const auto& normal = scvf.normal();
Opm::Valgrind::CheckDefined(normal);
// obtain the Ergun coefficient from the intensive quantity object. Until a
// better method comes along, we use arithmetic averaging.
if (focusDofIdx == i)
ergunCoefficient_ =
(intQuantsI.ergunCoefficient() +
Opm::getValue(intQuantsJ.ergunCoefficient())) / 2;
else if (focusDofIdx == j)
ergunCoefficient_ =
(Opm::getValue(intQuantsI.ergunCoefficient()) +
intQuantsJ.ergunCoefficient()) / 2;
else
ergunCoefficient_ =
(Opm::getValue(intQuantsI.ergunCoefficient()) +
Opm::getValue(intQuantsJ.ergunCoefficient())) / 2;
///////////////
// calculate the weights of the upstream and the downstream control volumes
///////////////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
this->filterVelocity_[phaseIdx] = 0.0;
this->volumeFlux_[phaseIdx] = 0.0;
continue;
}
calculateForchheimerFlux_(phaseIdx);
this->volumeFlux_[phaseIdx] = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++ dimIdx)
this->volumeFlux_[phaseIdx] +=
this->filterVelocity_[phaseIdx][dimIdx]*normal[dimIdx];
}
}
/*!
* \brief Calculate the volumetric flux rates of all phases at the domain boundary
*/
void calculateBoundaryFluxes_(const ElementContext& elemCtx,
unsigned bfIdx,
unsigned timeIdx)
{
const auto& boundaryFace = elemCtx.stencil(timeIdx).boundaryFace(bfIdx);
const auto& normal = boundaryFace.normal();
///////////////
// calculate the weights of the upstream and the downstream degrees of freedom
///////////////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
this->filterVelocity_[phaseIdx] = 0.0;
this->volumeFlux_[phaseIdx] = 0.0;
continue;
}
calculateForchheimerFlux_(phaseIdx);
this->volumeFlux_[phaseIdx] = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
this->volumeFlux_[phaseIdx] +=
this->filterVelocity_[phaseIdx][dimIdx]*normal[dimIdx];
}
}
void calculateForchheimerFlux_(unsigned phaseIdx)
{
// initial guess: filter velocity is zero
DimEvalVector& velocity = this->filterVelocity_[phaseIdx];
velocity = 0.0;
// the change of velocity between two consecutive Newton iterations
DimEvalVector deltaV(1e5);
// the function value that is to be minimized of the equation that is to be
// fulfilled
DimEvalVector residual;
// derivative of equation that is to be solved
DimEvalMatrix gradResid;
// search by means of the Newton method for a root of Forchheimer equation
unsigned newtonIter = 0;
while (deltaV.one_norm() > 1e-11) {
if (newtonIter >= 50)
throw Opm::NumericalIssue("Could not determine Forchheimer velocity within "
+std::to_string(newtonIter)+" iterations");
++newtonIter;
// calculate the residual and its Jacobian matrix
gradForchheimerResid_(residual, gradResid, phaseIdx);
// newton method
gradResid.solve(deltaV, residual);
velocity -= deltaV;
}
}
void forchheimerResid_(DimEvalVector& residual, unsigned phaseIdx) const
{
const DimEvalVector& velocity = this->filterVelocity_[phaseIdx];
// Obtaining the upstreamed quantities
const auto& mobility = this->mobility_[phaseIdx];
const auto& density = density_[phaseIdx];
const auto& mobilityPassabilityRatio = mobilityPassabilityRatio_[phaseIdx];
// optain the quantites for the integration point
const auto& pGrad = this->potentialGrad_[phaseIdx];
// residual = v_\alpha
residual = velocity;
// residual += mobility_\alpha K(\grad p_\alpha - \rho_\alpha g)
// -> this->K_.usmv(mobility, pGrad, residual);
assert(isDiagonal_(this->K_));
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++ dimIdx)
residual[dimIdx] += mobility*pGrad[dimIdx]*this->K_[dimIdx][dimIdx];
// Forchheimer turbulence correction:
//
// residual +=
// \rho_\alpha
// * mobility_\alpha
// * C_E / \eta_{r,\alpha}
// * abs(v_\alpha) * sqrt(K)*v_\alpha
//
// -> sqrtK_.usmv(density*mobilityPassabilityRatio*ergunCoefficient_*velocity.two_norm(),
// velocity,
// residual);
Evaluation absVel = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
absVel += velocity[dimIdx]*velocity[dimIdx];
// the derivatives of the square root of 0 are undefined, so we must guard
// against this case
if (absVel <= 0.0)
absVel = 0.0;
else
absVel = Toolbox::sqrt(absVel);
const auto& alpha = density*mobilityPassabilityRatio*ergunCoefficient_*absVel;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
residual[dimIdx] += sqrtK_[dimIdx]*alpha*velocity[dimIdx];
Opm::Valgrind::CheckDefined(residual);
}
void gradForchheimerResid_(DimEvalVector& residual,
DimEvalMatrix& gradResid,
unsigned phaseIdx)
{
// TODO (?) use AD for this.
DimEvalVector& velocity = this->filterVelocity_[phaseIdx];
forchheimerResid_(residual, phaseIdx);
Scalar eps = 1e-11;
DimEvalVector tmp;
for (unsigned i = 0; i < dimWorld; ++i) {
Scalar coordEps = std::max(eps, Toolbox::scalarValue(velocity[i]) * (1 + eps));
velocity[i] += coordEps;
forchheimerResid_(tmp, phaseIdx);
tmp -= residual;
tmp /= coordEps;
gradResid[i] = tmp;
velocity[i] -= coordEps;
}
}
/*!
* \brief Check whether all off-diagonal entries of a tensor are zero.
*
* \param K the tensor that is to be checked.
* \return True iff all off-diagonals are zero.
*
*/
bool isDiagonal_(const DimMatrix& K) const
{
for (unsigned i = 0; i < dimWorld; i++) {
for (unsigned j = 0; j < dimWorld; j++) {
if (i == j)
continue;
if (std::abs(K[i][j]) > 1e-25)
return false;
}
}
return true;
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
protected:
// intrinsic permeability tensor and its square root
DimVector sqrtK_;
// Ergun coefficient of all phases at the integration point
Evaluation ergunCoefficient_;
// Passability of all phases at the integration point
Evaluation mobilityPassabilityRatio_[numPhases];
// Density of all phases at the integration point
Evaluation density_[numPhases];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,177 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::MultiPhaseBaseExtensiveQuantities
*/
#ifndef EWOMS_MULTI_PHASE_BASE_EXTENSIVE_QUANTITIES_HH
#define EWOMS_MULTI_PHASE_BASE_EXTENSIVE_QUANTITIES_HH
#include "multiphasebaseproperties.hh"
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/models/discretization/common/fvbaseextensivequantities.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <dune/common/fvector.hh>
namespace Opm {
/*!
* \ingroup Discretization
*
* \brief This class calculates the pressure potential gradients and
* the filter velocities for multi-phase flow in porous media
*/
template <class TypeTag>
class MultiPhaseBaseExtensiveQuantities
: public GET_PROP_TYPE(TypeTag, DiscExtensiveQuantities)
, public GET_PROP_TYPE(TypeTag, FluxModule)::FluxExtensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, DiscExtensiveQuantities) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef typename GET_PROP_TYPE(TypeTag, FluxModule) FluxModule;
typedef typename FluxModule::FluxExtensiveQuantities FluxExtensiveQuantities;
public:
/*!
* \brief Register all run-time parameters for the extensive quantities.
*/
static void registerParameters()
{
FluxModule::registerParameters();
}
/*!
* \brief Update the extensive quantities for a given sub-control-volume-face.
*
* \param elemCtx Reference to the current element context.
* \param scvfIdx The local index of the sub-control-volume face for
* which the extensive quantities should be calculated.
* \param timeIdx The index used by the time discretization.
*/
void update(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, scvfIdx, timeIdx);
// compute the pressure potential gradients
FluxExtensiveQuantities::calculateGradients_(elemCtx, scvfIdx, timeIdx);
// Check whether the pressure potential is in the same direction as the face
// normal or in the opposite one
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(upstreamScvIdx_[phaseIdx]);
Opm::Valgrind::SetUndefined(downstreamScvIdx_[phaseIdx]);
continue;
}
upstreamScvIdx_[phaseIdx] = FluxExtensiveQuantities::upstreamIndex_(phaseIdx);
downstreamScvIdx_[phaseIdx] = FluxExtensiveQuantities::downstreamIndex_(phaseIdx);
}
FluxExtensiveQuantities::calculateFluxes_(elemCtx, scvfIdx, timeIdx);
}
/*!
* \brief Update the extensive quantities for a given boundary face.
*
* \param context Reference to the current execution context.
* \param bfIdx The local index of the boundary face for which
* the extensive quantities should be calculated.
* \param timeIdx The index used by the time discretization.
* \param fluidState The FluidState on the domain boundary.
* \param paramCache The FluidSystem's parameter cache.
*/
template <class Context, class FluidState>
void updateBoundary(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
ParentType::updateBoundary(context, bfIdx, timeIdx, fluidState);
FluxExtensiveQuantities::calculateBoundaryGradients_(context.elementContext(),
bfIdx,
timeIdx,
fluidState);
FluxExtensiveQuantities::calculateBoundaryFluxes_(context.elementContext(),
bfIdx,
timeIdx);
}
/*!
* \brief Return the local index of the upstream control volume for a given phase as
* a function of the normal flux.
*
* \param phaseIdx The index of the fluid phase for which the upstream
* direction is requested.
*/
short upstreamIndex(unsigned phaseIdx) const
{ return upstreamScvIdx_[phaseIdx]; }
/*!
* \brief Return the local index of the downstream control volume
* for a given phase as a function of the normal flux.
*
* \param phaseIdx The index of the fluid phase for which the downstream
* direction is requested.
*/
short downstreamIndex(unsigned phaseIdx) const
{ return downstreamScvIdx_[phaseIdx]; }
/*!
* \brief Return the weight of the upstream control volume
* for a given phase as a function of the normal flux.
*
* \param phaseIdx The index of the fluid phase
*/
Scalar upstreamWeight(unsigned phaseIdx OPM_UNUSED) const
{ return 1.0; }
/*!
* \brief Return the weight of the downstream control volume
* for a given phase as a function of the normal flux.
*
* \param phaseIdx The index of the fluid phase
*/
Scalar downstreamWeight(unsigned phaseIdx) const
{ return 1.0 - upstreamWeight(phaseIdx); }
private:
short upstreamScvIdx_[numPhases];
short downstreamScvIdx_[numPhases];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,253 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::MultiPhaseBaseModel
*/
#ifndef EWOMS_MULTI_PHASE_BASE_MODEL_HH
#define EWOMS_MULTI_PHASE_BASE_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "multiphasebaseproperties.hh"
#include "multiphasebaseproblem.hh"
#include "multiphasebaseextensivequantities.hh"
#include <opm/models/common/flux.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/thermal/NullThermalConductionLaw.hpp>
#include <opm/material/thermal/NullSolidEnergyLaw.hpp>
#include <opm/material/common/Unused.hpp>
namespace Opm {
template <class TypeTag>
class MultiPhaseBaseModel;
}
BEGIN_PROPERTIES
//! The generic type tag for problems using the immiscible multi-phase model
NEW_TYPE_TAG(MultiPhaseBaseModel, INHERITS_FROM(VtkMultiPhase, VtkTemperature));
//! Specify the splices of the MultiPhaseBaseModel type tag
SET_SPLICES(MultiPhaseBaseModel, SpatialDiscretizationSplice);
//! Set the default spatial discretization
//!
//! We use a vertex centered finite volume method by default
SET_TAG_PROP(MultiPhaseBaseModel, SpatialDiscretizationSplice, VcfvDiscretization);
//! set the number of equations to the number of phases
SET_INT_PROP(MultiPhaseBaseModel, NumEq, GET_PROP_TYPE(TypeTag, Indices)::numEq);
//! The number of phases is determined by the fluid system
SET_INT_PROP(MultiPhaseBaseModel, NumPhases, GET_PROP_TYPE(TypeTag, FluidSystem)::numPhases);
//! Number of chemical species in the system
SET_INT_PROP(MultiPhaseBaseModel, NumComponents, GET_PROP_TYPE(TypeTag, FluidSystem)::numComponents);
//! The type of the base base class for actual problems
SET_TYPE_PROP(MultiPhaseBaseModel, BaseProblem, Opm::MultiPhaseBaseProblem<TypeTag>);
//! By default, use the Darcy relation to determine the phase velocity
SET_TYPE_PROP(MultiPhaseBaseModel, FluxModule, Opm::DarcyFluxModule<TypeTag>);
/*!
* \brief Set the material law to the null law by default.
*/
SET_PROP(MultiPhaseBaseModel, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::NullMaterialTraits<Scalar, FluidSystem::numPhases> Traits;
public:
typedef Opm::NullMaterial<Traits> type;
};
/*!
* \brief Set the property for the material parameters by extracting
* it from the material law.
*/
SET_TYPE_PROP(MultiPhaseBaseModel,
MaterialLawParams,
typename GET_PROP_TYPE(TypeTag, MaterialLaw)::Params);
//! set the energy storage law for the solid to the one which assumes zero heat capacity
//! by default
SET_TYPE_PROP(MultiPhaseBaseModel,
SolidEnergyLaw,
Opm::NullSolidEnergyLaw<typename GET_PROP_TYPE(TypeTag, Scalar)>);
//! extract the type of the parameter objects for the solid energy storage law from the
//! law itself
SET_TYPE_PROP(MultiPhaseBaseModel,
SolidEnergyLawParams,
typename GET_PROP_TYPE(TypeTag, SolidEnergyLaw)::Params);
//! set the thermal conduction law to a dummy one by default
SET_TYPE_PROP(MultiPhaseBaseModel,
ThermalConductionLaw,
Opm::NullThermalConductionLaw<typename GET_PROP_TYPE(TypeTag, Scalar)>);
//! extract the type of the parameter objects for the thermal conduction law from the law
//! itself
SET_TYPE_PROP(MultiPhaseBaseModel,
ThermalConductionLawParams,
typename GET_PROP_TYPE(TypeTag, ThermalConductionLaw)::Params);
//! disable gravity by default
SET_BOOL_PROP(MultiPhaseBaseModel, EnableGravity, false);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup MultiPhaseBaseModel
* \brief A base class for fully-implicit multi-phase porous-media flow models
* which assume multiple fluid phases.
*/
template <class TypeTag>
class MultiPhaseBaseModel : public GET_PROP_TYPE(TypeTag, Discretization)
{
typedef typename GET_PROP_TYPE(TypeTag, Discretization) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Model) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ThreadManager) ThreadManager;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
typedef typename GridView::template Codim<0>::Entity Element;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = FluidSystem::numComponents };
public:
MultiPhaseBaseModel(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
// register runtime parameters of the VTK output modules
Opm::VtkMultiPhaseModule<TypeTag>::registerParameters();
Opm::VtkTemperatureModule<TypeTag>::registerParameters();
}
/*!
* \brief Returns true iff a fluid phase is used by the model.
*
* \param phaseIdx The index of the fluid phase in question
*/
bool phaseIsConsidered(unsigned phaseIdx OPM_UNUSED) const
{ return true; }
/*!
* \brief Compute the total storage inside one phase of all
* conservation quantities.
*
* \copydetails Doxygen::storageParam
* \copydetails Doxygen::phaseIdxParam
*/
void globalPhaseStorage(EqVector& storage, unsigned phaseIdx)
{
assert(0 <= phaseIdx && phaseIdx < numPhases);
storage = 0;
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(this->gridView());
std::mutex mutex;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// Attention: the variables below are thread specific and thus cannot be
// moved in front of the #pragma!
unsigned threadId = ThreadManager::threadId();
ElementContext elemCtx(this->simulator_);
ElementIterator elemIt = threadedElemIt.beginParallel();
EqVector tmp;
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue; // ignore ghost and overlap elements
elemCtx.updateStencil(elem);
elemCtx.updateIntensiveQuantities(/*timeIdx=*/0);
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numDof(/*timeIdx=*/0); ++dofIdx) {
const auto& scv = stencil.subControlVolume(dofIdx);
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
tmp = 0;
this->localResidual(threadId).addPhaseStorage(tmp,
elemCtx,
dofIdx,
/*timeIdx=*/0,
phaseIdx);
tmp *= scv.volume()*intQuants.extrusionFactor();
mutex.lock();
storage += tmp;
mutex.unlock();
}
}
}
storage = this->gridView_.comm().sum(storage);
}
void registerOutputModules_()
{
ParentType::registerOutputModules_();
// add the VTK output modules which make sense for all multi-phase models
this->addOutputModule(new Opm::VtkMultiPhaseModule<TypeTag>(this->simulator_));
this->addOutputModule(new Opm::VtkTemperatureModule<TypeTag>(this->simulator_));
}
private:
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,409 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::MultiPhaseBaseProblem
*/
#ifndef EWOMS_MULTI_PHASE_BASE_PROBLEM_HH
#define EWOMS_MULTI_PHASE_BASE_PROBLEM_HH
#include "multiphasebaseproperties.hh"
#include <opm/models/discretization/common/fvbaseproblem.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/common/Means.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
BEGIN_PROPERTIES
NEW_PROP_TAG(SolidEnergyLawParams);
NEW_PROP_TAG(ThermalConductionLawParams);
NEW_PROP_TAG(EnableGravity);
NEW_PROP_TAG(FluxModule);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup Discretization
*
* \brief The base class for the problems of ECFV discretizations which deal
* with a multi-phase flow through a porous medium.
*/
template<class TypeTag>
class MultiPhaseBaseProblem
: public FvBaseProblem<TypeTag>
, public GET_PROP_TYPE(TypeTag, FluxModule)::FluxBaseProblem
{
//! \cond SKIP_THIS
typedef Opm::FvBaseProblem<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLawParams) SolidEnergyLawParams;
typedef typename GET_PROP_TYPE(TypeTag, ThermalConductionLawParams) ThermalConductionLawParams;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw)::Params MaterialLawParams;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
//! \endcond
public:
/*!
* \copydoc Problem::FvBaseProblem(Simulator& )
*/
MultiPhaseBaseProblem(Simulator& simulator)
: ParentType(simulator)
{ init_(); }
/*!
* \brief Register all run-time parameters for the problem and the model.
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableGravity,
"Use the gravity correction for the pressure gradients.");
}
/*!
* \brief Returns the intrinsic permeability of an intersection.
*
* This method is specific to the finite volume discretizations. If left unspecified,
* it calls the intrinsicPermeability() method for the intersection's interior and
* exterior finite volumes and averages them harmonically. Note that if this function
* is defined, the intrinsicPermeability() method does not need to be defined by the
* problem (if a finite-volume discretization is used).
*/
template <class Context>
void intersectionIntrinsicPermeability(DimMatrix& result,
const Context& context,
unsigned intersectionIdx,
unsigned timeIdx) const
{
const auto& scvf = context.stencil(timeIdx).interiorFace(intersectionIdx);
const DimMatrix& K1 = asImp_().intrinsicPermeability(context, scvf.interiorIndex(), timeIdx);
const DimMatrix& K2 = asImp_().intrinsicPermeability(context, scvf.exteriorIndex(), timeIdx);
// entry-wise harmonic mean. this is almost certainly wrong if
// you have off-main diagonal entries in your permeabilities!
for (unsigned i = 0; i < dimWorld; ++i)
for (unsigned j = 0; j < dimWorld; ++j)
result[i][j] = Opm::harmonicMean(K1[i][j], K2[i][j]);
}
/*!
* \name Problem parameters
*/
// \{
/*!
* \brief Returns the intrinsic permeability tensor \f$[m^2]\f$ at a given position
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::intrinsicPermeability()");
}
/*!
* \brief Returns the porosity [] of the porous medium for a given
* control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar porosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::porosity()");
}
/*!
* \brief Returns the parameter object for the energy storage law of the solid in a
* sub-control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::solidEnergyParams()");
}
/*!
* \brief Returns the parameter object for the thermal conductivity law in a
* sub-control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const ThermalConductionLawParams&
thermalConductionParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::thermalConductionParams()");
}
/*!
* \brief Define the tortuosity.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar tortuosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::tortuosity()");
}
/*!
* \brief Define the dispersivity.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar dispersivity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::dispersivity()");
}
/*!
* \brief Returns the material law parameters \f$\mathrm{[K]}\f$ within a control volume.
*
* If you get a compiler error at this method, you set the
* MaterialLaw property to something different than
* Opm::NullMaterialLaw. In this case, you have to overload the
* matererialLaw() method in the derived class!
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const MaterialLawParams &
materialLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
static MaterialLawParams dummy;
return dummy;
}
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ within a control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return asImp_().temperature(); }
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ for an isothermal problem.
*
* This is not specific to the discretization. By default it just
* throws an exception so it must be overloaded by the problem if
* no energy equation is to be used.
*/
Scalar temperature() const
{ throw std::logic_error("Not implemented:temperature() method not implemented by the actual problem"); }
/*!
* \brief Returns the acceleration due to gravity \f$\mathrm{[m/s^2]}\f$.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const DimVector& gravity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return asImp_().gravity(); }
/*!
* \brief Returns the acceleration due to gravity \f$\mathrm{[m/s^2]}\f$.
*
* This method is used for problems where the gravitational
* acceleration does not depend on the spatial position. The
* default behaviour is that if the <tt>EnableGravity</tt>
* property is true, \f$\boldsymbol{g} = ( 0,\dots,\ -9.81)^T \f$ holds,
* else \f$\boldsymbol{g} = ( 0,\dots, 0)^T \f$.
*/
const DimVector& gravity() const
{ return gravity_; }
/*!
* \brief Mark grid cells for refinement or coarsening
*
* \return The number of elements marked for refinement or coarsening.
*/
unsigned markForGridAdaptation()
{
typedef Opm::MathToolbox<Evaluation> Toolbox;
unsigned numMarked = 0;
ElementContext elemCtx( this->simulator() );
auto gridView = this->simulator().vanguard().gridView();
auto& grid = this->simulator().vanguard().grid();
auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
auto elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (; elemIt != elemEndIt; ++elemIt)
{
const auto& element = *elemIt ;
elemCtx.updateAll( element );
// HACK: this should better be part of an AdaptionCriterion class
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar minSat = 1e100 ;
Scalar maxSat = -1e100;
size_t nDofs = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < nDofs; ++dofIdx)
{
const auto& intQuant = elemCtx.intensiveQuantities( dofIdx, /*timeIdx=*/0 );
minSat = std::min(minSat,
Toolbox::value(intQuant.fluidState().saturation(phaseIdx)));
maxSat = std::max(maxSat,
Toolbox::value(intQuant.fluidState().saturation(phaseIdx)));
}
const Scalar indicator =
(maxSat - minSat)/(std::max<Scalar>(0.01, maxSat+minSat)/2);
if( indicator > 0.2 && element.level() < 2 ) {
grid.mark( 1, element );
++ numMarked;
}
else if ( indicator < 0.025 ) {
grid.mark( -1, element );
++ numMarked;
}
else
{
grid.mark( 0, element );
}
}
}
// get global sum so that every proc is on the same page
numMarked = this->simulator().vanguard().grid().comm().sum( numMarked );
return numMarked;
}
// \}
protected:
/*!
* \brief Converts a Scalar value to an isotropic Tensor
*
* This is convenient e.g. for specifying intrinsic permebilities:
* \code{.cpp}
* auto permTensor = this->toDimMatrix_(1e-12);
* \endcode
*
* \param val The scalar value which should be expressed as a tensor
*/
DimMatrix toDimMatrix_(Scalar val) const
{
DimMatrix ret(0.0);
for (unsigned i = 0; i < DimMatrix::rows; ++i)
ret[i][i] = val;
return ret;
}
DimVector gravity_;
private:
//! Returns the implementation of the problem (i.e. static polymorphism)
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
//! \copydoc asImp_()
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
void init_()
{
gravity_ = 0.0;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
gravity_[dimWorld-1] = -9.81;
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,69 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \ingroup MultiPhaseBaseModel
*
* \brief Defines the common properties required by the porous medium
* multi-phase models.
*/
#ifndef EWOMS_MULTI_PHASE_BASE_PROPERTIES_HH
#define EWOMS_MULTI_PHASE_BASE_PROPERTIES_HH
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/models/io/vtkmultiphasemodule.hh>
#include <opm/models/io/vtktemperaturemodule.hh>
BEGIN_PROPERTIES
//! The splice to be used for the spatial discretization
NEW_PROP_TAG(SpatialDiscretizationSplice);
//! Number of fluid phases in the system
NEW_PROP_TAG(NumPhases);
//! Number of chemical species in the system
NEW_PROP_TAG(NumComponents);
//! Enumerations used by the model
NEW_PROP_TAG(Indices);
//! The material law which ought to be used (extracted from the spatial parameters)
NEW_PROP_TAG(MaterialLaw);
//! The context material law (extracted from the spatial parameters)
NEW_PROP_TAG(MaterialLawParams);
//! The material law for the energy stored in the solid matrix
NEW_PROP_TAG(SolidEnergyLaw);
//! The parameters of the material law for energy storage of the solid
NEW_PROP_TAG(SolidEnergyLawParams);
//! The material law for thermal conduction
NEW_PROP_TAG(ThermalConductionLaw);
//! The parameters of the material law for thermal conduction
NEW_PROP_TAG(ThermalConductionLawParams);
//!The fluid systems including the information about the phases
NEW_PROP_TAG(FluidSystem);
//! Specifies the relation used for velocity
NEW_PROP_TAG(FluxModule);
//! Returns whether gravity is considered in the problem
NEW_PROP_TAG(EnableGravity);
END_PROPERTIES
#endif

View File

@ -0,0 +1,482 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This method contains all callback classes for quantities
* that are required by some extensive quantities
*/
#ifndef EWOMS_QUANTITY_CALLBACKS_HH
#define EWOMS_QUANTITY_CALLBACKS_HH
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <type_traits>
#include <utility>
namespace Opm {
/*!
* \ingroup Discretization
*
* \brief Callback class for temperature.
*/
template <class TypeTag>
class TemperatureCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().temperature(0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
TemperatureCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{}
/*!
* \brief Return the temperature given the index of a degree of freedom within an
* element context.
*
* In this context, we assume that thermal equilibrium applies, i.e. that the
* temperature of all phases is equal.
*/
ResultType operator()(unsigned dofIdx) const
{ return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().temperature(/*phaseIdx=*/0); }
private:
const ElementContext& elemCtx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for a phase pressure.
*/
template <class TypeTag>
class PressureCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().pressure(0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
PressureCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
PressureCallback(const ElementContext& elemCtx, unsigned phaseIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the pressure
* should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the pressure of the specified phase given the index of a degree of
* freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().pressure(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for a phase pressure.
*/
template <class TypeTag, class FluidState>
class BoundaryPressureCallback
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQRawFluidState;
typedef typename std::remove_const<typename std::remove_reference<IQRawFluidState>::type>::type IQFluidState;
typedef typename IQFluidState::Scalar IQScalar;
typedef Opm::MathToolbox<IQScalar> Toolbox;
public:
typedef IQScalar ResultType;
BoundaryPressureCallback(const ElementContext& elemCtx, const FluidState& boundaryFs)
: elemCtx_(elemCtx)
, boundaryFs_(boundaryFs)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
BoundaryPressureCallback(const ElementContext& elemCtx,
const FluidState& boundaryFs,
unsigned phaseIdx)
: elemCtx_(elemCtx)
, boundaryFs_(boundaryFs)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the pressure
* should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the pressure of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().pressure(phaseIdx_);
}
IQScalar boundaryValue() const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return boundaryFs_.pressure(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
const FluidState& boundaryFs_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the density of a phase.
*/
template <class TypeTag>
class DensityCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().density(0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
DensityCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
DensityCallback(const ElementContext& elemCtx, unsigned phaseIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the density
* should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the density of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().density(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the molar density of a phase.
*/
template <class TypeTag>
class MolarDensityCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
public:
typedef decltype(std::declval<IQFluidState>().molarDensity(0)) ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
MolarDensityCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
MolarDensityCallback(const ElementContext& elemCtx, unsigned phaseIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the molar
* density should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the molar density of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().molarDensity(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the viscosity of a phase.
*/
template <class TypeTag>
class ViscosityCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().viscosity(0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
ViscosityCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
ViscosityCallback(const ElementContext& elemCtx, unsigned phaseIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the viscosity
* should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the viscosity of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().viscosity(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the velocity of a phase at the center of a DOF.
*/
template <class TypeTag>
class VelocityCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef decltype(IntensiveQuantities().velocityCenter()) ResultRawType;
enum { dim = GridView::dimensionworld };
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename ResultType::field_type ResultFieldType;
typedef typename Opm::MathToolbox<ResultFieldType>::ValueType ResultFieldValueType;
VelocityCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{}
/*!
* \brief Return the velocity of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{ return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).velocityCenter(); }
private:
const ElementContext& elemCtx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the velocity of a phase at the center of a DOF.
*/
template <class TypeTag>
class VelocityComponentCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(IntensiveQuantities().velocityCenter()[0]) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
VelocityComponentCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(dimIdx_); }
VelocityComponentCallback(const ElementContext& elemCtx, unsigned dimIdx)
: elemCtx_(elemCtx)
, dimIdx_(dimIdx)
{}
/*!
* \brief Set the index of the component of the velocity
* which should be returned.
*/
void setDimIndex(unsigned dimIdx)
{ dimIdx_ = dimIdx; }
/*!
* \brief Return the velocity of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(dimIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).velocityCenter()[dimIdx_];
}
private:
const ElementContext& elemCtx_;
unsigned dimIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for a mole fraction of a component in a phase.
*/
template <class TypeTag>
class MoleFractionCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().moleFraction(0, 0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
MoleFractionCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{
Opm::Valgrind::SetUndefined(phaseIdx_);
Opm::Valgrind::SetUndefined(compIdx_);
}
MoleFractionCallback(const ElementContext& elemCtx, unsigned phaseIdx, unsigned compIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
, compIdx_(static_cast<unsigned short>(compIdx))
{}
/*!
* \brief Set the index of the fluid phase for which a mole fraction should be
* returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Set the index of the component for which the mole fraction should be
* returned.
*/
void setComponentIndex(unsigned compIdx)
{ compIdx_ = static_cast<unsigned short>(compIdx); }
/*!
* \brief Return the mole fraction of a component in a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
Opm::Valgrind::CheckDefined(compIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().moleFraction(phaseIdx_, compIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
unsigned short compIdx_;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,138 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFractureExtensiveQuantities
*/
#ifndef EWOMS_DISCRETE_FRACTURE_EXTENSIVE_QUANTITIES_HH
#define EWOMS_DISCRETE_FRACTURE_EXTENSIVE_QUANTITIES_HH
#include <ewoms/models/immiscible/immiscibleextensivequantities.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
* \ingroup ExtensiveQuantities
*
* \brief This class expresses all intensive quantities of the discrete fracture model.
*/
template <class TypeTag>
class DiscreteFractureExtensiveQuantities : public ImmiscibleExtensiveQuantities<TypeTag>
{
typedef ImmiscibleExtensiveQuantities<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = FluidSystem::numPhases };
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
/*!
* \copydoc MultiPhaseBaseExtensiveQuantities::update()
*/
void update(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, scvfIdx, timeIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
unsigned insideScvIdx = scvf.interiorIndex();
unsigned outsideScvIdx = scvf.exteriorIndex();
unsigned globalI = elemCtx.globalSpaceIndex(insideScvIdx, timeIdx);
unsigned globalJ = elemCtx.globalSpaceIndex(outsideScvIdx, timeIdx);
const auto& fractureMapper = elemCtx.problem().fractureMapper();
if (!fractureMapper.isFractureEdge(globalI, globalJ))
// do nothing if no fracture goes though the current edge
return;
// average the intrinsic permeability of the fracture
elemCtx.problem().fractureFaceIntrinsicPermeability(fractureIntrinsicPermeability_,
elemCtx, scvfIdx, timeIdx);
auto distDirection = elemCtx.pos(outsideScvIdx, timeIdx);
distDirection -= elemCtx.pos(insideScvIdx, timeIdx);
distDirection /= distDirection.two_norm();
const auto& problem = elemCtx.problem();
fractureWidth_ = problem.fractureWidth(elemCtx, insideScvIdx,
outsideScvIdx, timeIdx);
assert(fractureWidth_ < scvf.area());
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
const auto& pGrad = extQuants.potentialGrad(phaseIdx);
unsigned upstreamIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
// multiply with the fracture mobility of the upstream vertex
fractureIntrinsicPermeability_.mv(pGrad,
fractureFilterVelocity_[phaseIdx]);
fractureFilterVelocity_[phaseIdx] *= -up.fractureMobility(phaseIdx);
// divide the volume flux by two. This is required because
// a fracture is always shared by two sub-control-volume
// faces.
fractureVolumeFlux_[phaseIdx] = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
fractureVolumeFlux_[phaseIdx] +=
(fractureFilterVelocity_[phaseIdx][dimIdx] * distDirection[dimIdx])
* (fractureWidth_ / 2.0) / scvf.area();
}
}
public:
const DimMatrix& fractureIntrinsicPermeability() const
{ return fractureIntrinsicPermeability_; }
Scalar fractureVolumeFlux(unsigned phaseIdx) const
{ return fractureVolumeFlux_[phaseIdx]; }
Scalar fractureWidth() const
{ return fractureWidth_; }
const DimVector& fractureFilterVelocity(unsigned phaseIdx) const
{ return fractureFilterVelocity_[phaseIdx]; }
private:
DimMatrix fractureIntrinsicPermeability_;
DimVector fractureFilterVelocity_[numPhases];
Scalar fractureVolumeFlux_[numPhases];
Scalar fractureWidth_;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,244 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFractureIntensiveQuantities
*/
#ifndef EWOMS_DISCRETE_FRACTURE_INTENSIVE_QUANTITIES_HH
#define EWOMS_DISCRETE_FRACTURE_INTENSIVE_QUANTITIES_HH
#include "discretefractureproperties.hh"
#include <ewoms/models/immiscible/immiscibleintensivequantities.hh>
#include <opm/material/common/Valgrind.hpp>
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
* \ingroup IntensiveQuantities
*
* \brief Contains the quantities which are are constant within a
* finite volume in the discret fracture immiscible multi-phase
* model.
*/
template <class TypeTag>
class DiscreteFractureIntensiveQuantities : public ImmiscibleIntensiveQuantities<TypeTag>
{
typedef ImmiscibleIntensiveQuantities<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
enum { numPhases = FluidSystem::numPhases };
enum { dimWorld = GridView::dimensionworld };
static_assert(dimWorld == 2, "The fracture module currently is only "
"implemented for the 2D case!");
static_assert(numPhases == 2, "The fracture module currently is only "
"implemented for two fluid phases!");
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { wettingPhaseIdx = MaterialLaw::wettingPhaseIdx };
enum { nonWettingPhaseIdx = MaterialLaw::nonWettingPhaseIdx };
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef Opm::ImmiscibleFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/enableEnergy> FluidState;
public:
DiscreteFractureIntensiveQuantities()
{ }
DiscreteFractureIntensiveQuantities(const DiscreteFractureIntensiveQuantities& other) = default;
DiscreteFractureIntensiveQuantities& operator=(const DiscreteFractureIntensiveQuantities& other) = default;
/*!
* \copydoc IntensiveQuantities::update
*/
void update(const ElementContext& elemCtx, unsigned vertexIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, vertexIdx, timeIdx);
const auto& problem = elemCtx.problem();
const auto& fractureMapper = problem.fractureMapper();
unsigned globalVertexIdx = elemCtx.globalSpaceIndex(vertexIdx, timeIdx);
Opm::Valgrind::SetUndefined(fractureFluidState_);
Opm::Valgrind::SetUndefined(fractureVolume_);
Opm::Valgrind::SetUndefined(fracturePorosity_);
Opm::Valgrind::SetUndefined(fractureIntrinsicPermeability_);
Opm::Valgrind::SetUndefined(fractureRelativePermeabilities_);
// do nothing if there is no fracture within the current degree of freedom
if (!fractureMapper.isFractureVertex(globalVertexIdx)) {
fractureVolume_ = 0;
return;
}
// Make sure that the wetting saturation in the matrix fluid
// state does not get larger than 1
Scalar SwMatrix =
std::min<Scalar>(1.0, this->fluidState_.saturation(wettingPhaseIdx));
this->fluidState_.setSaturation(wettingPhaseIdx, SwMatrix);
this->fluidState_.setSaturation(nonWettingPhaseIdx, 1 - SwMatrix);
// retrieve the facture width and intrinsic permeability from
// the problem
fracturePorosity_ =
problem.fracturePorosity(elemCtx, vertexIdx, timeIdx);
fractureIntrinsicPermeability_ =
problem.fractureIntrinsicPermeability(elemCtx, vertexIdx, timeIdx);
// compute the fracture volume for the current sub-control
// volume. note, that we don't take overlaps of fractures into
// account for this.
fractureVolume_ = 0;
const auto& vertexPos = elemCtx.pos(vertexIdx, timeIdx);
for (unsigned vertex2Idx = 0; vertex2Idx < elemCtx.numDof(/*timeIdx=*/0); ++ vertex2Idx) {
unsigned globalVertex2Idx = elemCtx.globalSpaceIndex(vertex2Idx, timeIdx);
if (vertexIdx == vertex2Idx ||
!fractureMapper.isFractureEdge(globalVertexIdx, globalVertex2Idx))
continue;
Scalar fractureWidth =
problem.fractureWidth(elemCtx, vertexIdx, vertex2Idx, timeIdx);
auto distVec = elemCtx.pos(vertex2Idx, timeIdx);
distVec -= vertexPos;
Scalar edgeLength = distVec.two_norm();
// the fracture is always adjacent to two sub-control
// volumes of the control volume, so when calculating the
// volume of the fracture which gets attributed to one
// SCV, the fracture width needs to divided by 2. Also,
// only half of the edge is located in the current control
// volume, so its length also needs to divided by 2.
fractureVolume_ += (fractureWidth / 2) * (edgeLength / 2);
}
//////////
// set the fluid state for the fracture.
//////////
// start with the same fluid state as in the matrix. This
// implies equal saturations, pressures, temperatures,
// enthalpies, etc.
fractureFluidState_.assign(this->fluidState_);
// ask the problem for the material law parameters of the
// fracture.
const auto& fractureMatParams =
problem.fractureMaterialLawParams(elemCtx, vertexIdx, timeIdx);
// calculate the fracture saturations which would be required
// to be consistent with the pressures
Scalar saturations[numPhases];
MaterialLaw::saturations(saturations, fractureMatParams,
fractureFluidState_);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fractureFluidState_.setSaturation(phaseIdx, saturations[phaseIdx]);
// Make sure that the wetting saturation in the fracture does
// not get negative
Scalar SwFracture =
std::max<Scalar>(0.0, fractureFluidState_.saturation(wettingPhaseIdx));
fractureFluidState_.setSaturation(wettingPhaseIdx, SwFracture);
fractureFluidState_.setSaturation(nonWettingPhaseIdx, 1 - SwFracture);
// calculate the relative permeabilities of the fracture
MaterialLaw::relativePermeabilities(fractureRelativePermeabilities_,
fractureMatParams,
fractureFluidState_);
// make sure that valgrind complains if the fluid state is not
// fully defined.
fractureFluidState_.checkDefined();
}
public:
/*!
* \brief Returns the effective mobility of a given phase within
* the control volume.
*
* \param phaseIdx The phase index
*/
Scalar fractureRelativePermeability(unsigned phaseIdx) const
{ return fractureRelativePermeabilities_[phaseIdx]; }
/*!
* \brief Returns the effective mobility of a given phase within
* the control volume.
*
* \param phaseIdx The phase index
*/
Scalar fractureMobility(unsigned phaseIdx) const
{
return fractureRelativePermeabilities_[phaseIdx]
/ fractureFluidState_.viscosity(phaseIdx);
}
/*!
* \brief Returns the average porosity within the fracture.
*/
Scalar fracturePorosity() const
{ return fracturePorosity_; }
/*!
* \brief Returns the average intrinsic permeability within the
* fracture.
*/
const DimMatrix& fractureIntrinsicPermeability() const
{ return fractureIntrinsicPermeability_; }
/*!
* \brief Return the volume [m^2] occupied by fractures within the
* given sub-control volume.
*/
Scalar fractureVolume() const
{ return fractureVolume_; }
/*!
* \brief Returns a fluid state object which represents the
* thermodynamic state of the fluids within the fracture.
*/
const FluidState& fractureFluidState() const
{ return fractureFluidState_; }
protected:
FluidState fractureFluidState_;
Scalar fractureVolume_;
Scalar fracturePorosity_;
DimMatrix fractureIntrinsicPermeability_;
Scalar fractureRelativePermeabilities_[numPhases];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,159 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFractureLocalResidual
*/
#ifndef EWOMS_DISCRETE_FRACTURE_LOCAL_RESIDUAL_BASE_HH
#define EWOMS_DISCRETE_FRACTURE_LOCAL_RESIDUAL_BASE_HH
#include <ewoms/models/immiscible/immisciblelocalresidual.hh>
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
*
* \brief Calculates the local residual of the discrete fracture
* immiscible multi-phase model.
*/
template <class TypeTag>
class DiscreteFractureLocalResidual : public ImmiscibleLocalResidual<TypeTag>
{
typedef ImmiscibleLocalResidual<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
public:
/*!
* \brief Adds the amount all conservation quantities (e.g. phase
* mass) within a single fluid phase
*
* \copydetails Doxygen::storageParam
* \copydetails Doxygen::dofCtxParams
* \copydetails Doxygen::phaseIdxParam
*/
void addPhaseStorage(EqVector& storage,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx,
unsigned phaseIdx) const
{
EqVector phaseStorage(0.0);
ParentType::addPhaseStorage(phaseStorage, elemCtx, dofIdx, timeIdx, phaseIdx);
const auto& problem = elemCtx.problem();
const auto& fractureMapper = problem.fractureMapper();
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
if (!fractureMapper.isFractureVertex(globalIdx)) {
// don't do anything in addition to the immiscible model for degrees of
// freedom that do not feature fractures
storage += phaseStorage;
return;
}
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
const auto& scv = elemCtx.stencil(timeIdx).subControlVolume(dofIdx);
// reduce the matrix storage by the fracture volume
phaseStorage *= 1 - intQuants.fractureVolume()/scv.volume();
// add the storage term inside the fractures
const auto& fsFracture = intQuants.fractureFluidState();
phaseStorage[conti0EqIdx + phaseIdx] +=
intQuants.fracturePorosity()*
fsFracture.saturation(phaseIdx) *
fsFracture.density(phaseIdx) *
intQuants.fractureVolume()/scv.volume();
EnergyModule::addFracturePhaseStorage(phaseStorage, intQuants, scv,
phaseIdx);
// add the result to the overall storage term
storage += phaseStorage;
}
/*!
* \copydoc FvBaseLocalResidual::computeFlux
*/
void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
ParentType::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned i = extQuants.interiorIndex();
unsigned j = extQuants.exteriorIndex();
unsigned I = elemCtx.globalSpaceIndex(i, timeIdx);
unsigned J = elemCtx.globalSpaceIndex(j, timeIdx);
const auto& fractureMapper = elemCtx.problem().fractureMapper();
if (!fractureMapper.isFractureEdge(I, J))
// do nothing if the edge from i to j is not part of a
// fracture
return;
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
Scalar scvfArea = scvf.area();
// advective mass fluxes of all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// reduce the matrix mass flux by the width of the scv
// face that is occupied by the fracture. As usual, the
// fracture is shared between two SCVs, so the its width
// needs to be divided by two.
flux[conti0EqIdx + phaseIdx] *=
1 - extQuants.fractureWidth() / (2 * scvfArea);
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
flux[conti0EqIdx + phaseIdx] +=
extQuants.fractureVolumeFlux(phaseIdx) * up.fractureFluidState().density(phaseIdx);
}
EnergyModule::handleFractureFlux(flux, elemCtx, scvfIdx, timeIdx);
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,156 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFractureModel
*/
#ifndef EWOMS_DISCRETE_FRACTURE_MODEL_HH
#define EWOMS_DISCRETE_FRACTURE_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "discretefractureproperties.hh"
#include "discretefractureprimaryvariables.hh"
#include "discretefractureintensivequantities.hh"
#include "discretefractureextensivequantities.hh"
#include "discretefracturelocalresidual.hh"
#include "discretefractureproblem.hh"
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/io/vtkdiscretefracturemodule.hh>
#include <opm/material/common/Exceptions.hpp>
#include <string>
namespace Opm {
template <class TypeTag>
class DiscreteFractureModel;
}
BEGIN_PROPERTIES
//! The generic type tag for problems using the immiscible multi-phase model
NEW_TYPE_TAG(DiscreteFractureModel, INHERITS_FROM(ImmiscibleTwoPhaseModel, VtkDiscreteFracture));
//! The class for the model
SET_TYPE_PROP(DiscreteFractureModel, Model, Opm::DiscreteFractureModel<TypeTag>);
//! The class for the model
SET_TYPE_PROP(DiscreteFractureModel, BaseProblem, Opm::DiscreteFractureProblem<TypeTag>);
//! Use the immiscible multi-phase local jacobian operator for the immiscible multi-phase model
SET_TYPE_PROP(DiscreteFractureModel, LocalResidual, Opm::DiscreteFractureLocalResidual<TypeTag>);
// The type of the base base class for actual problems.
// TODO!?
//SET_TYPE_PROP(DiscreteFractureModel BaseProblem, DiscreteFractureBaseProblem<TypeTag>);
//! the PrimaryVariables property
SET_TYPE_PROP(DiscreteFractureModel, PrimaryVariables,
Opm::DiscreteFracturePrimaryVariables<TypeTag>);
//! the IntensiveQuantities property
SET_TYPE_PROP(DiscreteFractureModel, IntensiveQuantities,
Opm::DiscreteFractureIntensiveQuantities<TypeTag>);
//! the ExtensiveQuantities property
SET_TYPE_PROP(DiscreteFractureModel, ExtensiveQuantities,
Opm::DiscreteFractureExtensiveQuantities<TypeTag>);
//! For the discrete fracture model, we need to use two-point flux approximation or it
//! will converge very poorly
SET_BOOL_PROP(DiscreteFractureModel, UseTwoPointGradients, true);
// The intensive quantity cache cannot be used by the discrete fracture model, because
// the intensive quantities of a control degree of freedom are not identical to the
// intensive quantities of the other intensive quantities of the same of the same degree
// of freedom. This is because the fracture properties (volume, permeability, etc) are
// specific for each...
SET_BOOL_PROP(DiscreteFractureModel, EnableIntensiveQuantityCache, false);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
* \brief A fully-implicit multi-phase flow model which assumes
* immiscibility of the phases and is able to include fractures
* in the domain.
*
* This model implements multi-phase flow of \f$M > 0\f$ immiscible
* fluids \f$\alpha\f$. It also can consider edges of the
* computational grid as fractures i.e. as a porous medium with
* different higher permeability than the rest of the domain.
*
* \todo So far, the discrete fracture model only works for 2D grids
* and without energy. Also only the Darcy velocity model is
* supported for the fractures.
*
* \sa ImmiscibleModel
*/
template <class TypeTag>
class DiscreteFractureModel : public ImmiscibleModel<TypeTag>
{
typedef ImmiscibleModel<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
public:
DiscreteFractureModel(Simulator& simulator)
: ParentType(simulator)
{
if (EWOMS_GET_PARAM(TypeTag, bool, EnableIntensiveQuantityCache)) {
throw std::runtime_error("The discrete fracture model does not work in conjunction "
"with intensive quantities caching");
}
}
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
// register runtime parameters of the VTK output modules
Opm::VtkDiscreteFractureModule<TypeTag>::registerParameters();
}
/*!
* \copydoc FvBaseDiscretization::name
*/
static std::string name()
{ return "discretefracture"; }
void registerOutputModules_()
{
ParentType::registerOutputModules_();
this->addOutputModule(new Opm::VtkDiscreteFractureModule<TypeTag>(this->simulator_));
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,124 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFracturePrimaryVariables
*/
#ifndef EWOMS_DISCRETE_FRACTURE_PRIMARY_VARIABLES_HH
#define EWOMS_DISCRETE_FRACTURE_PRIMARY_VARIABLES_HH
#include "discretefractureproperties.hh"
#include <ewoms/models/immiscible/immiscibleprimaryvariables.hh>
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
*
* \brief Represents the primary variables used by the discrete fracture
* multi-phase model.
*/
template <class TypeTag>
class DiscreteFracturePrimaryVariables
: public ImmisciblePrimaryVariables<TypeTag>
{
typedef ImmisciblePrimaryVariables<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
public:
/*!
* \brief Default constructor
*/
DiscreteFracturePrimaryVariables() : ParentType()
{}
/*!
* \brief Constructor with assignment from scalar
*
* \param value The scalar value to which all entries of the vector will be set.
*/
DiscreteFracturePrimaryVariables(Scalar value) : ParentType(value)
{}
/*!
* \brief Copy constructor
*
* \param value The primary variables that will be duplicated.
*/
DiscreteFracturePrimaryVariables(const DiscreteFracturePrimaryVariables& value) = default;
DiscreteFracturePrimaryVariables& operator=(const DiscreteFracturePrimaryVariables& value) = default;
/*!
* \brief Directly retrieve the primary variables from an
* arbitrary fluid state of the fractures.
*
* \param fractureFluidState The fluid state of the fractures
* which should be represented by the
* primary variables. The temperatures,
* pressures and compositions of all
* phases must be defined.
* \param matParams The parameters for the capillary-pressure law
* which apply for the fracture.
*/
template <class FluidState>
void assignNaiveFromFracture(const FluidState& fractureFluidState,
const MaterialLawParams& matParams)
{
FluidState matrixFluidState;
fractureToMatrixFluidState_(matrixFluidState, fractureFluidState,
matParams);
ParentType::assignNaive(matrixFluidState);
}
private:
template <class FluidState>
void fractureToMatrixFluidState_(FluidState& matrixFluidState,
const FluidState& fractureFluidState,
const MaterialLawParams& matParams) const
{
// start with the same fluid state as in the fracture
matrixFluidState.assign(fractureFluidState);
// the condition for the equilibrium is that the pressures are
// the same in the fracture and in the matrix. This means that
// we have to find saturations for the matrix which result in
// the same pressures as in the fracture. this can be done by
// inverting the capillary pressure-saturation curve.
Scalar saturations[numPhases];
MaterialLaw::saturations(saturations, matParams, matrixFluidState);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
matrixFluidState.setSaturation(phaseIdx, saturations[phaseIdx]);
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,149 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFractureProblem
*/
#ifndef EWOMS_DISCRETE_FRACTURE_PROBLEM_HH
#define EWOMS_DISCRETE_FRACTURE_PROBLEM_HH
#include "discretefractureproperties.hh"
#include <ewoms/models/common/multiphasebaseproblem.hh>
#include <opm/material/common/Means.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
BEGIN_PROPERTIES
NEW_PROP_TAG(ThermalConductionLawParams);
NEW_PROP_TAG(EnableGravity);
NEW_PROP_TAG(FluxModule);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
* \brief The base class for the problems of ECFV discretizations which deal
* with a multi-phase flow through a porous medium.
*/
template<class TypeTag>
class DiscreteFractureProblem
: public MultiPhaseBaseProblem<TypeTag>
{
typedef Opm::MultiPhaseBaseProblem<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
enum { dimWorld = GridView::dimensionworld };
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Problem::FvBaseProblem(Simulator& )
*/
DiscreteFractureProblem(Simulator& simulator)
: ParentType(simulator)
{}
/*!
* \brief Returns the intrinsic permeability of a face due to a fracture.
*
* This method is specific to the finite volume discretizations. If left unspecified,
* it calls the intrinsicPermeability() methods for the face's interior and exterior
* finite volume and averages them harmonically. Note that if this function is
* defined, the intrinsicPermeability() method does not need to be defined by the
* problem (if a finite-volume discretization is used).
*/
template <class Context>
void fractureFaceIntrinsicPermeability(DimMatrix& result,
const Context& context,
unsigned localFaceIdx,
unsigned timeIdx) const
{
const auto& scvf = context.stencil(timeIdx).interiorFace(localFaceIdx);
unsigned interiorElemIdx = scvf.interiorIndex();
unsigned exteriorElemIdx = scvf.exteriorIndex();
const DimMatrix& K1 = asImp_().fractureIntrinsicPermeability(context, interiorElemIdx, timeIdx);
const DimMatrix& K2 = asImp_().fractureIntrinsicPermeability(context, exteriorElemIdx, timeIdx);
// entry-wise harmonic mean. this is almost certainly wrong if
// you have off-main diagonal entries in your permeabilities!
for (unsigned i = 0; i < dimWorld; ++i)
for (unsigned j = 0; j < dimWorld; ++j)
result[i][j] = Opm::harmonicMean(K1[i][j], K2[i][j]);
}
/*!
* \brief Returns the intrinsic permeability tensor \f$[m^2]\f$ at a given position due to a fracture
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const DimMatrix& fractureIntrinsicPermeability(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::fractureIntrinsicPermeability()");
}
/*!
* \brief Returns the porosity [] inside fractures for a given control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar fracturePorosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::fracturePorosity()");
}
private:
//! Returns the implementation of the problem (i.e. static polymorphism)
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
//! \copydoc asImp_()
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,43 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \ingroup DiscreteFractureModel
*
* \brief Defines the properties required for the immiscible
* multi-phase model which considers discrete fractures.
*/
#ifndef EWOMS_DISCRETE_FRACTIRE_PROPERTIES_HH
#define EWOMS_DISCRETE_FRACTIRE_PROPERTIES_HH
#include <ewoms/models/immiscible/immiscibleproperties.hh>
#include <ewoms/io/vtkdiscretefracturemodule.hh>
BEGIN_PROPERTIES
NEW_PROP_TAG(UseTwoPointGradients);
END_PROPERTIES
#endif

View File

@ -0,0 +1,108 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::FractureMapper
*/
#ifndef EWOMS_FRACTURE_MAPPER_HH
#define EWOMS_FRACTURE_MAPPER_HH
#include <opm/models/utils/propertysystem.hh>
#include <algorithm>
#include <set>
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
* \brief Stores the topology of fractures.
*/
template <class TypeTag>
class FractureMapper
{
struct FractureEdge
{
FractureEdge(unsigned edgeVertex1Idx, unsigned edgeVertex2Idx)
: i_(std::min(edgeVertex1Idx, edgeVertex2Idx)),
j_(std::max(edgeVertex1Idx, edgeVertex2Idx))
{}
bool operator<(const FractureEdge& e) const
{ return i_ < e.i_ || (i_ == e.i_ && j_ < e.j_); }
bool operator==(const FractureEdge& e) const
{ return i_ == e.i_ && j_ == e.j_; }
unsigned i_;
unsigned j_;
};
public:
/*!
* \brief Constructor
*/
FractureMapper()
{}
/*!
* \brief Marks an edge as having a fracture.
*
* \param vertexIdx1 The index of the edge's first vertex.
* \param vertexIdx2 The index of the edge's second vertex.
*/
void addFractureEdge(unsigned vertexIdx1, unsigned vertexIdx2)
{
fractureEdges_.insert(FractureEdge(vertexIdx1, vertexIdx2));
fractureVertices_.insert(vertexIdx1);
fractureVertices_.insert(vertexIdx2);
}
/*!
* \brief Returns true iff a fracture cuts through a given vertex.
*
* \param vertexIdx The index of the vertex.
*/
bool isFractureVertex(unsigned vertexIdx) const
{ return fractureVertices_.count(vertexIdx) > 0; }
/*!
* \brief Returns true iff a fracture is associated with a given edge.
*
* \param vertex1Idx The index of the first vertex of the edge.
* \param vertex2Idx The index of the second vertex of the edge.
*/
bool isFractureEdge(unsigned vertex1Idx, unsigned vertex2Idx) const
{
FractureEdge tmp(vertex1Idx, vertex2Idx);
return fractureEdges_.count(tmp) > 0;
}
private:
std::set<FractureEdge> fractureEdges_;
std::set<unsigned> fractureVertices_;
};
} // namespace Opm
#endif // EWOMS_FRACTURE_MAPPER_HH

View File

@ -0,0 +1,138 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::BaseAuxiliaryModule
*/
#ifndef EWOMS_BASE_AUXILIARY_MODULE_HH
#define EWOMS_BASE_AUXILIARY_MODULE_HH
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <set>
#include <vector>
BEGIN_PROPERTIES
NEW_TYPE_TAG(AuxModule);
// declare the properties required by the for the ecl grid manager
NEW_PROP_TAG(Grid);
NEW_PROP_TAG(GridView);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(DofMapper);
NEW_PROP_TAG(GlobalEqVector);
NEW_PROP_TAG(SparseMatrixAdapter);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup ModelModules
*
* \brief Base class for specifying auxiliary equations.
*
* For example, these equations can be wells, non-neighboring connections, interfaces
* between model domains, etc.
*/
template <class TypeTag>
class BaseAuxiliaryModule
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, GlobalEqVector) GlobalEqVector;
typedef typename GET_PROP_TYPE(TypeTag, SparseMatrixAdapter) SparseMatrixAdapter;
protected:
typedef std::set<unsigned> NeighborSet;
public:
virtual ~BaseAuxiliaryModule()
{}
/*!
* \brief Returns the number of additional degrees of freedom required for the
* auxiliary module.
*/
virtual unsigned numDofs() const = 0;
/*!
* \brief Set the offset in the global system of equations for the first degree of
* freedom of this auxiliary module.
*/
void setDofOffset(int value)
{ dofOffset_ = value; }
/*!
* \brief Return the offset in the global system of equations for the first degree of
* freedom of this auxiliary module.
*/
int dofOffset()
{ return dofOffset_; }
/*!
* \brief Given a degree of freedom relative to the current auxiliary equation,
* return the corresponding index in the global system of equations.
*/
int localToGlobalDof(unsigned localDofIdx) const
{
assert(0 <= localDofIdx);
assert(localDofIdx < numDofs());
return dofOffset_ + localDofIdx;
}
/*!
* \brief Specify the additional neighboring correlations caused by the auxiliary
* module.
*/
virtual void addNeighbors(std::vector<NeighborSet>& neighbors) const = 0;
/*!
* \brief Set the initial condition of the auxiliary module in the solution vector.
*/
virtual void applyInitial() = 0;
/*!
* \brief Linearize the auxiliary equation.
*/
virtual void linearize(SparseMatrixAdapter& matrix, GlobalEqVector& residual) = 0;
/*!
* \brief This method is called after the linear solver has been called but before
* the solution is updated for the next iteration.
*
* It is intended to implement stuff like Schur complements.
*/
virtual void postSolve(GlobalEqVector& residual OPM_UNUSED)
{};
private:
int dofOffset_;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,316 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseAdLocalLinearizer
*/
#ifndef EWOMS_FV_BASE_AD_LOCAL_LINEARIZER_HH
#define EWOMS_FV_BASE_AD_LOCAL_LINEARIZER_HH
#include "fvbaseproperties.hh"
#include <opm/material/densead/Math.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <dune/istl/bvector.hh>
#include <dune/istl/matrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm {
// forward declaration
template<class TypeTag>
class FvBaseAdLocalLinearizer;
}
BEGIN_PROPERTIES
// declare the property tags required for the finite differences local linearizer
NEW_TYPE_TAG(AutoDiffLocalLinearizer);
NEW_PROP_TAG(LocalLinearizer);
NEW_PROP_TAG(Evaluation);
NEW_PROP_TAG(LocalResidual);
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(Problem);
NEW_PROP_TAG(Model);
NEW_PROP_TAG(PrimaryVariables);
NEW_PROP_TAG(ElementContext);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(Evaluation);
NEW_PROP_TAG(GridView);
// set the properties to be spliced in
SET_TYPE_PROP(AutoDiffLocalLinearizer, LocalLinearizer,
Opm::FvBaseAdLocalLinearizer<TypeTag>);
//! Set the function evaluation w.r.t. the primary variables
SET_PROP(AutoDiffLocalLinearizer, Evaluation)
{
private:
static const unsigned numEq = GET_PROP_VALUE(TypeTag, NumEq);
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::DenseAd::Evaluation<Scalar, numEq> type;
};
END_PROPERTIES
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief Calculates the local residual and its Jacobian for a single element of the grid.
*
* This class uses automatic differentiation to calculate the partial derivatives (the
* alternative is finite differences).
*/
template<class TypeTag>
class FvBaseAdLocalLinearizer
{
private:
typedef typename GET_PROP_TYPE(TypeTag, LocalLinearizer) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, LocalResidual) LocalResidual;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GridView::template Codim<0>::Entity Element;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
typedef Dune::FieldVector<Scalar, numEq> ScalarVectorBlock;
// extract local matrices from jacobian matrix for consistency
typedef typename GET_PROP_TYPE(TypeTag, SparseMatrixAdapter)::MatrixBlock ScalarMatrixBlock;
typedef Dune::BlockVector<ScalarVectorBlock> ScalarLocalBlockVector;
typedef Dune::Matrix<ScalarMatrixBlock> ScalarLocalBlockMatrix;
public:
FvBaseAdLocalLinearizer()
: internalElemContext_(0)
{ }
// copying local linearizer objects around is a very bad idea, so we explicitly
// prevent it...
FvBaseAdLocalLinearizer(const FvBaseAdLocalLinearizer&) = delete;
~FvBaseAdLocalLinearizer()
{ delete internalElemContext_; }
/*!
* \brief Register all run-time parameters for the local jacobian.
*/
static void registerParameters()
{ }
/*!
* \brief Initialize the local Jacobian object.
*
* At this point we can assume that everything has been allocated,
* although some objects may not yet be completely initialized.
*
* \param simulator The simulator object of the simulation.
*/
void init(Simulator& simulator)
{
simulatorPtr_ = &simulator;
delete internalElemContext_;
internalElemContext_ = new ElementContext(simulator);
}
/*!
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
*
* The local Jacobian for a given context is defined as the derivatives of the
* residuals of all degrees of freedom featured by the stencil with regard to the
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
*
* \param element The grid element for which the local residual and its local
* Jacobian should be calculated.
*/
void linearize(const Element& element)
{
linearize(*internalElemContext_, element);
}
/*!
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
*
* The local Jacobian for a given context is defined as the derivatives of the
* residuals of all degrees of freedom featured by the stencil with regard to the
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
*
* After calling this method the ElementContext is in an undefined state, so do not
* use it anymore!
*
* \param elemCtx The element execution context for which the local residual and its
* local Jacobian should be calculated.
*/
void linearize(ElementContext& elemCtx, const Element& elem)
{
elemCtx.updateStencil(elem);
elemCtx.updateAllIntensiveQuantities();
// update the weights of the primary variables for the context
model_().updatePVWeights(elemCtx);
// resize the internal arrays of the linearizer
resize_(elemCtx);
reset_(elemCtx);
// compute the local residual and its Jacobian
unsigned numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned focusDofIdx = 0; focusDofIdx < numPrimaryDof; focusDofIdx++) {
elemCtx.setFocusDofIndex(focusDofIdx);
elemCtx.updateAllExtensiveQuantities();
// calculate the local residual
localResidual_.eval(elemCtx);
// convert the local Jacobian matrix and the right hand side from the data
// structures used by the automatic differentiation code to the conventional
// ones used by the linear solver.
updateLocalLinearization_(elemCtx, focusDofIdx);
}
}
/*!
* \brief Return reference to the local residual.
*/
LocalResidual& localResidual()
{ return localResidual_; }
/*!
* \brief Return reference to the local residual.
*/
const LocalResidual& localResidual() const
{ return localResidual_; }
/*!
* \brief Returns the local Jacobian matrix of the residual of a sub-control volume.
*
* \param domainScvIdx The local index of the sub control volume to which the primary
* variables are associated with
* \param rangeScvIdx The local index of the sub control volume which contains the
* local residual
*/
const ScalarMatrixBlock& jacobian(unsigned domainScvIdx, unsigned rangeScvIdx) const
{ return jacobian_[domainScvIdx][rangeScvIdx]; }
/*!
* \brief Returns the local residual of a sub-control volume.
*
* \param dofIdx The local index of the sub control volume
*/
const ScalarVectorBlock& residual(unsigned dofIdx) const
{ return residual_[dofIdx]; }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
const Simulator& simulator_() const
{ return *simulatorPtr_; }
const Problem& problem_() const
{ return simulatorPtr_->problem(); }
const Model& model_() const
{ return simulatorPtr_->model(); }
/*!
* \brief Resize all internal attributes to the size of the
* element.
*/
void resize_(const ElementContext& elemCtx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
residual_.resize(numDof);
jacobian_.setSize(numDof, numPrimaryDof);
}
/*!
* \brief Reset the all relevant internal attributes to 0
*/
void reset_(const ElementContext& elemCtx OPM_UNUSED)
{
residual_ = 0.0;
jacobian_ = 0.0;
}
/*!
* \brief Updates the current local Jacobian matrix with the partial derivatives of
* all equations for the degree of freedom associated with 'focusDofIdx'.
*/
void updateLocalLinearization_(const ElementContext& elemCtx,
unsigned focusDofIdx)
{
const auto& resid = localResidual_.residual();
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
residual_[focusDofIdx][eqIdx] = resid[focusDofIdx][eqIdx].value();
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < numDof; dofIdx++) {
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
// with regard to the focus variable 'pvIdx' of the degree of freedom
// 'focusDofIdx'
jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx] = resid[dofIdx][eqIdx].derivative(pvIdx);
Opm::Valgrind::CheckDefined(jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx]);
}
}
}
}
Simulator *simulatorPtr_;
Model *modelPtr_;
ElementContext *internalElemContext_;
LocalResidual localResidual_;
ScalarLocalBlockVector residual_;
ScalarLocalBlockMatrix jacobian_;
};
} // namespace Opm
#endif

Some files were not shown because too many files have changed in this diff Show More