Prepare for extended models.

Let the code loop over number of components instead of phase
Pass TypeTag as template parameter instead of all the properties.
This commit is contained in:
Tor Harald Sandve
2017-05-03 13:34:15 +02:00
parent 4aa9dc5375
commit 6084721812
10 changed files with 443 additions and 447 deletions

View File

@@ -28,12 +28,10 @@
std::vector<double>
Opm::WellDensitySegmented::computeConnectionDensities(const Wells& wells,
const WellStateFullyImplicitBlackoil& wstate,
const PhaseUsage& phase_usage,
const std::vector<double>& perfComponentRates,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
@@ -43,16 +41,17 @@ Opm::WellDensitySegmented::computeConnectionDensities(const Wells& wells,
const int np = wells.number_of_phases;
const int nw = wells.number_of_wells;
const int nperf = wells.well_connpos[nw];
const int numComponents = perfComponentRates.size() / nperf;
if (wells.number_of_phases != phase_usage.num_phases) {
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. phase_usage.");
}
if (nperf*np != int(surf_dens_perf.size())) {
if (nperf*numComponents != int(surf_dens_perf.size())) {
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. surf_dens.");
}
if (nperf*np != int(wstate.perfPhaseRates().size())) {
if (nperf*numComponents != int(perfComponentRates.size())) {
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. wstate.");
}
if (nperf*np != int(b_perf.size())) {
if (nperf*numComponents != int(b_perf.size())) {
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. b_perf.");
}
if ((!rsmax_perf.empty()) || (!rvmax_perf.empty())) {
@@ -69,20 +68,20 @@ Opm::WellDensitySegmented::computeConnectionDensities(const Wells& wells,
// component) exiting up the wellbore from each perforation,
// taking into account flow from lower in the well, and
// in/out-flow at each perforation.
std::vector<double> q_out_perf(nperf*np);
std::vector<double> q_out_perf(nperf*numComponents);
for (int w = 0; w < nw; ++w) {
// Iterate over well perforations from bottom to top.
for (int perf = wells.well_connpos[w+1] - 1; perf >= wells.well_connpos[w]; --perf) {
for (int phase = 0; phase < np; ++phase) {
for (int component = 0; component < numComponents; ++component) {
if (perf == wells.well_connpos[w+1] - 1) {
// This is the bottom perforation. No flow from below.
q_out_perf[perf*np + phase] = 0.0;
q_out_perf[perf*numComponents + component] = 0.0;
} else {
// Set equal to flow from below.
q_out_perf[perf*np + phase] = q_out_perf[(perf+1)*np + phase];
q_out_perf[perf*numComponents + component] = q_out_perf[(perf+1)*numComponents + component];
}
// Subtract outflow through perforation.
q_out_perf[perf*np + phase] -= wstate.perfPhaseRates()[perf*np + phase];
q_out_perf[perf*numComponents + component] -= perfComponentRates[perf*numComponents + component];
}
}
}
@@ -93,22 +92,25 @@ Opm::WellDensitySegmented::computeConnectionDensities(const Wells& wells,
// Finally compute densities for the segments associated with each perforation.
const int gaspos = phase_usage.phase_pos[BlackoilPhases::Vapour];
const int oilpos = phase_usage.phase_pos[BlackoilPhases::Liquid];
std::vector<double> mix(np);
std::vector<double> x(np);
std::vector<double> surf_dens(np);
std::vector<double> mix(numComponents,0.0);
std::vector<double> x(numComponents);
std::vector<double> surf_dens(numComponents);
std::vector<double> dens(nperf);
for (int w = 0; w < nw; ++w) {
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w+1]; ++perf) {
// Find component mix.
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + np*perf,
q_out_perf.begin() + np*(perf+1), 0.0);
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + numComponents*perf,
q_out_perf.begin() + numComponents*(perf+1), 0.0);
if (tot_surf_rate != 0.0) {
for (int phase = 0; phase < np; ++phase) {
mix[phase] = std::fabs(q_out_perf[perf*np + phase]/tot_surf_rate);
for (int component = 0; component < numComponents; ++component) {
mix[component] = std::fabs(q_out_perf[perf*numComponents + component]/tot_surf_rate);
}
} else {
// No flow => use well specified fractions for mix.
std::copy(wells.comp_frac + w*np, wells.comp_frac + (w+1)*np, mix.begin());
for (int phase = 0; phase < np; ++phase) {
mix[phase] = wells.comp_frac[w*np + phase];
}
// intialize 0.0 for comIdx >= np;
}
// Compute volume ratio.
x = mix;
@@ -129,11 +131,11 @@ Opm::WellDensitySegmented::computeConnectionDensities(const Wells& wells,
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
}
double volrat = 0.0;
for (int phase = 0; phase < np; ++phase) {
volrat += x[phase] / b_perf[perf*np + phase];
for (int component = 0; component < numComponents; ++component) {
volrat += x[component] / b_perf[perf*numComponents + component];
}
for (int phase = 0; phase < np; ++phase) {
surf_dens[phase] = surf_dens_perf[perf*np + phase];
for (int component = 0; component < numComponents; ++component) {
surf_dens[component] = surf_dens_perf[perf*numComponents + component];
}
// Compute segment density.