add OpenMP parallelized version of DILU.

Implement graphcoloring to expose rows in level sets that that can be
executed in parallel during the sparse triangular solves.
Add copy of A matrix that is reordered to ensure continuous memory reads
when traversing the matrix in level set order.
TODO: add number of threads available as constructor argument in DILU
This commit is contained in:
Tobias Meyer Andersen 2023-10-18 15:44:58 +02:00 committed by Arne Morten Kvarving
parent b00d3ca4bb
commit 5f6c97ff3b
4 changed files with 281 additions and 113 deletions

View File

@ -17,49 +17,87 @@
#ifndef OPM_DILU_HEADER_INCLUDED #ifndef OPM_DILU_HEADER_INCLUDED
#define OPM_DILU_HEADER_INCLUDED #define OPM_DILU_HEADER_INCLUDED
#include <config.h>
#include <opm/common/ErrorMacros.hpp> #include <opm/common/ErrorMacros.hpp>
#include <opm/common/TimingMacros.hpp> #include <opm/common/TimingMacros.hpp>
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp> #include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
#include <dune/common/fmatrix.hh> #include <dune/common/fmatrix.hh>
#include <dune/common/version.hh>
#include <dune/common/unused.hh> #include <dune/common/unused.hh>
#include <dune/common/version.hh>
#include <dune/istl/bcrsmatrix.hh> #include <dune/istl/bcrsmatrix.hh>
#include <opm/simulators/linalg/GraphColoring.hpp>
#include <cstddef>
#include <vector>
#if HAVE_OPENMP
#include <omp.h>
#endif
// TODO: rewrite factory and constructor to keep track of a number of threads variable
namespace Dune namespace Dune
{ {
/*! \brief The sequential DILU preconditioner. /*! \brief The OpenMP thread parallelized DILU preconditioner.
* \details Safe to run serially without OpenMP. When run in parallel
the matrix is assumed to be symmetric.
\tparam M The matrix type to operate on \tparam M The matrix type to operate on
\tparam X Type of the update \tparam X Type of the update
\tparam Y Type of the defect \tparam Y Type of the defect
*/ */
template <class M, class X, class Y> template <class M, class X, class Y>
class SeqDilu : public PreconditionerWithUpdate<X, Y> class MultithreadDILU : public PreconditionerWithUpdate<X, Y>
{ {
public: public:
//! \brief The matrix type the preconditioner is for. //! \brief The matrix type the preconditioner is for.
using matrix_type = M; using matrix_type = M;
//! \brief The domain type of the preconditioner. //! \brief The domain type of the preconditioner.
using domain_type = X; using domain_type = X;
//! \brief The range type of the preconditioner. //! \brief The range type of the preconditioner.
using range_type = Y; using range_type = Y;
//! \brief The field type of the preconditioner. //! \brief The field type of the preconditioner.
using field_type = typename X::field_type; using field_type = typename X::field_type;
//! \brief scalar type underlying the field_type //! \brief scalar type underlying the field_type
/*! \brief Constructor. /*! \brief Constructor gets all parameters to operate the prec.
Constructor gets all parameters to operate the prec.
\param A The matrix to operate on. \param A The matrix to operate on.
*/ */
SeqDilu(const M& A) MultithreadDILU(const M& A)
: A_(A) : A_(A)
, A_reordered_(M(A_.N(), A_.N(), A_.nonzeroes(), M::row_wise))
{ {
OPM_TIMEBLOCK(prec_construct);
// TODO: rewrite so this value is set by an argument to the constructor
#if HAVE_OPENMP
use_multithreading = omp_get_max_threads() > 1;
#endif
if (use_multithreading) {
//! Assuming symmetric matrices using a lower triangular coloring to construct
//! the levels is sufficient
level_sets_ = Opm::getMatrixRowColoring(A_, Opm::ColoringType::LOWER);
reordered_to_natural_ = std::vector<std::size_t>(A_.N());
natural_to_reorder_ = std::vector<std::size_t>(A_.N());
int globCnt = 0;
for (const auto& level_set : level_sets_) {
for (const auto j : level_set) {
reordered_to_natural_[globCnt] = j;
natural_to_reorder_[j] = globCnt++;
}
}
for (auto dst_row_it = A_reordered_.createbegin(); dst_row_it != A_reordered_.createend(); ++dst_row_it) {
auto src_row = A_.begin() + reordered_to_natural_[dst_row_it.index()];
// For eleemnts in A
for (auto elem = src_row->begin(); elem != src_row->end(); elem++) {
dst_row_it.insert(elem.index());
}
}
}
Dinv_.resize(A_.N()); Dinv_.resize(A_.N());
// the Dinv matrix must be initialised
update(); update();
} }
@ -67,32 +105,13 @@ class SeqDilu : public PreconditionerWithUpdate<X, Y>
\brief Update the preconditioner. \brief Update the preconditioner.
\copydoc Preconditioner::update() \copydoc Preconditioner::update()
*/ */
virtual void update() override void update() override
{ {
OPM_TIMEBLOCK(update); OPM_TIMEBLOCK(prec_update);
if (use_multithreading) {
auto endi = A_.end(); parallelUpdate();
for ( auto row = A_.begin(); row != endi; ++row) { } else {
const auto row_i = row.index(); serialUpdate();
Dinv_[row_i] = A_[row_i][row_i];
}
for ( auto row = A_.begin(); row != endi; ++row)
{
const auto row_i = row.index();
auto Dinv_temp = Dinv_[row_i];
for (auto a_ij = row->begin(); a_ij.index() < row_i; ++a_ij)
{
const auto col_j = a_ij.index();
const auto a_ji = A_[col_j].find(row_i);
// if A[i, j] != 0 and A[j, i] != 0
if (a_ji != A_[col_j].end()) {
// Dinv_temp -= A[i, j] * d[j] * A[j, i]
Dinv_temp -= (*a_ij) * Dune::FieldMatrix(Dinv_[col_j]) * (*a_ji);
}
}
Dinv_temp.invert();
Dinv_[row_i] = Dinv_temp;
} }
} }
@ -100,7 +119,7 @@ class SeqDilu : public PreconditionerWithUpdate<X, Y>
\brief Prepare the preconditioner. \brief Prepare the preconditioner.
\copydoc Preconditioner::pre(X&,Y&) \copydoc Preconditioner::pre(X&,Y&)
*/ */
virtual void pre(X& v, Y& d) override void pre(X& v, Y& d) override
{ {
DUNE_UNUSED_PARAMETER(v); DUNE_UNUSED_PARAMETER(v);
DUNE_UNUSED_PARAMETER(d); DUNE_UNUSED_PARAMETER(d);
@ -111,52 +130,13 @@ class SeqDilu : public PreconditionerWithUpdate<X, Y>
\brief Apply the preconditioner. \brief Apply the preconditioner.
\copydoc Preconditioner::apply(X&,const Y&) \copydoc Preconditioner::apply(X&,const Y&)
*/ */
virtual void apply(X& v, const Y& d) override void apply(X& v, const Y& d) override
{ {
// M = (D + L_A) D^-1 (D + U_A) (a LU decomposition of M) OPM_TIMEBLOCK(prec_apply);
// where L_A and U_A are the strictly lower and upper parts of A and M has the properties: if (use_multithreading) {
// diag(A) = diag(M) parallelApply(v, d);
// Working with defect d = b - Ax and update v = x_{n+1} - x_n } else {
// solving the product M^-1(d) using upper and lower triangular solve serialApply(v, d);
// v = M^{-1}*d = (D + U_A)^{-1} D (D + L_A)^{-1} * d
OPM_TIMEBLOCK(apply);
using Xblock = typename X::block_type;
using Yblock = typename Y::block_type;
// lower triangular solve: (D + L_A) y = d
auto endi = A_.end();
for (auto row = A_.begin(); row != endi; ++row)
{
const auto row_i = row.index();
Yblock rhs = d[row_i];
for (auto a_ij = (*row).begin(); a_ij.index() < row_i; ++a_ij) {
// if A[i][j] != 0
// rhs -= A[i][j]* y[j], where v_j stores y_j
const auto col_j = a_ij.index();
a_ij->mmv(v[col_j], rhs);
}
// y_i = Dinv_i * rhs
// storing y_i in v_i
Dinv_[row_i].mv(rhs, v[row_i]); // (D + L_A)_ii = D_i
}
// upper triangular solve: (D + U_A) v = Dy
auto rendi = A_.beforeBegin();
for (auto row = A_.beforeEnd(); row != rendi; --row)
{
const auto row_i = row.index();
// rhs = 0
Xblock rhs(0.0);
for (auto a_ij = (*row).beforeEnd(); a_ij.index() > row_i; --a_ij) {
// if A[i][j] != 0
// rhs += A[i][j]*v[j]
const auto col_j = a_ij.index();
a_ij->umv(v[col_j], rhs);
}
// calculate update v = M^-1*d
// v_i = y_i - Dinv_i*rhs
// before update v_i is y_i
Dinv_[row_i].mmv(rhs, v[row_i]);
} }
} }
@ -164,11 +144,11 @@ class SeqDilu : public PreconditionerWithUpdate<X, Y>
\brief Clean up. \brief Clean up.
\copydoc Preconditioner::post(X&) \copydoc Preconditioner::post(X&)
*/ */
virtual void post(X& x) override void post(X& x) override
{ {
DUNE_UNUSED_PARAMETER(x); DUNE_UNUSED_PARAMETER(x);
} }
std::vector<typename M::block_type> getDiagonal() std::vector<typename M::block_type> getDiagonal()
{ {
return Dinv_; return Dinv_;
@ -183,10 +163,198 @@ class SeqDilu : public PreconditionerWithUpdate<X, Y>
private: private:
//! \brief The matrix we operate on. //! \brief The matrix we operate on.
const M& A_; const M& A_;
//! \brief Copy of A_ that is reordered to store rows that can be computed simultaneously next to each other to
//! increase cache usage when multithreading
M A_reordered_;
//! \brief The inverse of the diagnal matrix //! \brief The inverse of the diagnal matrix
std::vector<typename M::block_type> Dinv_; std::vector<typename M::block_type> Dinv_;
//! \brief SparseTable storing each row by level
Opm::SparseTable<std::size_t> level_sets_;
//! \brief converts from index in reordered structure to index natural ordered structure
std::vector<std::size_t> reordered_to_natural_;
//! \brief converts from index in natural ordered structure to index reordered strucutre
std::vector<std::size_t> natural_to_reorder_;
//! \brief Boolean value describing whether or not to use multithreaded version of functions
bool use_multithreading{false};
void serialUpdate()
{
for (std::size_t row = 0; row < A_.N(); ++row) {
Dinv_[row] = A_[row][row];
}
for (auto row = A_.begin(); row != A_.end(); ++row) {
const auto row_i = row.index();
auto Dinv_temp = Dinv_[row_i];
for (auto a_ij = row->begin(); a_ij.index() < row_i; ++a_ij) {
const auto col_j = a_ij.index();
const auto a_ji = A_[col_j].find(row_i);
// if A[i, j] != 0 and A[j, i] != 0
if (a_ji != A_[col_j].end()) {
// Dinv_temp -= A[i, j] * d[j] * A[j, i]
Dinv_temp -= (*a_ij) * Dune::FieldMatrix(Dinv_[col_j]) * (*a_ji);
}
}
Dinv_temp.invert();
Dinv_[row_i] = Dinv_temp;
}
}
void parallelUpdate()
{
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (std::size_t row = 0; row != A_.N(); ++row) {
Dinv_[natural_to_reorder_[row]] = A_[row][row];
}
// TODO: is there a better/faster way of copying all values?
for (auto dst_row_it = A_reordered_.begin(); dst_row_it != A_reordered_.end(); ++dst_row_it) {
auto src_row = A_.begin() + reordered_to_natural_[dst_row_it.index()];
for (auto elem = src_row->begin(); elem != src_row->end(); elem++) {
A_reordered_[dst_row_it.index()][elem.index()] = *elem;
}
}
int level_start_idx = 0;
for (int level = 0; level < level_sets_.size(); ++level) {
const int num_of_rows_in_level = level_sets_[level].size();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row_idx_in_level = 0; row_idx_in_level < num_of_rows_in_level; ++row_idx_in_level) {
auto row = A_reordered_.begin() + level_start_idx + row_idx_in_level;
const auto row_i = reordered_to_natural_[row.index()];
// auto Dinv_temp = Dinv_[row_i];
auto Dinv_temp = Dinv_[level_start_idx + row_idx_in_level];
for (auto a_ij = row->begin(); a_ij.index() < row_i; ++a_ij) {
const auto col_j = natural_to_reorder_[a_ij.index()];
const auto a_ji = A_reordered_[col_j].find(row_i);
if (a_ji != A_reordered_[col_j].end()) {
// Dinv_temp -= A[i, j] * d[j] * A[j, i]
Dinv_temp -= (*a_ij) * Dune::FieldMatrix(Dinv_[col_j]) * (*a_ji);
}
}
Dinv_temp.invert();
Dinv_[level_start_idx + row_idx_in_level] = Dinv_temp;
}
level_start_idx += num_of_rows_in_level;
}
}
void serialApply(X& v, const Y& d)
{
// M = (D + L_A) D^-1 (D + U_A) (a LU decomposition of M)
// where L_A and U_A are the strictly lower and upper parts of A and M has the properties:
// diag(A) = diag(M)
// Working with defect d = b - Ax and update v = x_{n+1} - x_n
// solving the product M^-1(d) using upper and lower triangular solve
// v = M^{-1}*d = (D + U_A)^{-1} D (D + L_A)^{-1} * d
// lower triangular solve: (D + L_A) y = d
using Xblock = typename X::block_type;
using Yblock = typename Y::block_type;
{
OPM_TIMEBLOCK(lower_solve);
auto endi = A_.end();
for (auto row = A_.begin(); row != endi; ++row) {
const auto row_i = row.index();
Yblock rhs = d[row_i];
for (auto a_ij = (*row).begin(); a_ij.index() < row_i; ++a_ij) {
// if A[i][j] != 0
// rhs -= A[i][j]* y[j], where v_j stores y_j
const auto col_j = a_ij.index();
a_ij->mmv(v[col_j], rhs);
}
// y_i = Dinv_i * rhs
// storing y_i in v_i
Dinv_[row_i].mv(rhs, v[row_i]); // (D + L_A)_ii = D_i
}
}
{
OPM_TIMEBLOCK(upper_solve);
// upper triangular solve: (D + U_A) v = Dy
auto rendi = A_.beforeBegin();
for (auto row = A_.beforeEnd(); row != rendi; --row) {
const auto row_i = row.index();
// rhs = 0
Xblock rhs(0.0);
for (auto a_ij = (*row).beforeEnd(); a_ij.index() > row_i; --a_ij) {
// if A[i][j] != 0
// rhs += A[i][j]*v[j]
const auto col_j = a_ij.index();
a_ij->umv(v[col_j], rhs);
}
// calculate update v = M^-1*d
// v_i = y_i - Dinv_i*rhs
// before update v_i is y_i
Dinv_[row_i].mmv(rhs, v[row_i]);
}
}
}
void parallelApply(X& v, const Y& d)
{
using Xblock = typename X::block_type;
using Yblock = typename Y::block_type;
{
OPM_TIMEBLOCK(lower_solve);
int level_start_idx = 0;
for (int level = 0; level < level_sets_.size(); ++level) {
const int num_of_rows_in_level = level_sets_[level].size();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row_idx_in_level = 0; row_idx_in_level < num_of_rows_in_level; ++row_idx_in_level) {
auto row = A_reordered_.begin() + level_start_idx + row_idx_in_level;
const auto row_i = reordered_to_natural_[row.index()];
Yblock rhs = d[row_i];
for (auto a_ij = (*row).begin(); a_ij.index() < row_i; ++a_ij) {
// if A[i][j] != 0
// rhs -= A[i][j]* y[j], where v_j stores y_j
const auto col_j = a_ij.index();
a_ij->mmv(v[col_j], rhs);
}
// y_i = Dinv_i * rhs
// storing y_i in v_i
Dinv_[level_start_idx + row_idx_in_level].mv(rhs, v[row_i]); // (D + L_A)_ii = D_i
}
level_start_idx += num_of_rows_in_level;
}
}
{
int level_start_idx = A_.N();
// upper triangular solve: (D + U_A) v = Dy
for (int level = level_sets_.size() - 1; level >= 0; --level) {
const int num_of_rows_in_level = level_sets_[level].size();
level_start_idx -= num_of_rows_in_level;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row_idx_in_level = num_of_rows_in_level - 1; row_idx_in_level >= 0; --row_idx_in_level) {
auto row = A_reordered_.begin() + level_start_idx + row_idx_in_level;
const auto row_i = reordered_to_natural_[row.index()];
Xblock rhs(0.0);
for (auto a_ij = (*row).beforeEnd(); a_ij.index() > row_i; --a_ij) {
// rhs += A[i][j]*v[j]
const auto col_j = a_ij.index();
a_ij->umv(v[col_j], rhs);
}
// calculate update v = M^-1*d
// v_i = y_i - Dinv_i*rhs
// before update v_i is y_i
Dinv_[level_start_idx + row_idx_in_level].mmv(rhs, v[row_i]);
}
}
}
}
}; };
} // namespace Dune } // namespace Dune
#endif #endif

View File

@ -6,28 +6,28 @@
namespace Dune namespace Dune
{ {
template <class M, class X, class Y> template <class M, class X, class Y>
class SeqDilu; class MultithreadDILU;
namespace Amg namespace Amg
{ {
/** /**
* @brief Policy for the construction of the SeqDilu smoother * @brief Policy for the construction of the MultithreadDILU smoother
*/ */
template <class M, class X, class Y> template <class M, class X, class Y>
struct ConstructionTraits<SeqDilu<M, X, Y>> { struct ConstructionTraits<MultithreadDILU<M, X, Y>> {
using Arguments = DefaultConstructionArgs<SeqDilu<M, X, Y>>; using Arguments = DefaultConstructionArgs<MultithreadDILU<M, X, Y>>;
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7) #if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7)
static inline std::shared_ptr<SeqDilu<M, X, Y>> construct(Arguments& args) { static inline std::shared_ptr<MultithreadDILU<M, X, Y>> construct(Arguments& args) {
return std::make_shared<SeqDilu<M, X, Y>>(args.getMatrix()); return std::make_shared<MultithreadDILU<M, X, Y>>(args.getMatrix());
} }
#else #else
static inline SeqDilu<M, X, Y>* construct(Arguments& args) { static inline MultithreadDILU<M, X, Y>* construct(Arguments& args) {
return new SeqDilu<M, X, Y>(args.getMatrix()); return new MultithreadDILU<M, X, Y>(args.getMatrix());
} }
static void deconstruct(SeqDilu<M, X, Y>* dilu) { static void deconstruct(MultithreadDILU<M, X, Y>* dilu) {
delete dilu; delete dilu;
} }
#endif #endif

View File

@ -164,7 +164,7 @@ struct StandardPreconditioners
}); });
F::addCreator("DILU", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) { F::addCreator("DILU", [](const O& op, const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
DUNE_UNUSED_PARAMETER(prm); DUNE_UNUSED_PARAMETER(prm);
return wrapBlockPreconditioner<SeqDilu<M, V, V>>(comm, op.getmat()); return wrapBlockPreconditioner<MultithreadDILU<M, V, V>>(comm, op.getmat());
}); });
F::addCreator("Jac", [](const O& op, const P& prm, const std::function<V()>&, F::addCreator("Jac", [](const O& op, const P& prm, const std::function<V()>&,
std::size_t, const C& comm) { std::size_t, const C& comm) {
@ -204,7 +204,7 @@ struct StandardPreconditioners
return prec; return prec;
} }
else if (smoother == "DILU") { else if (smoother == "DILU") {
using SeqSmoother = Dune::SeqDilu<M, V, V>; using SeqSmoother = Dune::MultithreadDILU<M, V, V>;
using Smoother = Dune::BlockPreconditioner<V, V, C, SeqSmoother>; using Smoother = Dune::BlockPreconditioner<V, V, C, SeqSmoother>;
using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments; using SmootherArgs = typename Dune::Amg::SmootherTraits<Smoother>::Arguments;
SmootherArgs sargs; SmootherArgs sargs;
@ -350,7 +350,7 @@ struct StandardPreconditioners<Operator,Dune::Amg::SequentialInformation>
}); });
F::addCreator("DILU", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) { F::addCreator("DILU", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
DUNE_UNUSED_PARAMETER(prm); DUNE_UNUSED_PARAMETER(prm);
return std::make_shared<SeqDilu<M, V, V>>(op.getmat()); return std::make_shared<MultithreadDILU<M, V, V>>(op.getmat());
}); });
F::addCreator("Jac", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) { F::addCreator("Jac", [](const O& op, const P& prm, const std::function<V()>&, std::size_t) {
const int n = prm.get<int>("repeats", 1); const int n = prm.get<int>("repeats", 1);
@ -385,7 +385,7 @@ struct StandardPreconditioners<Operator,Dune::Amg::SequentialInformation>
using Smoother = SeqJac<M, V, V>; using Smoother = SeqJac<M, V, V>;
return AMGHelper<O,C,M,V>::template makeAmgPreconditioner<Smoother>(op, prm); return AMGHelper<O,C,M,V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else if (smoother == "DILU") { } else if (smoother == "DILU") {
using Smoother = SeqDilu<M, V, V>; using Smoother = MultithreadDILU<M, V, V>;
return AMGHelper<O,C,M,V>::template makeAmgPreconditioner<Smoother>(op, prm); return AMGHelper<O,C,M,V>::template makeAmgPreconditioner<Smoother>(op, prm);
} else if (smoother == "SOR") { } else if (smoother == "SOR") {
using Smoother = SeqSOR<M, V, V>; using Smoother = SeqSOR<M, V, V>;

View File

@ -74,7 +74,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUDiagIsCorrect2x2NoZeros, T, NumericTypes)
// D_11 = A_11 - L_10 D_00_inv U_01 // D_11 = A_11 - L_10 D_00_inv U_01
auto D_11 = A[1][1] - A[1][0] * D_00_inv * A[0][1]; auto D_11 = A[1][1] - A[1][0] * D_00_inv * A[0][1];
Dune::SeqDilu<Matrix, Vector, Vector> seqdilu(A); Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
auto Dinv = seqdilu.getDiagonal(); auto Dinv = seqdilu.getDiagonal();
@ -140,7 +140,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUDiagIsCorrect2x2, T, NumericTypes)
// D_11 = A_11 - L_10 D_00_inv U_01 = A_11 // D_11 = A_11 - L_10 D_00_inv U_01 = A_11
auto D_11 = A[1][1]; auto D_11 = A[1][1];
Dune::SeqDilu<Matrix, Vector, Vector> seqdilu(A); Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
auto Dinv = seqdilu.getDiagonal(); auto Dinv = seqdilu.getDiagonal();
@ -258,7 +258,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsCorrectNoZeros, T, NumericTypes)
Vector new_x = x; Vector new_x = x;
new_x += z; new_x += z;
Dune::SeqDilu<Matrix, Vector, Vector> seqdilu(A); Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
seqdilu.apply(x, b); seqdilu.apply(x, b);
for (int i = 0; i < 2; ++i) { for (int i = 0; i < 2; ++i) {
@ -363,7 +363,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsCorrect1, T, NumericTypes)
Vector new_x = x; Vector new_x = x;
new_x += z; new_x += z;
Dune::SeqDilu<Matrix, Vector, Vector> seqdilu(A); Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
seqdilu.apply(x, b); seqdilu.apply(x, b);
for (int i = 0; i < 2; ++i) { for (int i = 0; i < 2; ++i) {
@ -462,7 +462,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsCorrect2, T, NumericTypes)
Vector new_x = x; Vector new_x = x;
new_x += z; new_x += z;
Dune::SeqDilu<Matrix, Vector, Vector> seqdilu(A); Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
seqdilu.apply(x, b); seqdilu.apply(x, b);
for (int i = 0; i < 2; ++i) { for (int i = 0; i < 2; ++i) {
@ -573,7 +573,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUDiagIsCorrect3x3, T, NumericTypes)
auto D_22_inv = D_22; auto D_22_inv = D_22;
D_22_inv.invert(); D_22_inv.invert();
Dune::SeqDilu<Matrix, Vector, Vector> seqdilu(A); Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
auto Dinv = seqdilu.getDiagonal(); auto Dinv = seqdilu.getDiagonal();
// diagonal stores inverse // diagonal stores inverse
@ -766,7 +766,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsCorrect3, T, NumericTypes)
Vector new_x = x; Vector new_x = x;
new_x += z; new_x += z;
Dune::SeqDilu<Matrix, Vector, Vector> seqdilu(A); Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
seqdilu.apply(x, b); seqdilu.apply(x, b);
for (int i = 0; i < 3; ++i) { for (int i = 0; i < 3; ++i) {
@ -812,7 +812,7 @@ BOOST_AUTO_TEST_CASE_TEMPLATE(SeqDILUApplyIsEqualToDuneSeqILUApply, T, NumericTy
A[1][1][1][1] = -1.0; A[1][1][1][1] = -1.0;
Dune::SeqDilu<Matrix, Vector, Vector> seqdilu(A); Dune::MultithreadDILU<Matrix, Vector, Vector> seqdilu(A);
Dune::SeqILU<Matrix, Vector, Vector> seqilu(A, 1.0); Dune::SeqILU<Matrix, Vector, Vector> seqilu(A, 1.0);
Vector dilu_x(2); Vector dilu_x(2);