From 5c5e098d546243d01c1dad71642798c26d920af5 Mon Sep 17 00:00:00 2001 From: Christoph Grueninger Date: Thu, 30 Aug 2012 08:02:14 +0000 Subject: [PATCH] Fix some bad boxes. Dumux-Svn-Revison: 9012 Ported-By: Andreas Lauser --- doc/handbook/box.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/handbook/box.tex b/doc/handbook/box.tex index cfd9770e5..a1a24bf64 100644 --- a/doc/handbook/box.tex +++ b/doc/handbook/box.tex @@ -30,7 +30,7 @@ where term 1 describes the changes of entity $u$ within a control volume over ti Like the FE method, the BOX-method follows the principle of weighted residuals. In the function $f(u)$ the unknown $u$ is approximated by discrete values at the nodes of the FE mesh $\hat u_i$ and linear basis functions $N_i$ yielding an approximate function $f(\tilde u)$. For $u\in \lbrace \mathbf v, p, x^\kappa \rbrace$ this means -\begin{minipage}[b]{0.5\textwidth} +\begin{minipage}[b]{0.47\textwidth} \begin{equation} \label{eq:p} \tilde p = \sum_i N_i \hat{p_i} @@ -45,7 +45,7 @@ Like the FE method, the BOX-method follows the principle of weighted residuals. \end{equation} \end{minipage} \hfill -\begin{minipage}[b]{0.5\textwidth} +\begin{minipage}[b]{0.47\textwidth} \begin{equation} \label{eq:dp} \nabla \tilde p = \sum_i \nabla N_i \hat{p_i}