change reservoir related members to be pointers in StandardWells

to fullfil the requirement of interface design.
This commit is contained in:
Kai Bao 2016-05-02 16:21:14 +02:00
parent 89a8f133fd
commit 66cd66e61b
5 changed files with 79 additions and 71 deletions

View File

@ -176,7 +176,7 @@ namespace detail {
, use_threshold_pressure_(false)
, rq_ (fluid.numPhases())
, phaseCondition_(AutoDiffGrid::numCells(grid))
, std_wells_ (wells_arg, fluid_, active_, phaseCondition_)
, std_wells_ (wells_arg)
, isRs_(V::Zero(AutoDiffGrid::numCells(grid)))
, isRv_(V::Zero(AutoDiffGrid::numCells(grid)))
, isSg_(V::Zero(AutoDiffGrid::numCells(grid)))
@ -201,6 +201,8 @@ namespace detail {
assert(numMaterials() == std::accumulate(active_.begin(), active_.end(), 0)); // Due to the material_name_ init above.
std_wells_.init(&fluid_, &active_, &phaseCondition_);
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{

View File

@ -60,10 +60,12 @@ namespace Opm {
Eigen::Dynamic,
Eigen::RowMajor>;
// --------- Public methods ---------
StandardWells(const Wells* wells_arg,
const BlackoilPropsAdInterface& fluid_arg,
const std::vector<bool>& active_arg,
const std::vector<PhasePresence>& pc_arg);
StandardWells(const Wells* wells_arg);
void init(const BlackoilPropsAdInterface* fluid_arg,
const std::vector<bool>* active_arg,
const std::vector<PhasePresence>* pc_arg);
const WellOps& wellOps() const;
@ -168,9 +170,11 @@ namespace Opm {
const Wells* wells_;
const WellOps wops_;
const int num_phases_;
const BlackoilPropsAdInterface& fluid_;
const std::vector<bool>& active_;
const std::vector<PhasePresence>& phase_condition_;
const BlackoilPropsAdInterface* fluid_;
const std::vector<bool>* active_;
const std::vector<PhasePresence>* phase_condition_;
Vector well_perforation_densities_;
Vector well_perforation_pressure_diffs_;

View File

@ -37,10 +37,7 @@ namespace Opm {
using Base::computeWellConnectionDensitesPressures;
// --------- Public methods ---------
StandardWellsSolvent(const Wells* wells_arg,
const BlackoilPropsAdInterface& fluid_arg,
const std::vector<bool>& active_arg,
const std::vector<PhasePresence>& pc_arg);
StandardWellsSolvent(const Wells* wells_arg);
// added the Solvent related
void initSolvent(const SolventPropsAdFromDeck* solvent_props,

View File

@ -32,11 +32,8 @@ namespace Opm
StandardWellsSolvent::StandardWellsSolvent(const Wells* wells_arg,
const BlackoilPropsAdInterface& fluid_arg,
const std::vector<bool>& active_arg,
const std::vector<PhasePresence>& pc_arg)
: Base(wells_arg, fluid_arg, active_arg, pc_arg)
StandardWellsSolvent::StandardWellsSolvent(const Wells* wells_arg)
: Base(wells_arg)
, solvent_props_(nullptr)
, solvent_pos_(-1)
, has_solvent_(false)
@ -99,46 +96,46 @@ namespace Opm
const ADB avg_press_ad = ADB::constant(avg_press);
std::vector<PhasePresence> perf_cond(nperf);
for (int perf = 0; perf < nperf; ++perf) {
perf_cond[perf] = phase_condition_[well_cells[perf]];
perf_cond[perf] = (*phase_condition_)[well_cells[perf]];
}
const PhaseUsage& pu = fluid_.phaseUsage();
const PhaseUsage& pu = fluid_->phaseUsage();
DataBlock b(nperf, pu.num_phases);
const Vector bw = fluid_.bWat(avg_press_ad, perf_temp, well_cells).value();
const Vector bw = fluid_->bWat(avg_press_ad, perf_temp, well_cells).value();
if (pu.phase_used[BlackoilPhases::Aqua]) {
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw;
}
assert(active_[Oil]);
assert(active_[Gas]);
assert((*active_)[Oil]);
assert((*active_)[Gas]);
const ADB perf_rv = subset(state.rv, well_cells);
const ADB perf_rs = subset(state.rs, well_cells);
const Vector perf_so = subset(state.saturation[pu.phase_pos[Oil]].value(), well_cells);
if (pu.phase_used[BlackoilPhases::Liquid]) {
const Vector bo = fluid_.bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
const Vector bo = fluid_->bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
//const V bo_eff = subset(rq_[pu.phase_pos[Oil] ].b , well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo;
// const Vector rssat = fluidRsSat(avg_press, perf_so, well_cells);
const Vector rssat = fluid_.rsSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
const Vector rssat = fluid_->rsSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rsmax_perf.assign(rssat.data(), rssat.data() + nperf);
} else {
rsmax_perf.assign(0.0, nperf);
}
V surf_dens_copy = superset(fluid_.surfaceDensity(0, well_cells), Span(nperf, pu.num_phases, 0), nperf*pu.num_phases);
V surf_dens_copy = superset(fluid_->surfaceDensity(0, well_cells), Span(nperf, pu.num_phases, 0), nperf*pu.num_phases);
for (int phase = 1; phase < pu.num_phases; ++phase) {
if ( phase == pu.phase_pos[BlackoilPhases::Vapour]) {
continue; // the gas surface density is added after the solvent is accounted for.
}
surf_dens_copy += superset(fluid_.surfaceDensity(phase, well_cells), Span(nperf, pu.num_phases, phase), nperf*pu.num_phases);
surf_dens_copy += superset(fluid_->surfaceDensity(phase, well_cells), Span(nperf, pu.num_phases, phase), nperf*pu.num_phases);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
// Unclear wether the effective or the pure values should be used for the wells
// the current usage of unmodified properties values gives best match.
//V bg_eff = subset(rq_[pu.phase_pos[Gas]].b,well_cells).value();
Vector bg = fluid_.bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
Vector rhog = fluid_.surfaceDensity(pu.phase_pos[BlackoilPhases::Vapour], well_cells);
Vector bg = fluid_->bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
Vector rhog = fluid_->surfaceDensity(pu.phase_pos[BlackoilPhases::Vapour], well_cells);
// to handle solvent related
if (has_solvent_) {
@ -150,7 +147,7 @@ namespace Opm
const ADB zero = ADB::constant(Vector::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
const ADB& sg = ((*active_)[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
@ -181,7 +178,7 @@ namespace Opm
surf_dens_copy += superset(rhog, Span(nperf, pu.num_phases, pu.phase_pos[BlackoilPhases::Vapour]), nperf*pu.num_phases);
// const Vector rvsat = fluidRvSat(avg_press, perf_so, well_cells);
const Vector rvsat = fluid_.rvSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
const Vector rvsat = fluid_->rvSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rvmax_perf.assign(rvsat.data(), rvsat.data() + nperf);
} else {
rvmax_perf.assign(0.0, nperf);
@ -240,7 +237,7 @@ namespace Opm
Base::extractWellPerfProperties(state, rq, mob_perfcells, b_perfcells);
// handle the solvent related
if (has_solvent_) {
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
int gas_pos = pu.phase_pos[Gas];
const std::vector<int>& well_cells = wellOps().well_cells;
const int nperf = well_cells.size();
@ -256,7 +253,7 @@ namespace Opm
const ADB zero = ADB::constant(Vector::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
const ADB& sg = ((*active_)[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);

View File

@ -71,16 +71,10 @@ namespace Opm
StandardWells::StandardWells(const Wells* wells_arg,
const BlackoilPropsAdInterface& fluid_arg,
const std::vector<bool>& active_arg,
const std::vector<PhasePresence>& pc_arg)
StandardWells::StandardWells(const Wells* wells_arg)
: wells_(wells_arg)
, wops_(wells_arg)
, num_phases_(wells_arg->number_of_phases)
, fluid_(fluid_arg)
, active_(active_arg)
, phase_condition_(pc_arg)
, well_perforation_densities_(Vector())
, well_perforation_pressure_diffs_(Vector())
{
@ -90,6 +84,20 @@ namespace Opm
void
StandardWells::init(const BlackoilPropsAdInterface* fluid_arg,
const std::vector<bool>* active_arg,
const std::vector<PhasePresence>* pc_arg)
{
fluid_ = fluid_arg;
active_ = active_arg;
phase_condition_ = pc_arg;
}
const Wells& StandardWells::wells() const
{
assert(wells_ != 0);
@ -211,31 +219,31 @@ namespace Opm
std::vector<PhasePresence> perf_cond(nperf);
// const std::vector<PhasePresence>& pc = phaseCondition();
for (int perf = 0; perf < nperf; ++perf) {
perf_cond[perf] = phase_condition_[well_cells[perf]];
perf_cond[perf] = (*phase_condition_)[well_cells[perf]];
}
const PhaseUsage& pu = fluid_.phaseUsage();
const PhaseUsage& pu = fluid_->phaseUsage();
DataBlock b(nperf, pu.num_phases);
if (pu.phase_used[BlackoilPhases::Aqua]) {
const Vector bw = fluid_.bWat(avg_press_ad, perf_temp, well_cells).value();
const Vector bw = fluid_->bWat(avg_press_ad, perf_temp, well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw;
}
assert(active_[Oil]);
assert((*active_)[Oil]);
const Vector perf_so = subset(state.saturation[pu.phase_pos[Oil]].value(), well_cells);
if (pu.phase_used[BlackoilPhases::Liquid]) {
const ADB perf_rs = (state.rs.size() > 0) ? subset(state.rs, well_cells) : ADB::null();
const Vector bo = fluid_.bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
const Vector bo = fluid_->bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo;
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const ADB perf_rv = (state.rv.size() > 0) ? subset(state.rv, well_cells) : ADB::null();
const Vector bg = fluid_.bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
const Vector bg = fluid_->bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg;
}
if (pu.phase_used[BlackoilPhases::Liquid] && pu.phase_used[BlackoilPhases::Vapour]) {
const Vector rssat = fluid_.rsSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
const Vector rssat = fluid_->rsSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rsmax_perf.assign(rssat.data(), rssat.data() + nperf);
const Vector rvsat = fluid_.rvSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
const Vector rvsat = fluid_->rvSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rvmax_perf.assign(rvsat.data(), rvsat.data() + nperf);
}
@ -245,9 +253,9 @@ namespace Opm
// Surface density.
// The compute density segment wants the surface densities as
// an np * number of wells cells array
Vector rho = superset(fluid_.surfaceDensity(0 , well_cells), Span(nperf, pu.num_phases, 0), nperf*pu.num_phases);
Vector rho = superset(fluid_->surfaceDensity(0 , well_cells), Span(nperf, pu.num_phases, 0), nperf*pu.num_phases);
for (int phase = 1; phase < pu.num_phases; ++phase) {
rho += superset(fluid_.surfaceDensity(phase , well_cells), Span(nperf, pu.num_phases, phase), nperf*pu.num_phases);
rho += superset(fluid_->surfaceDensity(phase , well_cells), Span(nperf, pu.num_phases, phase), nperf*pu.num_phases);
}
surf_dens_perf.assign(rho.data(), rho.data() + nperf * pu.num_phases);
@ -271,7 +279,7 @@ namespace Opm
// Compute densities
std::vector<double> cd =
WellDensitySegmented::computeConnectionDensities(
wells(), xw, fluid_.phaseUsage(),
wells(), xw, fluid_->phaseUsage(),
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
const int nperf = wells().well_connpos[wells().number_of_wells];
@ -420,8 +428,8 @@ namespace Opm
const ADB cq_p = -(selectProducingPerforations * Tw) * (mob_perfcells[phase] * drawdown);
cq_ps[phase] = b_perfcells[phase] * cq_p;
}
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
if (active_[Oil] && active_[Gas]) {
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
if ((*active_)[Oil] && (*active_)[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const ADB cq_psOil = cq_ps[oilpos];
@ -468,12 +476,12 @@ namespace Opm
// compute volume ratio between connection at standard conditions
ADB volumeRatio = ADB::constant(Vector::Zero(nperf));
if (active_[Water]) {
if ((*active_)[Water]) {
const int watpos = pu.phase_pos[Water];
volumeRatio += cmix_s[watpos] / b_perfcells[watpos];
}
if (active_[Oil] && active_[Gas]) {
if ((*active_)[Oil] && (*active_)[Gas]) {
// Incorporate RS/RV factors if both oil and gas active
const ADB& rv_perfcells = subset(state.rv, well_cells);
const ADB& rs_perfcells = subset(state.rs, well_cells);
@ -489,11 +497,11 @@ namespace Opm
volumeRatio += tmp_gas / b_perfcells[gaspos];
}
else {
if (active_[Oil]) {
if ((*active_)[Oil]) {
const int oilpos = pu.phase_pos[Oil];
volumeRatio += cmix_s[oilpos] / b_perfcells[oilpos];
}
if (active_[Gas]) {
if ((*active_)[Gas]) {
const int gaspos = pu.phase_pos[Gas];
volumeRatio += cmix_s[gaspos] / b_perfcells[gaspos];
}
@ -597,7 +605,7 @@ namespace Opm
std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin());
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
//Loop over all wells
#pragma omp parallel for schedule(static)
for (int w = 0; w < nw; ++w) {
@ -612,13 +620,13 @@ namespace Opm
double liquid = 0.0;
double vapour = 0.0;
if (active_[ Water ]) {
if ((*active_)[ Water ]) {
aqua = wr[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
if ((*active_)[ Oil ]) {
liquid = wr[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
if ((*active_)[ Gas ]) {
vapour = wr[w*np + pu.phase_pos[ Gas ] ];
}
@ -723,15 +731,15 @@ namespace Opm
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
if (active_[ Water ]) {
if ((*active_)[ Water ]) {
aqua = xw.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
if ((*active_)[ Oil ]) {
liquid = xw.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
if ((*active_)[ Gas ]) {
vapour = xw.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
@ -858,13 +866,13 @@ namespace Opm
ADB liquid = ADB::constant(Vector::Zero(nw));
ADB vapour = ADB::constant(Vector::Zero(nw));
if (active_[Water]) {
if ((*active_)[Water]) {
aqua += subset(state.qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
}
if (active_[Oil]) {
if ((*active_)[Oil]) {
liquid += subset(state.qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
}
if (active_[Gas]) {
if ((*active_)[Gas]) {
vapour += subset(state.qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
}
@ -1024,7 +1032,7 @@ namespace Opm
if (compute_well_potentials) {
const int nw = wells().number_of_wells;
const int np = wells().number_of_phases;
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const Opm::PhaseUsage& pu = fluid_->phaseUsage();
Vector bhps = Vector::Zero(nw);
for (int w = 0; w < nw; ++w) {
@ -1044,13 +1052,13 @@ namespace Opm
double liquid = 0.0;
double vapour = 0.0;
if (active_[ Water ]) {
if ((*active_)[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
if ((*active_)[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
if ((*active_)[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}