use the blackoil PVT classes from opm-material instead of the opm-core ones

This commit is contained in:
Andreas Lauser 2016-01-29 12:55:50 +01:00
parent 2c9a727844
commit 64c94aebc7
2 changed files with 229 additions and 158 deletions

View File

@ -133,9 +133,11 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
materialLawManager_ = materialLawManager;
// Copy properties that do not depend on the postion within the grid.
oilPvt_ = props.oilPvt_;
gasPvt_ = props.gasPvt_;
waterPvt_ = props.waterPvt_;
phase_usage_ = props.phase_usage_;
props_ = props.props_;
densities_ = props.densities_;
surfaceDensity_ = props.surfaceDensity_;
vap1_ = props.vap1_;
vap2_ = props.vap2_;
vap_satmax_guard_ = props.vap_satmax_guard_;
@ -166,116 +168,35 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
phase_usage_ = phaseUsageFromDeck(deck);
gasPvt_ = std::make_shared<GasPvt>();
oilPvt_ = std::make_shared<OilPvt>();
waterPvt_ = std::make_shared<WaterPvt>();
gasPvt_->initFromDeck(deck, eclState);
oilPvt_->initFromDeck(deck, eclState);
waterPvt_->initFromDeck(deck, eclState);
// Surface densities. Accounting for different orders in eclipse and our code.
Opm::DeckKeywordConstPtr densityKeyword = deck->getKeyword("DENSITY");
int numRegions = densityKeyword->size();
auto tables = eclState->getTableManager();
densities_.resize(numRegions);
surfaceDensity_.resize(numRegions);
for (int regionIdx = 0; regionIdx < numRegions; ++regionIdx) {
if (phase_usage_.phase_used[Liquid]) {
densities_[regionIdx][phase_usage_.phase_pos[Liquid]]
surfaceDensity_[regionIdx][phase_usage_.phase_pos[Liquid]]
= densityKeyword->getRecord(regionIdx)->getItem("OIL")->getSIDouble(0);
}
if (phase_usage_.phase_used[Aqua]) {
densities_[regionIdx][phase_usage_.phase_pos[Aqua]]
surfaceDensity_[regionIdx][phase_usage_.phase_pos[Aqua]]
= densityKeyword->getRecord(regionIdx)->getItem("WATER")->getSIDouble(0);
}
if (phase_usage_.phase_used[Vapour]) {
densities_[regionIdx][phase_usage_.phase_pos[Vapour]]
surfaceDensity_[regionIdx][phase_usage_.phase_pos[Vapour]]
= densityKeyword->getRecord(regionIdx)->getItem("GAS")->getSIDouble(0);
}
}
const int numSamples = 0;
// Resize the property objects container
props_.resize(phase_usage_.num_phases);
// Water PVT
if (phase_usage_.phase_used[Aqua]) {
// if water is used, we require the presence of the "PVTW"
// keyword for now...
std::shared_ptr<PvtConstCompr> pvtw(new PvtConstCompr);
pvtw->initFromWater(deck->getKeyword("PVTW"));
props_[phase_usage_.phase_pos[Aqua]] = pvtw;
// handle temperature dependence of the oil phase
if (!tables->getWatvisctTables().empty() || deck->hasKeyword("WATDENT")) {
// deal with temperature dependent properties
std::shared_ptr<ThermalWaterPvtWrapper> waterNiPvt(new ThermalWaterPvtWrapper);
waterNiPvt->initFromDeck(props_[phase_usage_.phase_pos[Aqua]], deck, eclState);
props_[phase_usage_.phase_pos[Aqua]] = waterNiPvt;
}
}
// Oil PVT
if (phase_usage_.phase_used[Liquid]) {
// for oil, we support the "PVDO", "PVTO" and "PVCDO"
// keywords...
const auto& pvdoTables = tables->getPvdoTables();
const auto& pvtoTables = tables->getPvtoTables();
if (!pvdoTables.empty()) {
if (numSamples > 0) {
auto splinePvdo = std::shared_ptr<PvtDeadSpline>(new PvtDeadSpline);
splinePvdo->initFromOil(pvdoTables, numSamples);
props_[phase_usage_.phase_pos[Liquid]] = splinePvdo;
} else {
auto pvdo = std::shared_ptr<PvtDead>(new PvtDead);
pvdo->initFromOil(pvdoTables);
props_[phase_usage_.phase_pos[Liquid]] = pvdo;
}
} else if (!pvtoTables.empty()) {
std::shared_ptr<PvtLiveOil> pvto(new PvtLiveOil(pvtoTables));
props_[phase_usage_.phase_pos[Liquid]] = pvto;
} else if (deck->hasKeyword("PVCDO")) {
std::shared_ptr<PvtConstCompr> pvcdo(new PvtConstCompr);
pvcdo->initFromOil(deck->getKeyword("PVCDO"));
props_[phase_usage_.phase_pos[Liquid]] = pvcdo;
} else {
OPM_THROW(std::runtime_error, "Input is missing PVDO, PVCDO or PVTO\n");
}
// handle temperature dependence of the oil phase
if (!tables->getOilvisctTables().empty() || deck->hasKeyword("THERMEX1")) {
std::shared_ptr<ThermalOilPvtWrapper> oilNiPvt(new ThermalOilPvtWrapper);
oilNiPvt->initFromDeck(props_[phase_usage_.phase_pos[Liquid]], deck, eclState);
props_[phase_usage_.phase_pos[Liquid]] = oilNiPvt;
}
}
// Gas PVT
if (phase_usage_.phase_used[Vapour]) {
// gas can be specified using the "PVDG" or "PVTG" keywords...
const auto& pvdgTables = tables->getPvdgTables();
const auto& pvtgTables = tables->getPvtgTables();
if (!pvdgTables.empty()) {
if (numSamples > 0) {
std::shared_ptr<PvtDeadSpline> splinePvt(new PvtDeadSpline);
splinePvt->initFromGas(pvdgTables, numSamples);
props_[phase_usage_.phase_pos[Vapour]] = splinePvt;
} else {
std::shared_ptr<PvtDead> deadPvt(new PvtDead);
deadPvt->initFromGas(pvdgTables);
props_[phase_usage_.phase_pos[Vapour]] = deadPvt;
}
} else if (!pvtgTables.empty()) {
props_[phase_usage_.phase_pos[Vapour]].reset(new PvtLiveGas(pvtgTables));
} else {
OPM_THROW(std::runtime_error, "Input is missing PVDG or PVTG\n");
}
// handle temperature dependence of the gas phase
if (!tables->getGasvisctTables().empty() || deck->hasKeyword("TREF")) {
std::shared_ptr<ThermalGasPvtWrapper> gasNiPvt(new ThermalGasPvtWrapper);
gasNiPvt->initFromDeck(props_[phase_usage_.phase_pos[Vapour]], deck, eclState);
props_[phase_usage_.phase_pos[Vapour]] = gasNiPvt;
}
}
// Oil vaporization controls (kw VAPPARS)
vap1_ = vap2_ = 0.0;
if (deck->hasKeyword("VAPPARS") && deck->hasKeyword("VAPOIL") && deck->hasKeyword("DISGAS")) {
@ -359,7 +280,7 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
V rhos = V::Zero(n);
for (int cellIdx = 0; cellIdx < n; ++cellIdx) {
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
const auto* rho = &densities_[pvtRegionIdx][0];
const auto* rho = &surfaceDensity_[pvtRegionIdx][0];
rhos[cellIdx] = rho[phaseIdx];
}
return rhos;
@ -379,18 +300,33 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not active.");
}
const int n = cells.size();
mapPvtRegions(cells);
assert(pw.size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Water]]->mu(n, pvt_region_.data(), pw.value().data(), T.value().data(), rs,
mu.data(), dmudp.data(), dmudr.data());
enum PressureEvalTag {};
typedef Opm::LocalAd::Evaluation<double, PressureEvalTag, /*size=*/1> LadEval;
LadEval pLad = 0.0;
LadEval TLad = 0.0;
pLad.derivatives[0] = 1.0;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pLad.value = pw.value()[i];
TLad.value = T.value()[i];
const LadEval& muLad = waterPvt_->viscosity(pvtRegionIdx, TLad, pLad);
mu[i] = muLad.value;
dmudp[i] = muLad.derivatives[0];
}
if (pw.derivative().empty()) {
return ADB::constant(std::move(mu));
} else {
@ -418,17 +354,42 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not active.");
}
const int n = cells.size();
mapPvtRegions(cells);
assert(po.size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
props_[phase_usage_.phase_pos[Oil]]->mu(n, pvt_region_.data(), po.value().data(), T.value().data(), rs.value().data(),
&cond[0], mu.data(), dmudp.data(), dmudr.data());
enum PressureRsEvalTag {};
typedef Opm::LocalAd::Evaluation<double, PressureRsEvalTag, /*size=*/2> LadEval;
LadEval pLad = 0.0;
LadEval TLad = 0.0;
LadEval RsLad = 0.0;
pLad.derivatives[0] = 1.0;
RsLad.derivatives[1] = 1.0;
LadEval muLad;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pLad.value = po.value()[i];
TLad.value = T.value()[i];
if (cond[i].hasFreeGas()) {
muLad = oilPvt_->saturatedViscosity(pvtRegionIdx, TLad, pLad);
}
else {
RsLad.value = rs.value()[i];
muLad = oilPvt_->viscosity(pvtRegionIdx, TLad, pLad, RsLad);
}
mu[i] = muLad.value;
dmudp[i] = muLad.derivatives[0];
dmudr[i] = muLad.derivatives[1];
}
ADB::M dmudp_diag(dmudp.matrix().asDiagonal());
ADB::M dmudr_diag(dmudr.matrix().asDiagonal());
@ -457,17 +418,42 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not active.");
}
const int n = cells.size();
mapPvtRegions(cells);
assert(pg.value().size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
props_[phase_usage_.phase_pos[Gas]]->mu(n, pvt_region_.data(), pg.value().data(), T.value().data(), rv.value().data(),&cond[0],
mu.data(), dmudp.data(), dmudr.data());
enum PressureRvEvalTag {};
typedef Opm::LocalAd::Evaluation<double, PressureRvEvalTag, /*size=*/2> LadEval;
LadEval pLad = 0.0;
LadEval TLad = 0.0;
LadEval RsLad = 0.0;
LadEval muLad;
pLad.derivatives[0] = 1.0;
RsLad.derivatives[1] = 1.0;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pLad.value = pg.value()[i];
TLad.value = T.value()[i];
if (cond[i].hasFreeOil()) {
muLad = gasPvt_->saturatedViscosity(pvtRegionIdx, TLad, pLad);
}
else {
RsLad.value = rv.value()[i];
muLad = gasPvt_->viscosity(pvtRegionIdx, TLad, pLad, RsLad);
}
mu[i] = muLad.value;
dmudp[i] = muLad.derivatives[0];
dmudr[i] = muLad.derivatives[1];
}
ADB::M dmudp_diag(dmudp.matrix().asDiagonal());
ADB::M dmudr_diag(dmudr.matrix().asDiagonal());
@ -496,19 +482,32 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not active.");
}
const int n = cells.size();
mapPvtRegions(cells);
assert(pw.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
const double* rs = 0;
props_[phase_usage_.phase_pos[Water]]->b(n, pvt_region_.data(), pw.value().data(), T.value().data(), rs,
b.data(), dbdp.data(), dbdr.data());
enum PressureEvalTag {};
typedef Opm::LocalAd::Evaluation<double, PressureEvalTag, /*size=*/1> LadEval;
LadEval pLad = 0.0;
LadEval TLad = 0.0;
pLad.derivatives[0] = 1.0;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pLad.value = pw.value()[i];
TLad.value = T.value()[i];
const LadEval& bLad = waterPvt_->inverseFormationVolumeFactor(pvtRegionIdx, TLad, pLad);
b[i] = bLad.value;
dbdp[i] = bLad.derivatives[0];
}
ADB::M dbdp_diag(dbdp.matrix().asDiagonal());
const int num_blocks = pw.numBlocks();
@ -533,18 +532,43 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not active.");
}
const int n = cells.size();
mapPvtRegions(cells);
assert(po.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
props_[phase_usage_.phase_pos[Oil]]->b(n, pvt_region_.data(), po.value().data(), T.value().data(), rs.value().data(),
&cond[0], b.data(), dbdp.data(), dbdr.data());
enum PressureRsEvalTag {};
typedef Opm::LocalAd::Evaluation<double, PressureRsEvalTag, /*size=*/2> LadEval;
LadEval pLad = 0.0;
LadEval TLad = 0.0;
LadEval RsLad = 0.0;
LadEval bLad;
pLad.derivatives[0] = 1.0;
RsLad.derivatives[1] = 1.0;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pLad.value = po.value()[i];
TLad.value = T.value()[i];
if (cond[i].hasFreeGas()) {
bLad = oilPvt_->saturatedInverseFormationVolumeFactor(pvtRegionIdx, TLad, pLad);
}
else {
RsLad.value = rs.value()[i];
bLad = oilPvt_->inverseFormationVolumeFactor(pvtRegionIdx, TLad, pLad, RsLad);
}
b[i] = bLad.value;
dbdp[i] = bLad.derivatives[0];
dbdr[i] = bLad.derivatives[1];
}
ADB::M dbdp_diag(dbdp.matrix().asDiagonal());
ADB::M dbdr_diag(dbdr.matrix().asDiagonal());
@ -573,18 +597,43 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not active.");
}
const int n = cells.size();
mapPvtRegions(cells);
assert(pg.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
props_[phase_usage_.phase_pos[Gas]]->b(n, pvt_region_.data(), pg.value().data(), T.value().data(), rv.value().data(), &cond[0],
b.data(), dbdp.data(), dbdr.data());
enum PressureRvEvalTag {};
typedef Opm::LocalAd::Evaluation<double, PressureRvEvalTag, /*size=*/2> LadEval;
LadEval pLad = 0.0;
LadEval TLad = 0.0;
LadEval RvLad = 0.0;
LadEval bLad;
pLad.derivatives[0] = 1.0;
RvLad.derivatives[1] = 1.0;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pLad.value = pg.value()[i];
TLad.value = T.value()[i];
if (cond[i].hasFreeOil()) {
bLad = gasPvt_->saturatedInverseFormationVolumeFactor(pvtRegionIdx, TLad, pLad);
}
else {
RvLad.value = rv.value()[i];
bLad = gasPvt_->inverseFormationVolumeFactor(pvtRegionIdx, TLad, pLad, RvLad);
}
b[i] = bLad.value;
dbdp[i] = bLad.derivatives[0];
dbdr[i] = bLad.derivatives[1];
}
ADB::M dbdp_diag(dbdp.matrix().asDiagonal());
ADB::M dbdr_diag(dbdr.matrix().asDiagonal());
@ -611,14 +660,31 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call rsMax(): oil phase not present.");
OPM_THROW(std::runtime_error, "Cannot call rsSat(): oil phase not active.");
}
const int n = cells.size();
mapPvtRegions(cells);
assert(po.size() == n);
V rbub(n);
V drbubdp(n);
props_[phase_usage_.phase_pos[Oil]]->rsSat(n, pvt_region_.data(), po.value().data(), rbub.data(), drbubdp.data());
enum PressureEvalTag {};
typedef Opm::LocalAd::Evaluation<double, PressureEvalTag, /*size=*/1> LadEval;
LadEval pLad = 0.0;
LadEval TLad = 293.15; // temperature is not supported by this API!
pLad.derivatives[0] = 1.0;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pLad.value = po.value()[i];
const LadEval& RsLad = oilPvt_->saturatedGasDissolutionFactor(pvtRegionIdx, TLad, pLad);
rbub[i] = RsLad.value;
drbubdp[i] = RsLad.derivatives[0];
}
ADB::M drbubdp_diag(drbubdp.matrix().asDiagonal());
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
@ -645,26 +711,43 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
// ------ Rv condensation curve ------
/// Condensation curve for Rv as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n condensation point values for Rv.
ADB BlackoilPropsAdFromDeck::rvSat(const ADB& po,
ADB BlackoilPropsAdFromDeck::rvSat(const ADB& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call rvMax(): gas phase not present.");
OPM_THROW(std::runtime_error, "Cannot call rvSat(): gas phase not active.");
}
const int n = cells.size();
mapPvtRegions(cells);
assert(po.size() == n);
assert(pg.size() == n);
V rv(n);
V drvdp(n);
props_[phase_usage_.phase_pos[Gas]]->rvSat(n, pvt_region_.data(), po.value().data(), rv.data(), drvdp.data());
enum PressureEvalTag {};
typedef Opm::LocalAd::Evaluation<double, PressureEvalTag, /*size=*/1> LadEval;
LadEval pLad = 0.0;
LadEval TLad = 293.15; // temperature is not supported by this API!
pLad.derivatives[0] = 1.0;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pLad.value = pg.value()[i];
const LadEval& RvLad = gasPvt_->saturatedOilVaporizationFactor(pvtRegionIdx, TLad, pLad);
rv[i] = RvLad.value;
drvdp[i] = RvLad.derivatives[0];
}
ADB::M drvdp_diag(drvdp.matrix().asDiagonal());
const int num_blocks = po.numBlocks();
const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(drvdp_diag, po.derivative()[block], jacs[block]);
fastSparseProduct(drvdp_diag, pg.derivative()[block], jacs[block]);
}
return ADB::function(std::move(rv), std::move(jacs));
}
@ -913,21 +996,6 @@ BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck&
}
}
// Fills pvt_region_ with cellPvtRegionIdx_[cells].
void BlackoilPropsAdFromDeck::mapPvtRegions(const std::vector<int>& cells) const
{
const int n = cells.size();
pvt_region_.resize(n);
for (int ii = 0; ii < n; ++ii) {
pvt_region_[ii] = cellPvtRegionIdx_[cells[ii]];
}
}
/// Obtain the scaled critical oil in gas saturation values.
/// \param[in] cells Array of cell indices.
/// \return Array of critical oil in gas saturaion values.

View File

@ -29,6 +29,12 @@
#include <opm/core/props/satfunc/SaturationPropsFromDeck.hpp>
#include <opm/core/props/rock/RockFromDeck.hpp>
#include <opm/material/fluidsystems/blackoilpvt/GasPvtMultiplexer.hpp>
#include <opm/material/fluidsystems/blackoilpvt/OilPvtMultiplexer.hpp>
#include <opm/material/fluidsystems/blackoilpvt/WaterPvtMultiplexer.hpp>
#include <opm/material/localad/Math.hpp>
#include <opm/material/localad/Evaluation.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
@ -59,6 +65,10 @@ namespace Opm
{
friend class BlackoilPropsDataHandle;
public:
typedef Opm::GasPvtMultiplexer<double> GasPvt;
typedef Opm::OilPvtMultiplexer<double> OilPvt;
typedef Opm::WaterPvtMultiplexer<double> WaterPvt;
typedef typename SaturationPropsFromDeck::MaterialLawManager MaterialLawManager;
/// Constructor to create a blackoil properties from an ECL deck.
@ -392,9 +402,6 @@ namespace Opm
const std::vector<int>& cells,
const double vap) const;
// Fills pvt_region_ with cellPvtRegionIdx_[cells].
void mapPvtRegions(const std::vector<int>& cells) const;
RockFromDeck rock_;
// This has to be a shared pointer as we must
@ -409,15 +416,8 @@ namespace Opm
// The PVT region which is to be used for each cell
std::vector<int> cellPvtRegionIdx_;
// Used for storing the region-per-cell array computed in calls
// to pvt functions.
mutable std::vector<int> pvt_region_;
// The PVT properties. One object per active fluid phase.
std::vector<std::shared_ptr<Opm::PvtInterface> > props_;
// Densities, one std::array per PVT region.
std::vector<std::array<double, BlackoilPhases::MaxNumPhases> > densities_;
std::vector<std::array<double, BlackoilPhases::MaxNumPhases> > surfaceDensity_;
// VAPPARS
double vap1_;
@ -425,6 +425,9 @@ namespace Opm
std::vector<double> satOilMax_;
double vap_satmax_guard_; //Threshold value to promote stability
std::shared_ptr<GasPvt> gasPvt_;
std::shared_ptr<OilPvt> oilPvt_;
std::shared_ptr<WaterPvt> waterPvt_;
};
} // namespace Opm