mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-24 16:30:02 -06:00
[WIP] Refactor calculateBoundaryGradients_()
Not addressing solvent yet.
This commit is contained in:
parent
b65f5e9808
commit
68e1479caf
@ -418,34 +418,61 @@ protected:
|
||||
unsigned timeIdx,
|
||||
const FluidState& exFluidState)
|
||||
{
|
||||
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(scvfIdx);
|
||||
Scalar faceArea = scvf.area();
|
||||
Scalar zEx = scvf.integrationPos()[dimWorld - 1];
|
||||
const auto& problem = elemCtx.problem();
|
||||
calculateBoundaryGradients_(problem,
|
||||
elemCtx.globalSpaceIndex(0, timeIdx),
|
||||
elemCtx.intensiveQuantities(0, timeIdx),
|
||||
scvfIdx,
|
||||
timeIdx,
|
||||
faceArea,
|
||||
zEx,
|
||||
exFluidState,
|
||||
upIdx_,
|
||||
dnIdx_,
|
||||
volumeFlux_,
|
||||
pressureDifference_);
|
||||
}
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Update the required gradients for boundary faces
|
||||
*/
|
||||
template <class Problem, class FluidState, class EvaluationContainer>
|
||||
static void calculateBoundaryGradients_(const Problem& problem,
|
||||
const unsigned globalSpaceIdx,
|
||||
const IntensiveQuantities& intQuantsIn,
|
||||
const unsigned bfIdx,
|
||||
const unsigned timeIdx,
|
||||
const double faceArea,
|
||||
const double zEx,
|
||||
const FluidState& exFluidState,
|
||||
short (&upIdx)[numPhases],
|
||||
short (&dnIdx)[numPhases],
|
||||
EvaluationContainer& volumeFlux,
|
||||
EvaluationContainer& pressureDifference)
|
||||
{
|
||||
|
||||
bool enableBoundaryMassFlux = problem.nonTrivialBoundaryConditions();
|
||||
if (!enableBoundaryMassFlux)
|
||||
return;
|
||||
|
||||
const auto& stencil = elemCtx.stencil(timeIdx);
|
||||
const auto& scvf = stencil.boundaryFace(scvfIdx);
|
||||
|
||||
unsigned interiorDofIdx = scvf.interiorIndex();
|
||||
|
||||
Scalar trans = problem.transmissibilityBoundary(elemCtx, scvfIdx);
|
||||
Scalar faceArea = scvf.area();
|
||||
Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, bfIdx);
|
||||
|
||||
// estimate the gravity correction: for performance reasons we use a simplified
|
||||
// approach for this flux module that assumes that gravity is constant and always
|
||||
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||||
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
|
||||
|
||||
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
||||
Scalar g = problem.gravity()[dimWorld - 1];
|
||||
|
||||
// this is quite hacky because the dune grid interface does not provide a
|
||||
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
||||
// solution would be to take the Z coordinate of the element centroids, but since
|
||||
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
||||
// here...
|
||||
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
|
||||
Scalar zEx = scvf.integrationPos()[dimWorld - 1];
|
||||
Scalar zIn = problem.dofCenterDepth(globalSpaceIdx);
|
||||
|
||||
// the distances from the DOF's depths. (i.e., the additional depth of the
|
||||
// exterior DOF)
|
||||
@ -465,62 +492,62 @@ protected:
|
||||
Evaluation pressureExterior = exFluidState.pressure(phaseIdx);
|
||||
pressureExterior += rhoAvg*(distZ*g);
|
||||
|
||||
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
|
||||
pressureDifference[phaseIdx] = pressureExterior - pressureInterior;
|
||||
|
||||
// decide the upstream index for the phase. for this we make sure that the
|
||||
// degree of freedom which is regarded upstream if both pressures are equal
|
||||
// is always the same: if the pressure is equal, the DOF with the lower
|
||||
// global index is regarded to be the upstream one.
|
||||
if (pressureDifference_[phaseIdx] > 0.0) {
|
||||
upIdx_[phaseIdx] = -1;
|
||||
dnIdx_[phaseIdx] = interiorDofIdx;
|
||||
const unsigned interiorDofIdx = 0; // Valid only for cell-centered FV.
|
||||
if (pressureDifference[phaseIdx] > 0.0) {
|
||||
upIdx[phaseIdx] = -1;
|
||||
dnIdx[phaseIdx] = interiorDofIdx;
|
||||
}
|
||||
else {
|
||||
upIdx_[phaseIdx] = interiorDofIdx;
|
||||
dnIdx_[phaseIdx] = -1;
|
||||
upIdx[phaseIdx] = interiorDofIdx;
|
||||
dnIdx[phaseIdx] = -1;
|
||||
}
|
||||
|
||||
Evaluation transModified = trans;
|
||||
|
||||
unsigned upstreamIdx = upstreamIndex_(phaseIdx);
|
||||
if (upstreamIdx == interiorDofIdx) {
|
||||
if (upIdx[phaseIdx] == interiorDofIdx) {
|
||||
|
||||
// this is slightly hacky because in the automatic differentiation case, it
|
||||
// only works for the element centered finite volume method. for ebos this
|
||||
// does not matter, though.
|
||||
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
|
||||
const auto& up = intQuantsIn;
|
||||
|
||||
// deal with water induced rock compaction
|
||||
const double transMult = Toolbox::value(up.rockCompTransMultiplier());
|
||||
transModified *= transMult;
|
||||
|
||||
volumeFlux_[phaseIdx] =
|
||||
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea);
|
||||
volumeFlux[phaseIdx] =
|
||||
pressureDifference[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea);
|
||||
|
||||
if (enableSolvent && phaseIdx == gasPhaseIdx)
|
||||
asImp_().setSolventVolumeFlux( pressureDifference_[phaseIdx]*up.solventMobility()*(-transModified/faceArea));
|
||||
// TODO: Figure out if this did have any effect. It should?
|
||||
// if (enableSolvent && phaseIdx == gasPhaseIdx)
|
||||
// asImp_().setSolventVolumeFlux( pressureDifference[phaseIdx]*up.solventMobility()*(-transModified/faceArea));
|
||||
}
|
||||
else {
|
||||
// compute the phase mobility using the material law parameters of the
|
||||
// interior element. TODO: this could probably be done more efficiently
|
||||
const auto& matParams =
|
||||
elemCtx.problem().materialLawParams(elemCtx,
|
||||
interiorDofIdx,
|
||||
/*timeIdx=*/0);
|
||||
const auto& matParams = problem.materialLawParams(globalSpaceIdx);
|
||||
std::array<typename FluidState::Scalar,numPhases> kr;
|
||||
MaterialLaw::relativePermeabilities(kr, matParams, exFluidState);
|
||||
|
||||
const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx);
|
||||
volumeFlux_[phaseIdx] =
|
||||
pressureDifference_[phaseIdx]*mob*(-transModified/faceArea);
|
||||
volumeFlux[phaseIdx] =
|
||||
pressureDifference[phaseIdx]*mob*(-transModified/faceArea);
|
||||
|
||||
// Solvent inflow is not yet supported
|
||||
if (enableSolvent && phaseIdx == gasPhaseIdx)
|
||||
asImp_().setSolventVolumeFlux(0.0);
|
||||
// if (enableSolvent && phaseIdx == gasPhaseIdx)
|
||||
// asImp_().setSolventVolumeFlux(0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
/*!
|
||||
* \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user