mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-14 05:53:26 -06:00
Preparations for Recording Dynamic Well State
Coalesce blocks with same conditions, split long lines, and apply 'const' where appropriate. While here, also tighten the "rate = 0" criterion to include denormalised numbers.
This commit is contained in:
parent
cd7c4d9927
commit
65edfb702c
@ -268,11 +268,12 @@ namespace Opm {
|
||||
/// Returns true if the well was actually found and shut.
|
||||
bool forceShutWellByNameIfPredictionMode(const std::string& wellname, const double simulation_time);
|
||||
|
||||
void updateEclWell(int timeStepIdx, int well_index);
|
||||
void updateEclWell(int timeStepIdx, const std::string& wname);
|
||||
void updateEclWell(const int timeStepIdx, const int well_index);
|
||||
void updateEclWell(const int timeStepIdx, const std::string& wname);
|
||||
bool hasWell(const std::string& wname);
|
||||
double wellPI(int well_index) const;
|
||||
double wellPI(const int well_index) const;
|
||||
double wellPI(const std::string& well_name) const;
|
||||
|
||||
protected:
|
||||
Simulator& ebosSimulator_;
|
||||
|
||||
@ -345,7 +346,7 @@ namespace Opm {
|
||||
WellTestState wellTestState_;
|
||||
std::unique_ptr<GuideRate> guideRate_;
|
||||
|
||||
std::map<std::string, double> node_pressures_; // Storing network pressures for output.
|
||||
std::map<std::string, double> node_pressures_{}; // Storing network pressures for output.
|
||||
|
||||
// used to better efficiency of calcuation
|
||||
mutable BVector scaleAddRes_;
|
||||
|
@ -298,8 +298,8 @@ namespace Opm {
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilWellModel<TypeTag>::
|
||||
beginTimeStep() {
|
||||
|
||||
beginTimeStep()
|
||||
{
|
||||
updatePerforationIntensiveQuantities();
|
||||
|
||||
Opm::DeferredLogger local_deferredLogger;
|
||||
@ -425,17 +425,22 @@ namespace Opm {
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilWellModel<TypeTag>::wellTesting(const int timeStepIdx, const double simulationTime, Opm::DeferredLogger& deferred_logger) {
|
||||
BlackoilWellModel<TypeTag>::wellTesting(const int timeStepIdx,
|
||||
const double simulationTime,
|
||||
Opm::DeferredLogger& deferred_logger)
|
||||
{
|
||||
const auto& wtest_config = schedule()[timeStepIdx].wtest_config();
|
||||
if (wtest_config.size() != 0) { // there is a WTEST request
|
||||
|
||||
// average B factors are required for the convergence checking of well equations
|
||||
// Note: this must be done on all processes, even those with
|
||||
// no wells needing testing, otherwise we will have locking.
|
||||
std::vector< Scalar > B_avg(numComponents(), Scalar() );
|
||||
std::vector< Scalar > B_avg(numComponents(), Scalar());
|
||||
computeAverageFormationFactor(B_avg);
|
||||
|
||||
const auto& wellsForTesting = wellTestState_.updateWells(wtest_config, wells_ecl_, simulationTime);
|
||||
const auto wellsForTesting = wellTestState_
|
||||
.updateWells(wtest_config, wells_ecl_, simulationTime);
|
||||
|
||||
for (const auto& testWell : wellsForTesting) {
|
||||
const std::string& well_name = testWell.first;
|
||||
|
||||
@ -444,9 +449,12 @@ namespace Opm {
|
||||
|
||||
// some preparation before the well can be used
|
||||
well->init(&phase_usage_, depth_, gravity_, local_num_cells_, B_avg);
|
||||
|
||||
const Well& wellEcl = schedule().getWell(well_name, timeStepIdx);
|
||||
double well_efficiency_factor = wellEcl.getEfficiencyFactor();
|
||||
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx), schedule(), timeStepIdx, well_efficiency_factor);
|
||||
WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), timeStepIdx),
|
||||
schedule(), timeStepIdx, well_efficiency_factor);
|
||||
|
||||
well->setWellEfficiencyFactor(well_efficiency_factor);
|
||||
well->setVFPProperties(vfp_properties_.get());
|
||||
well->setGuideRate(guideRate_.get());
|
||||
@ -459,29 +467,43 @@ namespace Opm {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// called at the end of a report step
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilWellModel<TypeTag>::
|
||||
endReportStep() {
|
||||
endReportStep()
|
||||
{
|
||||
// Clear the communication data structures for above values.
|
||||
for(auto&& pinfo : local_parallel_well_info_)
|
||||
for (auto&& pinfo : local_parallel_well_info_)
|
||||
{
|
||||
pinfo->clear();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// called at the end of a report step
|
||||
template<typename TypeTag>
|
||||
const SimulatorReportSingle&
|
||||
BlackoilWellModel<TypeTag>::
|
||||
lastReport() const {return last_report_; }
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// called at the end of a time step
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilWellModel<TypeTag>::
|
||||
timeStepSucceeded(const double& simulationTime, const double dt) {
|
||||
timeStepSucceeded(const double& simulationTime, const double dt)
|
||||
{
|
||||
|
||||
// time step is finished and we are not any more at the beginning of an report step
|
||||
report_step_starts_ = false;
|
||||
@ -735,12 +757,13 @@ namespace Opm {
|
||||
|
||||
if (nw > 0) {
|
||||
well_container.reserve(nw);
|
||||
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const Well& well_ecl = wells_ecl_[w];
|
||||
const std::string& well_name = well_ecl.name();
|
||||
|
||||
// A new WCON keywords can re-open a well that was closed/shut due to Physical limit
|
||||
if ( wellTestState_.hasWellClosed(well_name)) {
|
||||
if (this->wellTestState_.hasWellClosed(well_name)) {
|
||||
// TODO: more checking here, to make sure this standard more specific and complete
|
||||
// maybe there is some WCON keywords will not open the well
|
||||
if (well_state_.effectiveEventsOccurred(w)) {
|
||||
@ -759,9 +782,10 @@ namespace Opm {
|
||||
// TODO: should we do this for all kinds of closing reasons?
|
||||
// something like wellTestState_.hasWell(well_name)?
|
||||
bool wellIsStopped = false;
|
||||
if ( wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::ECONOMIC) ||
|
||||
wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::PHYSICAL) ) {
|
||||
if( well_ecl.getAutomaticShutIn() ) {
|
||||
if (wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::ECONOMIC) ||
|
||||
wellTestState_.hasWellClosed(well_name, WellTestConfig::Reason::PHYSICAL))
|
||||
{
|
||||
if (well_ecl.getAutomaticShutIn()) {
|
||||
// shut wells are not added to the well container
|
||||
well_state_.shutWell(w);
|
||||
continue;
|
||||
@ -783,28 +807,41 @@ namespace Opm {
|
||||
// (prediction type) rate control is zero, then it is effectively shut.
|
||||
if (!well_ecl.getAllowCrossFlow() && well_ecl.isProducer() && well_ecl.predictionMode()) {
|
||||
const auto& summaryState = ebosSimulator_.vanguard().summaryState();
|
||||
auto prod_controls = well_ecl.productionControls(summaryState);
|
||||
const auto prod_controls = well_ecl.productionControls(summaryState);
|
||||
|
||||
auto is_zero = [](const double x)
|
||||
{
|
||||
return std::isfinite(x) && !std::isnormal(x);
|
||||
};
|
||||
|
||||
bool zero_rate_control = false;
|
||||
switch (prod_controls.cmode) {
|
||||
case Well::ProducerCMode::ORAT:
|
||||
zero_rate_control = (prod_controls.oil_rate == 0.0);
|
||||
zero_rate_control = is_zero(prod_controls.oil_rate);
|
||||
break;
|
||||
|
||||
case Well::ProducerCMode::WRAT:
|
||||
zero_rate_control = (prod_controls.water_rate == 0.0);
|
||||
zero_rate_control = is_zero(prod_controls.water_rate);
|
||||
break;
|
||||
|
||||
case Well::ProducerCMode::GRAT:
|
||||
zero_rate_control = (prod_controls.gas_rate == 0.0);
|
||||
zero_rate_control = is_zero(prod_controls.gas_rate);
|
||||
break;
|
||||
|
||||
case Well::ProducerCMode::LRAT:
|
||||
zero_rate_control = (prod_controls.liquid_rate == 0.0);
|
||||
zero_rate_control = is_zero(prod_controls.liquid_rate);
|
||||
break;
|
||||
|
||||
case Well::ProducerCMode::RESV:
|
||||
zero_rate_control = (prod_controls.resv_rate == 0.0);
|
||||
zero_rate_control = is_zero(prod_controls.resv_rate);
|
||||
break;
|
||||
|
||||
default:
|
||||
// Might still have zero rate controls, but is pressure controlled.
|
||||
zero_rate_control = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (zero_rate_control) {
|
||||
// Treat as shut, do not add to container.
|
||||
local_deferredLogger.info(" Well shut due to zero rate control and disallowing crossflow: " + well_ecl.name());
|
||||
@ -867,10 +904,11 @@ namespace Opm {
|
||||
const auto& perf_data = this->well_perf_data_[wellID];
|
||||
|
||||
// Cater for case where local part might have no perforations.
|
||||
const int pvtreg = perf_data.empty() ?
|
||||
0 : pvt_region_idx_[perf_data.front().cell_index];
|
||||
const auto pvtreg = perf_data.empty()
|
||||
? 0 : pvt_region_idx_[perf_data.front().cell_index];
|
||||
|
||||
const auto& parallel_well_info = *local_parallel_well_info_[wellID];
|
||||
auto global_pvtreg = parallel_well_info.broadcastFirstPerforationValue(pvtreg);
|
||||
const auto global_pvtreg = parallel_well_info.broadcastFirstPerforationValue(pvtreg);
|
||||
|
||||
return std::make_unique<WellType>(this->wells_ecl_[wellID],
|
||||
parallel_well_info,
|
||||
@ -1426,11 +1464,13 @@ namespace Opm {
|
||||
}
|
||||
}
|
||||
}
|
||||
logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown, "computeWellPotentials() failed.", terminal_output_);
|
||||
|
||||
logAndCheckForExceptionsAndThrow(deferred_logger, exception_thrown,
|
||||
"computeWellPotentials() failed.",
|
||||
terminal_output_);
|
||||
|
||||
// Store it in the well state
|
||||
well_state_.wellPotentials() = well_potentials;
|
||||
|
||||
}
|
||||
|
||||
|
||||
@ -2536,7 +2576,7 @@ namespace Opm {
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilWellModel<TypeTag>::
|
||||
updateEclWell(int timeStepIdx, int well_index)
|
||||
updateEclWell(const int timeStepIdx, const int well_index)
|
||||
{
|
||||
const auto& schedule = this->ebosSimulator_.vanguard().schedule();
|
||||
const auto& wname = this->wells_ecl_[well_index].name();
|
||||
@ -2556,23 +2596,36 @@ namespace Opm {
|
||||
this->prod_index_calc_[well_index].reInit(well);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
BlackoilWellModel<TypeTag>::
|
||||
updateEclWell(int timeStepIdx, const std::string& wname) {
|
||||
auto well_iter = std::find_if( this->wells_ecl_.begin(), this->wells_ecl_.end(), [wname] (const auto& well) -> bool { return well.name() == wname;});
|
||||
if (well_iter == this->wells_ecl_.end())
|
||||
throw std::logic_error("Could not find well: " + wname);
|
||||
updateEclWell(const int timeStepIdx, const std::string& wname)
|
||||
{
|
||||
auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(),
|
||||
[&wname](const auto& well) -> bool
|
||||
{
|
||||
return well.name() == wname;
|
||||
});
|
||||
|
||||
auto well_index = std::distance( this->wells_ecl_.begin(), well_iter );
|
||||
if (well_iter == this->wells_ecl_.end()) {
|
||||
throw std::logic_error { "Could not find well: " + wname };
|
||||
}
|
||||
|
||||
auto well_index = std::distance(this->wells_ecl_.begin(), well_iter);
|
||||
this->updateEclWell(timeStepIdx, well_index);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
double
|
||||
BlackoilWellModel<TypeTag>::
|
||||
wellPI(int well_index) const
|
||||
wellPI(const int well_index) const
|
||||
{
|
||||
const auto& pu = this->phase_usage_;
|
||||
const auto np = this->numPhases();
|
||||
@ -2598,21 +2651,31 @@ namespace Opm {
|
||||
default:
|
||||
throw std::invalid_argument {
|
||||
"Unsupported preferred phase " +
|
||||
std::to_string(static_cast<int>(preferred))
|
||||
};
|
||||
std::to_string(static_cast<int>(preferred))
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
double
|
||||
BlackoilWellModel<TypeTag>::
|
||||
wellPI(const std::string& well_name) const
|
||||
{
|
||||
auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(), [&well_name](const Well& well) { return well.name() == well_name; });
|
||||
if (well_iter == this->wells_ecl_.end())
|
||||
throw std::logic_error("Could not find well: " + well_name);
|
||||
auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(),
|
||||
[&well_name](const Well& well)
|
||||
{
|
||||
return well.name() == well_name;
|
||||
});
|
||||
|
||||
auto well_index = std::distance( this->wells_ecl_.begin(), well_iter );
|
||||
if (well_iter == this->wells_ecl_.end()) {
|
||||
throw std::logic_error { "Could not find well: " + well_name };
|
||||
}
|
||||
|
||||
auto well_index = std::distance(this->wells_ecl_.begin(), well_iter);
|
||||
return this->wellPI(well_index);
|
||||
}
|
||||
|
||||
@ -2630,20 +2693,20 @@ namespace Opm {
|
||||
|
||||
auto hasWellPIEvent = [this, timeStepIdx](const int well_index) -> bool
|
||||
{
|
||||
return this->schedule()[timeStepIdx]
|
||||
.wellgroup_events().hasEvent(this->wells_ecl_[well_index].name(),
|
||||
ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX);
|
||||
return this->schedule()[timeStepIdx].wellgroup_events()
|
||||
.hasEvent(this->wells_ecl_[well_index].name(),
|
||||
ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX);
|
||||
};
|
||||
|
||||
auto rescaleWellPI =
|
||||
[this, timeStepIdx](const int well_index,
|
||||
const double newWellPI) -> void
|
||||
{
|
||||
{
|
||||
const auto& wname = this->wells_ecl_[well_index].name();
|
||||
auto& schedule = this->ebosSimulator_.vanguard().schedule(); // Mutable
|
||||
schedule.applyWellProdIndexScaling(wname, timeStepIdx, newWellPI);
|
||||
}
|
||||
const auto& wname = this->wells_ecl_[well_index].name();
|
||||
|
||||
auto& schedule = this->ebosSimulator_.vanguard().schedule(); // Mutable
|
||||
schedule.applyWellProdIndexScaling(wname, timeStepIdx, newWellPI);
|
||||
|
||||
this->updateEclWell(timeStepIdx, well_index);
|
||||
};
|
||||
|
||||
@ -2672,8 +2735,7 @@ namespace Opm {
|
||||
const auto nw = this->numLocalWells();
|
||||
for (auto wellID = 0*nw; wellID < nw; ++wellID) {
|
||||
if (hasWellPIEvent(wellID)) {
|
||||
const auto newWellPI = this->wellPI(wellID);
|
||||
rescaleWellPI(wellID, newWellPI);
|
||||
rescaleWellPI(wellID, this->wellPI(wellID));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2263,9 +2263,9 @@ namespace Opm
|
||||
setToZero(wellPI);
|
||||
|
||||
const auto preferred_phase = this->well_ecl_.getPreferredPhase();
|
||||
auto subsetPerfID = 0;
|
||||
auto subsetPerfID = 0;
|
||||
|
||||
for ( const auto& perf : *this->perf_data_){
|
||||
for (const auto& perf : *this->perf_data_) {
|
||||
auto allPerfID = perf.ecl_index;
|
||||
|
||||
auto connPICalc = [&wellPICalc, allPerfID](const double mobility) -> double
|
||||
@ -2293,13 +2293,13 @@ namespace Opm
|
||||
connPI += np;
|
||||
}
|
||||
|
||||
// Sum with communication in case of distributed well.
|
||||
// Sum with communication in case of distributed well.
|
||||
const auto& comm = this->parallel_well_info_.communication();
|
||||
if (comm.size() > 1)
|
||||
{
|
||||
if (comm.size() > 1) {
|
||||
comm.sum(wellPI, np);
|
||||
}
|
||||
assert (static_cast<int>(subsetPerfID) == this->number_of_perforations_ &&
|
||||
|
||||
assert ((static_cast<int>(subsetPerfID) == this->number_of_perforations_) &&
|
||||
"Internal logic error in processing connections for PI/II");
|
||||
}
|
||||
|
||||
|
@ -553,99 +553,85 @@ namespace Opm
|
||||
data::Wells res = WellState::report(pu, globalCellIdxMap);
|
||||
|
||||
const int nw = this->numWells();
|
||||
if( nw == 0 ) return res;
|
||||
if (nw == 0) {
|
||||
return res;
|
||||
}
|
||||
|
||||
const int np = pu.num_phases;
|
||||
|
||||
|
||||
using rt = data::Rates::opt;
|
||||
std::vector< rt > phs( np );
|
||||
if( pu.phase_used[Water] ) {
|
||||
std::vector<rt> phs(np);
|
||||
if (pu.phase_used[Water]) {
|
||||
phs.at( pu.phase_pos[Water] ) = rt::wat;
|
||||
}
|
||||
|
||||
if( pu.phase_used[Oil] ) {
|
||||
if (pu.phase_used[Oil]) {
|
||||
phs.at( pu.phase_pos[Oil] ) = rt::oil;
|
||||
}
|
||||
|
||||
if( pu.phase_used[Gas] ) {
|
||||
if (pu.phase_used[Gas]) {
|
||||
phs.at( pu.phase_pos[Gas] ) = rt::gas;
|
||||
}
|
||||
|
||||
/* this is a reference or example on **how** to convert from
|
||||
* WellState to something understood by opm-output. it is intended
|
||||
* to be properly implemented and maintained as a part of
|
||||
* simulators, as it relies on simulator internals, details and
|
||||
* representations.
|
||||
*/
|
||||
// This is a reference or example on **how** to convert from
|
||||
// WellState to something understood by opm-common's output
|
||||
// layer. It is intended to be properly implemented and
|
||||
// maintained as a part of simulators, as it relies on simulator
|
||||
// internals, details and representations.
|
||||
|
||||
for( const auto& wt : this->wellMap() ) {
|
||||
for (const auto& wt : this->wellMap()) {
|
||||
const auto w = wt.second[ 0 ];
|
||||
const auto& pwinfo = *parallel_well_info_[w];
|
||||
if ((this->status_[w] == Well::Status::SHUT) || !pwinfo.isOwner())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
auto& well = res.at( wt.first );
|
||||
//well.injectionControl = static_cast<int>(this->currentInjectionControls()[ w ]);
|
||||
//well.productionControl = static_cast<int>(this->currentProductionControls()[ w ]);
|
||||
auto& well = res.at(wt.first);
|
||||
const int well_rate_index = w * pu.num_phases;
|
||||
|
||||
if ( pu.phase_used[Water] ) {
|
||||
well.rates.set( rt::reservoir_water, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Water]] );
|
||||
if (pu.phase_used[Water]) {
|
||||
const auto i = well_rate_index + pu.phase_pos[Water];
|
||||
well.rates.set(rt::reservoir_water, this->well_reservoir_rates_[i]);
|
||||
well.rates.set(rt::productivity_index_water, this->productivity_index_[i]);
|
||||
well.rates.set(rt::well_potential_water, this->well_potentials_[i]);
|
||||
}
|
||||
|
||||
if ( pu.phase_used[Oil] ) {
|
||||
well.rates.set( rt::reservoir_oil, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Oil]] );
|
||||
if (pu.phase_used[Oil]) {
|
||||
const auto i = well_rate_index + pu.phase_pos[Oil];
|
||||
well.rates.set(rt::reservoir_oil, this->well_reservoir_rates_[i]);
|
||||
well.rates.set(rt::productivity_index_oil, this->productivity_index_[i]);
|
||||
well.rates.set(rt::well_potential_oil, this->well_potentials_[i]);
|
||||
}
|
||||
|
||||
if ( pu.phase_used[Gas] ) {
|
||||
well.rates.set( rt::reservoir_gas, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Gas]] );
|
||||
if (pu.phase_used[Gas]) {
|
||||
const auto i = well_rate_index + pu.phase_pos[Gas];
|
||||
well.rates.set(rt::reservoir_gas, this->well_reservoir_rates_[i]);
|
||||
well.rates.set(rt::productivity_index_gas, this->productivity_index_[i]);
|
||||
well.rates.set(rt::well_potential_gas, this->well_potentials_[i]);
|
||||
}
|
||||
|
||||
if ( pu.phase_used[Water] ) {
|
||||
well.rates.set( rt::productivity_index_water, this->productivity_index_[well_rate_index + pu.phase_pos[Water]] );
|
||||
if (pu.has_solvent || pu.has_zFraction) {
|
||||
well.rates.set(rt::solvent, solventWellRate(w));
|
||||
}
|
||||
|
||||
if ( pu.phase_used[Oil] ) {
|
||||
well.rates.set( rt::productivity_index_oil, this->productivity_index_[well_rate_index + pu.phase_pos[Oil]] );
|
||||
if (pu.has_polymer) {
|
||||
well.rates.set(rt::polymer, polymerWellRate(w));
|
||||
}
|
||||
|
||||
if ( pu.phase_used[Gas] ) {
|
||||
well.rates.set( rt::productivity_index_gas, this->productivity_index_[well_rate_index + pu.phase_pos[Gas]] );
|
||||
if (pu.has_brine) {
|
||||
well.rates.set(rt::brine, brineWellRate(w));
|
||||
}
|
||||
|
||||
if ( pu.phase_used[Water] ) {
|
||||
well.rates.set( rt::well_potential_water, this->well_potentials_[well_rate_index + pu.phase_pos[Water]] );
|
||||
}
|
||||
|
||||
if ( pu.phase_used[Oil] ) {
|
||||
well.rates.set( rt::well_potential_oil, this->well_potentials_[well_rate_index + pu.phase_pos[Oil]] );
|
||||
}
|
||||
|
||||
if ( pu.phase_used[Gas] ) {
|
||||
well.rates.set( rt::well_potential_gas, this->well_potentials_[well_rate_index + pu.phase_pos[Gas]] );
|
||||
}
|
||||
|
||||
if ( pu.has_solvent || pu.has_zFraction) {
|
||||
well.rates.set( rt::solvent, solventWellRate(w) );
|
||||
}
|
||||
|
||||
if ( pu.has_polymer ) {
|
||||
well.rates.set( rt::polymer, polymerWellRate(w) );
|
||||
}
|
||||
|
||||
if ( pu.has_brine ) {
|
||||
well.rates.set( rt::brine, brineWellRate(w) );
|
||||
}
|
||||
|
||||
if ( is_producer_[w] ) {
|
||||
well.rates.set( rt::alq, getALQ(/*wellName=*/wt.first) );
|
||||
if (is_producer_[w]) {
|
||||
well.rates.set(rt::alq, getALQ(/*wellName=*/wt.first));
|
||||
}
|
||||
else {
|
||||
well.rates.set( rt::alq, 0.0 );
|
||||
well.rates.set(rt::alq, 0.0);
|
||||
}
|
||||
|
||||
well.rates.set( rt::dissolved_gas, this->well_dissolved_gas_rates_[w] );
|
||||
well.rates.set( rt::vaporized_oil, this->well_vaporized_oil_rates_[w] );
|
||||
well.rates.set(rt::dissolved_gas, this->well_dissolved_gas_rates_[w]);
|
||||
well.rates.set(rt::vaporized_oil, this->well_vaporized_oil_rates_[w]);
|
||||
|
||||
{
|
||||
auto& curr = well.current_control;
|
||||
|
Loading…
Reference in New Issue
Block a user