mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Removed unused reordering functions, file, header inclusions
This commit is contained in:
@@ -45,7 +45,6 @@ list (APPEND MAIN_SOURCE_FILES
|
||||
opm/simulators/flow/SimulatorFullyImplicitBlackoilEbos.cpp
|
||||
opm/simulators/flow/ValidationFunctions.cpp
|
||||
opm/simulators/linalg/bda/WellContributions.cpp
|
||||
opm/simulators/linalg/bda/Matrix.cpp
|
||||
opm/simulators/linalg/bda/MultisegmentWellContribution.cpp
|
||||
opm/simulators/linalg/ExtractParallelGridInformationToISTL.cpp
|
||||
opm/simulators/linalg/FlexibleSolver1.cpp
|
||||
|
@@ -34,7 +34,6 @@
|
||||
#if HAVE_CUDA || HAVE_OPENCL || HAVE_AMGCL || HAVE_ROCALUTION
|
||||
#include <opm/simulators/linalg/bda/BdaBridge.hpp>
|
||||
#include <opm/simulators/linalg/bda/WellContributions.hpp>
|
||||
#include <iostream>
|
||||
#endif
|
||||
|
||||
#if HAVE_DUNE_ALUGRID
|
||||
@@ -212,7 +211,6 @@ prepare(const Grid& grid,
|
||||
useWellConn,
|
||||
wellConnectionsGraph_,
|
||||
numJacobiBlocks_);
|
||||
std::cout << "Create block-Jacobi pattern" << std::endl;
|
||||
this->blockJacobiAdjacency(grid, cellPartition, nonzeroes);
|
||||
}
|
||||
}
|
||||
|
@@ -1,63 +0,0 @@
|
||||
/*
|
||||
Copyright 2020 Equinor ASA
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#include <opm/common/OpmLog/OpmLog.hpp>
|
||||
#include <opm/common/ErrorMacros.hpp>
|
||||
|
||||
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
|
||||
#include <opm/simulators/linalg/bda/Matrix.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
namespace Accelerator
|
||||
{
|
||||
|
||||
/*Sort a row of matrix elements from a CSR-format.*/
|
||||
void sortRow(int *colIndices, double *data, int left, int right) {
|
||||
int l = left;
|
||||
int r = right;
|
||||
int middle = colIndices[(l + r) >> 1];
|
||||
do {
|
||||
while (colIndices[l] < middle)
|
||||
l++;
|
||||
while (colIndices[r] > middle)
|
||||
r--;
|
||||
if (l <= r) {
|
||||
int lColIndex = colIndices[l];
|
||||
colIndices[l] = colIndices[r];
|
||||
colIndices[r] = lColIndex;
|
||||
double lDatum = data[l];
|
||||
data[l] = data[r];
|
||||
data[r] = lDatum;
|
||||
|
||||
l++;
|
||||
r--;
|
||||
}
|
||||
} while (l < r);
|
||||
if (left < r)
|
||||
sortRow(colIndices, data, left, r);
|
||||
if (right > l)
|
||||
sortRow(colIndices, data, l, right);
|
||||
|
||||
}
|
||||
|
||||
} // namespace Accelerator
|
||||
} // namespace Opm
|
@@ -63,8 +63,6 @@ public:
|
||||
int nnzs;
|
||||
};
|
||||
|
||||
void sortRow(int *colIndices, double *data, int left, int right);
|
||||
|
||||
} // namespace Accelerator
|
||||
} // namespace Opm
|
||||
|
||||
|
@@ -23,32 +23,9 @@
|
||||
|
||||
#include <opm/simulators/linalg/bda/Reorder.hpp>
|
||||
|
||||
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
|
||||
|
||||
#include <opm/common/ErrorMacros.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <functional>
|
||||
#include <random>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
#include <cassert>
|
||||
|
||||
namespace {
|
||||
|
||||
std::mt19937 make_urng()
|
||||
{
|
||||
std::random_device rd;
|
||||
std::array<unsigned int, std::mt19937::state_size> seed_data{};
|
||||
|
||||
std::generate_n(seed_data.begin(), seed_data.size(), std::ref(rd));
|
||||
std::seed_seq seq(seed_data.begin(), seed_data.end());
|
||||
|
||||
return std::mt19937{ seq };
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
@@ -56,212 +33,6 @@ namespace Accelerator
|
||||
{
|
||||
|
||||
|
||||
/* Give every node in the matrix (of which only the sparsity pattern in the
|
||||
* form of row pointers and column indices arrays are in the input), a color
|
||||
* in the colors array. Also return the amount of colors in the return integer.
|
||||
* This graph-coloring algorithm is based on the Jones-Plassmann algorithm, proposed in:
|
||||
* "A Parallel Graph Coloring Heuristic" by M.T. Jones and P.E. Plassmann in SIAM Journal of Scientific Computing 14 (1993) */
|
||||
|
||||
template <unsigned int block_size>
|
||||
int colorBlockedNodes(int rows, const int *CSRRowPointers, const int *CSRColIndices, const int *CSCColPointers, const int *CSCRowIndices, std::vector<int>& colors, int maxRowsPerColor, int maxColsPerColor)
|
||||
{
|
||||
auto left = static_cast<std::vector<int>::difference_type>(colors.size());
|
||||
int c = -1;
|
||||
const int max_tries = 100; // since coloring is random, it is possible that a coloring fails. In that case, try again.
|
||||
|
||||
std::vector<bool> visitedColumns(rows, false);
|
||||
|
||||
auto gen = make_urng();
|
||||
|
||||
std::vector<int> randoms(rows);
|
||||
for (unsigned int t = 0; t < max_tries; t++) {
|
||||
// (re)initialize data for coloring process
|
||||
std::uniform_int_distribution<int> uniform{}; // 0 .. INT_MAX
|
||||
|
||||
std::generate(randoms.begin(), randoms.end(),
|
||||
[&uniform, &gen]()
|
||||
{
|
||||
return uniform(gen);
|
||||
});
|
||||
|
||||
std::fill(colors.begin(), colors.end(), -1);
|
||||
|
||||
// actually perform coloring
|
||||
for (c = 0; c < MAX_COLORS; c++) {
|
||||
unsigned int rowsInColor = 0u;
|
||||
unsigned int colsInColor = 0u;
|
||||
for (int i = 0; i < rows; i++)
|
||||
{
|
||||
bool iMax = true; // true iff you have max random
|
||||
|
||||
// ignore nodes colored earlier
|
||||
if ((colors[i] != -1))
|
||||
continue;
|
||||
|
||||
int ir = randoms[i];
|
||||
|
||||
// look at all nodex that node i is connected to
|
||||
for (int k = CSRRowPointers[i]; k < CSRRowPointers[i + 1]; k++) {
|
||||
// ignore nodes colored earlier (and yourself)
|
||||
int j = CSRColIndices[k];
|
||||
int jc = colors[j];
|
||||
if (((jc != -1) && (jc != c)) || (i == j)) {
|
||||
continue;
|
||||
}
|
||||
// node i is not in the current color if one of its neighbours shares this color,
|
||||
if (jc == c) {
|
||||
iMax = false;
|
||||
break;
|
||||
}
|
||||
// or if one of its uncolored neighbours has a higher random value
|
||||
int jr = randoms[j];
|
||||
if (ir <= jr) {
|
||||
iMax = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// look at all nodes that have a connection to node i
|
||||
for (int k = CSCColPointers[i]; k < CSCColPointers[i + 1]; k++) {
|
||||
// ignore nodes colored earlier (and yourself)
|
||||
int j = CSCRowIndices[k];
|
||||
int jc = colors[j];
|
||||
if (((jc != -1) && (jc != c)) || (i == j)) {
|
||||
continue;
|
||||
}
|
||||
// node i is not in the current color if one of its neighbours shares this color,
|
||||
if (jc == c) {
|
||||
iMax = false;
|
||||
break;
|
||||
}
|
||||
// or if one of its uncolored neighbours has a higher random value
|
||||
int jr = randoms[j];
|
||||
if (ir <= jr) {
|
||||
iMax = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// assign color if you have the maximum random number
|
||||
if (iMax) {
|
||||
unsigned int additionalColsInRow = 0u;
|
||||
for (int k = CSRRowPointers[i]; k < CSRRowPointers[i + 1]; k++) {
|
||||
int j = CSRColIndices[k];
|
||||
if (!visitedColumns[j]) {
|
||||
visitedColumns[j] = true;
|
||||
additionalColsInRow += block_size;
|
||||
}
|
||||
}
|
||||
if ((colsInColor + additionalColsInRow) > static_cast<unsigned int>(maxColsPerColor)) {
|
||||
break;
|
||||
}
|
||||
colsInColor += additionalColsInRow;
|
||||
colors[i] = c;
|
||||
rowsInColor += block_size;
|
||||
if ((rowsInColor + block_size - 1) >= static_cast<unsigned int>(maxRowsPerColor)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check if graph coloring is done.
|
||||
left = std::count_if(colors.begin(), colors.end(),
|
||||
[](const int color) { return color == -1; });
|
||||
if (left == 0) {
|
||||
return c + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::ostringstream oss;
|
||||
oss << "Error could not find a graph coloring with " << c << " colors after " << max_tries << " tries.\nNumber of colorless nodes: " << left;
|
||||
OPM_THROW(std::logic_error, oss.str());
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
/* Reorder a matrix by a specified input order.
|
||||
* Both a to order array, which contains for every node from the old matrix where it will move in the new matrix,
|
||||
* and the from order, which contains for every node in the new matrix where it came from in the old matrix.
|
||||
* reordermapping_nonzeroes is filled with increasing indices, and reordered using the translated colIndices as keys,
|
||||
* this means the resulting reordermapping_nonzeroes array contains the mapping
|
||||
*/
|
||||
void reorderBlockedMatrixByPattern(BlockedMatrix *mat, std::vector<int>& reordermapping_nonzeroes, int *toOrder, int *fromOrder, BlockedMatrix *rmat){
|
||||
|
||||
int rIndex = 0;
|
||||
std::vector<int> tmp(mat->nnzbs);
|
||||
|
||||
reordermapping_nonzeroes.resize(mat->nnzbs);
|
||||
for(int i = 0; i < mat->nnzbs; ++i){
|
||||
reordermapping_nonzeroes[i] = i;
|
||||
}
|
||||
|
||||
rmat->rowPointers[0] = 0;
|
||||
for(int i = 0; i < mat->Nb; i++){
|
||||
int thisRow = fromOrder[i];
|
||||
// put thisRow from the old matrix into row i of the new matrix
|
||||
rmat->rowPointers[i+1] = rmat->rowPointers[i] + mat->rowPointers[thisRow+1] - mat->rowPointers[thisRow];
|
||||
for(int k = mat->rowPointers[thisRow]; k < mat->rowPointers[thisRow+1]; k++){
|
||||
tmp[rIndex] = reordermapping_nonzeroes[k]; // only get 1 entry per block
|
||||
rmat->colIndices[rIndex] = mat->colIndices[k];
|
||||
rIndex++;
|
||||
}
|
||||
}
|
||||
// re-assign column indices according to the new positions of the nodes referenced by the column indices
|
||||
for(int i = 0; i < mat->nnzbs; i++){
|
||||
rmat->colIndices[i] = toOrder[rmat->colIndices[i]];
|
||||
}
|
||||
// re-sort the column indices of every row.
|
||||
for(int i = 0; i < mat->Nb; i++){
|
||||
sortRow(rmat->colIndices, tmp.data(), rmat->rowPointers[i], rmat->rowPointers[i+1]-1);
|
||||
}
|
||||
for(int i = 0; i < mat->nnzbs; i++){
|
||||
reordermapping_nonzeroes[i] = tmp[i];
|
||||
}
|
||||
// std::copy();
|
||||
}
|
||||
|
||||
/* Reorder an array of nonzero blocks into another array, using a mapping */
|
||||
void reorderNonzeroes(BlockedMatrix *mat, std::vector<int>& reordermapping_nonzeroes, BlockedMatrix *rmat){
|
||||
assert(mat->block_size == rmat->block_size);
|
||||
|
||||
const unsigned int bs = mat->block_size;
|
||||
|
||||
for(int i = 0; i < mat->nnzbs; i++){
|
||||
int old_idx = reordermapping_nonzeroes[i];
|
||||
memcpy(rmat->nnzValues+i*bs*bs, mat->nnzValues+old_idx*bs*bs, sizeof(double)*bs*bs); // copy nnz block
|
||||
}
|
||||
}
|
||||
|
||||
/* Find a reorder mapping according to the colors that every node of the matrix has received */
|
||||
|
||||
void colorsToReordering(int Nb, std::vector<int>& colors, int numColors, int *toOrder, int *fromOrder, std::vector<int>& rowsPerColor) {
|
||||
int reordered = 0;
|
||||
|
||||
// Find reordering patterns
|
||||
for (int c = 0; c < numColors; c++) {
|
||||
for (int i = 0; i < Nb; i++) {
|
||||
if (colors[i] == c) {
|
||||
rowsPerColor[c]++;
|
||||
toOrder[i] = reordered;
|
||||
fromOrder[reordered] = i;
|
||||
reordered++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Reorder a vector according to a reordering pattern
|
||||
|
||||
template <unsigned int block_size>
|
||||
void reorderBlockedVectorByPattern(int Nb, double *vector, int *fromOrder, double *rVector) {
|
||||
for (int i = 0; i < Nb; i++) {
|
||||
for (unsigned int j = 0; j < block_size; j++) {
|
||||
rVector[block_size * i + j] = vector[block_size * fromOrder[i] + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Check is operations on a node in the matrix can be started
|
||||
* A node can only be started if all nodes that it depends on during sequential execution have already completed.*/
|
||||
|
||||
@@ -344,17 +115,6 @@ void findLevelScheduling(int *CSRColIndices, int *CSRRowPointers, int *CSCRowInd
|
||||
*numColors = rowsPerColor.size();
|
||||
}
|
||||
|
||||
/* Perform the complete graph coloring algorithm on a matrix. Return an array with the amount of nodes per color.*/
|
||||
|
||||
template <unsigned int block_size>
|
||||
void findGraphColoring(const int *CSRColIndices, const int *CSRRowPointers, const int *CSCRowIndices, const int *CSCColPointers, int Nb, int maxRowsPerColor, int maxColsPerColor, int *numColors, int *toOrder, int *fromOrder, std::vector<int>& rowsPerColor) {
|
||||
std::vector<int> rowColor(Nb);
|
||||
|
||||
*numColors = colorBlockedNodes<block_size>(Nb, CSRRowPointers, CSRColIndices, CSCColPointers, CSCRowIndices, rowColor, maxRowsPerColor, maxColsPerColor);
|
||||
|
||||
rowsPerColor.resize(*numColors);
|
||||
colorsToReordering(Nb, rowColor, *numColors, toOrder, fromOrder, rowsPerColor);
|
||||
}
|
||||
|
||||
// based on the scipy package from python, scipy/sparse/sparsetools/csr.h on github
|
||||
void csrPatternToCsc(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices, int *CSCColPointers, int Nb) {
|
||||
@@ -393,19 +153,5 @@ void csrPatternToCsc(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices
|
||||
}
|
||||
|
||||
|
||||
#define INSTANTIATE_BDA_FUNCTIONS(n) \
|
||||
template int colorBlockedNodes<n>(int, const int *, const int *, const int *, const int *, std::vector<int>&, int, int); \
|
||||
template void reorderBlockedVectorByPattern<n>(int, double*, int*, double*); \
|
||||
template void findGraphColoring<n>(const int *, const int *, const int *, const int *, int, int, int, int *, int *, int *, std::vector<int>&); \
|
||||
|
||||
INSTANTIATE_BDA_FUNCTIONS(1);
|
||||
INSTANTIATE_BDA_FUNCTIONS(2);
|
||||
INSTANTIATE_BDA_FUNCTIONS(3);
|
||||
INSTANTIATE_BDA_FUNCTIONS(4);
|
||||
INSTANTIATE_BDA_FUNCTIONS(5);
|
||||
INSTANTIATE_BDA_FUNCTIONS(6);
|
||||
|
||||
#undef INSTANTIATE_BDA_FUNCTIONS
|
||||
|
||||
} // namespace Accelerator
|
||||
} // namespace Opm
|
||||
|
@@ -22,68 +22,11 @@
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
namespace Accelerator
|
||||
{
|
||||
|
||||
#define MAX_COLORS 256
|
||||
|
||||
/// Give every node in the matrix a color so that no neighbouring nodes share a color
|
||||
/// The color array must be allocated already
|
||||
/// This function with throw an error if no coloring can be found within the given restrictions
|
||||
/// This function does graph coloring based on random numbers
|
||||
/// \param[in] rows number of rows in the matrix
|
||||
/// \param[in] CSRRowPointers array of row pointers of the sparsity pattern stored in the CSR format
|
||||
/// \param[in] CSRColIndices array of column indices of the sparsity pattern stored in the CSR format
|
||||
/// \param[in] CSCColPointers array of column pointers of the sparsity pattern stored in the CSC format
|
||||
/// \param[in] CSCRowIndices array of row indices of the sparsity pattern stored in the CSC format
|
||||
/// \param[inout] colors output array containing the number of the color that each row is assigned to
|
||||
/// \param[in] maxRowsPerColor the maximum number of rows that are allowed in one color (so: the maximum number of nodes per color)
|
||||
/// \param[in] maxColsPerColor the maximum number of columns that the rows in a color are allowed to share (so: the maximum number of nodes that the nodes in one color may be connected to)
|
||||
/// \return the number of colors needed for the coloring
|
||||
template <unsigned int block_size>
|
||||
int colorBlockedNodes(int rows, const int *CSRRowPointers, const int *CSRColIndices, const int *CSCColPointers, const int *CSCRowIndices, std::vector<int>& colors, int maxRowsPerColor, int maxColsPerColor);
|
||||
|
||||
/// Reorder the sparsity pattern of the matrix according to the mapping in toOrder and fromOrder
|
||||
/// Also find mapping for nnz blocks
|
||||
/// rmat must be allocated already
|
||||
/// \param[in] mat matrix to be reordered
|
||||
/// \param[out] reordermapping_nonzeroes contains new index for every nnz block
|
||||
/// \param[in] toOrder reorder pattern that lists for each index in the original order, to which index in the new order it should be moved
|
||||
/// \param[in] fromOrder reorder pattern that lists for each index in the new order, from which index in the original order it was moved
|
||||
/// \param[out] rmat reordered Matrix
|
||||
void reorderBlockedMatrixByPattern(BlockedMatrix *mat, std::vector<int>& reordermapping_nonzeroes, int *toOrder, int *fromOrder, BlockedMatrix *rmat);
|
||||
|
||||
/// Write nnz blocks from mat to rmat, according to the mapping in reordermapping_nonzeroes
|
||||
/// rmat must be allocated already
|
||||
/// \param[in] mat matrix to be reordered
|
||||
/// \param[in] reordermapping_nonzeroes contains old index for every nnz block, so rmat_nnz[i] == mat_nnz[mapping[i]]
|
||||
/// \param[inout] rmat reordered Matrix
|
||||
void reorderNonzeroes(BlockedMatrix *mat, std::vector<int>& reordermapping_nonzeroes, BlockedMatrix *rmat);
|
||||
|
||||
/// Compute reorder mapping from the color that each node has received
|
||||
/// The toOrder, fromOrder and iters arrays must be allocated already
|
||||
/// \param[in] Nb number of blocks in the vector
|
||||
/// \param[in] colors array containing the number of the color that each row is assigned to
|
||||
/// \param[in] numColors the total number of colors into which all rows have been divided
|
||||
/// \param[inout] toOrder reorder pattern that lists for each index in the original order, to which index in the new order it should be moved
|
||||
/// \param[inout] fromOrder reorder pattern that lists for each index in the new order, from which index in the original order it was moved
|
||||
/// \param[inout] rowsPerColor array containing for each color the number of rows that it contains
|
||||
void colorsToReordering(int Nb, std::vector<int>& colors, int numColors, int *toOrder, int *fromOrder, std::vector<int>& rowsPerColor);
|
||||
|
||||
/// Reorder a vector according to the mapping in fromOrder
|
||||
/// The rVector array must be allocated already
|
||||
/// \param[in] Nb number of blocks in the vector
|
||||
/// \param[in] vector vector to be reordered
|
||||
/// \param[in] toOrder reorder pattern that lists for each index in the original order, to which index in the new order it should be moved
|
||||
/// \param[in] fromOrder reorder pattern that lists for each index in the new order, from which index in the original order it was moved
|
||||
/// \param[inout] rVector reordered vector
|
||||
template <unsigned int block_size>
|
||||
void reorderBlockedVectorByPattern(int Nb, double *vector, int *fromOrder, double *rVector);
|
||||
|
||||
/// Determine whether all rows that a certain row depends on are done already
|
||||
/// \param[in] rowIndex index of the row that needs to be checked for
|
||||
/// \param[in] rowPointers row pointers of the matrix that the row is in
|
||||
@@ -105,22 +48,6 @@ bool canBeStarted(const int rowIndex, const int *rowPointers, const int *colIn
|
||||
/// \param[out] rowsPerColor for each color, an array of all rowIndices in that color, this function uses emplace_back() to fill
|
||||
void findLevelScheduling(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices, int *CSCColPointers, int Nb, int *numColors, int *toOrder, int* fromOrder, std::vector<int>& rowsPerColor);
|
||||
|
||||
/// Find a graph coloring reordering for an input matrix
|
||||
/// The toOrder and fromOrder arrays must be allocated already
|
||||
/// \param[in] CSRColIndices column indices of the input sparsity pattern stored in the CSR format
|
||||
/// \param[in] CSRRowPointers row pointers of the input sparsity pattern stored in the CSR format
|
||||
/// \param[in] CSCRowIndices row indices of the input sparsity pattern stored in the CSC format
|
||||
/// \param[in] CSCColPointers column pointers of the input sparsity pattern stored in the CSC format
|
||||
/// \param[in] Nb number of blockrows in the matrix
|
||||
/// \param[in] maxRowsPerColor the maximum number of rows that are allowed in one color (so: the maximum number of nodes per color)
|
||||
/// \param[in] maxColsPerColor the maximum number of columns that the rows in a color are allowed to share (so: the maximum number of nodes that the nodes in one color may be connected to)
|
||||
/// \param[out] numColors the number of colors used in the found graph coloring
|
||||
/// \param[inout] toOrder the reorder pattern that was found, which lists for each index in the original order, to which index in the new order it should be moved
|
||||
/// \param[inout] fromOrder the reorder pattern that was found, which lists for each index in the new order, from which index in the original order it was moved
|
||||
/// \param[inout] rowsPerColor for each used color, the number of rows assigned to that color, this function will resize()
|
||||
template <unsigned int block_size>
|
||||
void findGraphColoring(const int *CSRColIndices, const int *CSRRowPointers, const int *CSCRowIndices, const int *CSCColPointers, int Nb, int maxRowsPerColor, int maxColsPerColor, int *numColors, int *toOrder, int *fromOrder, std::vector<int>& rowsPerColor);
|
||||
|
||||
/// Convert a sparsity pattern stored in the CSR format to the CSC format
|
||||
/// CSCRowIndices and CSCColPointers arrays must be allocated already
|
||||
/// Based on the csr_tocsc() function from the scipy package from python, https://github.com/scipy/scipy/blob/master/scipy/sparse/sparsetools/csr.h
|
||||
|
@@ -18,8 +18,7 @@
|
||||
*/
|
||||
|
||||
#include <config.h> // CMake
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
|
||||
#include <opm/common/OpmLog/OpmLog.hpp>
|
||||
#include <opm/common/ErrorMacros.hpp>
|
||||
|
||||
|
@@ -32,10 +32,9 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// This class serves to eliminate the need to include the WellContributions into the matrix (with --matrix-add-well-contributions=true) for the cusparseSolver
|
||||
/// If the --matrix-add-well-contributions commandline parameter is true, this class should not be used
|
||||
/// So far, StandardWell and MultisegmentWell are supported
|
||||
/// StandardWells are only supported for cusparseSolver (CUDA), MultisegmentWells are supported for both cusparseSolver and openclSolver
|
||||
/// This class serves to eliminate the need to include the WellContributions into the matrix (with --matrix-add-well-contributions=true) for the cusparseSolver or openclSolver.
|
||||
/// If the --matrix-add-well-contributions commandline parameter is true, this class should still be used, but be empty.
|
||||
/// StandardWell and MultisegmentWell are supported for both cusparseSolver and openclSolver.
|
||||
/// A single instance (or pointer) of this class is passed to the BdaSolver.
|
||||
/// For StandardWell, this class contains all the data and handles the computation. For MultisegmentWell, the vector 'multisegments' contains all the data. For more information, check the MultisegmentWellContribution class.
|
||||
|
||||
|
@@ -19,8 +19,6 @@
|
||||
|
||||
|
||||
#include <config.h> // CMake
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
|
||||
#include "opm/simulators/linalg/bda/cuda/cuWellContributions.hpp"
|
||||
|
||||
|
@@ -24,9 +24,6 @@
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
@@ -21,8 +21,6 @@
|
||||
|
||||
#include <opm/simulators/linalg/bda/opencl/openclWellContributions.hpp>
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <opm/common/OpmLog/OpmLog.hpp>
|
||||
#include <opm/common/ErrorMacros.hpp>
|
||||
|
||||
|
Reference in New Issue
Block a user