Refactoring in BlackOilLocalResidualTpfa.

This commit is contained in:
Atgeirr Flø Rasmussen 2022-07-06 23:32:20 +02:00
parent 1b2c18f089
commit 6c0d5ea8c5
3 changed files with 107 additions and 117 deletions

View File

@ -99,7 +99,7 @@ public:
static void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage, static void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const ElementContext& elemCtx, const ElementContext& elemCtx,
unsigned dofIdx, unsigned dofIdx,
unsigned timeIdx) const unsigned timeIdx)
{ {
// retrieve the intensive quantities for the SCV at the specified point in time // retrieve the intensive quantities for the SCV at the specified point in time
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx); const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);

View File

@ -178,33 +178,31 @@ public:
/*! /*!
* \copydoc FvBaseLocalResidual::computeFlux * \copydoc FvBaseLocalResidual::computeFlux
*/ */
static void computeFlux(RateVector& flux, static void computeFlux(RateVector& flux,
const Problem& problem, const Problem& problem,
const unsigned globalFocusDofIdx, const unsigned globalIndexIn,
const unsigned globalIndexIn, const unsigned globalIndexEx,
const unsigned globalIndexEx, const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsIn, const IntensiveQuantities& intQuantsEx,
const IntensiveQuantities& intQuantsEx, const unsigned timeIdx)
const unsigned timeIdx)
{ {
assert(timeIdx == 0); assert(timeIdx == 0);
flux = 0.0; flux = 0.0;
Scalar Vin = problem.model().dofTotalVolume(globalIndexIn); Scalar Vin = problem.model().dofTotalVolume(globalIndexIn);
Scalar Vex = problem.model().dofTotalVolume(globalIndexEx); Scalar Vex = problem.model().dofTotalVolume(globalIndexEx);
Scalar trans = 1.0;//problem.transmissibility(globalIndexIn,globalIndexEx); Scalar trans = 1.0; // problem.transmissibility(globalIndexIn,globalIndexEx);
//Scalar faceArea = problem.area(globalIndexIn,globalIndexEx); // Scalar faceArea = problem.area(globalIndexIn,globalIndexEx);
Scalar faceArea = 1.0;//NB need correct calculation local residual Scalar faceArea = 1.0; // NB need correct calculation local residual
Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx); Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
// estimate the gravity correction: for performance reasons we use a simplified // estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always // approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.) // acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
constexpr Scalar g = 9.8; Scalar g = problem.gravity()[dimWorld - 1];
// this is quite hacky because the dune grid interface does not provide a // this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good" // cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since // solution would be to take the Z coordinate of the element centroids, but since
@ -215,31 +213,32 @@ public:
// the distances from the DOF's depths. (i.e., the additional depth of the // the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF) // exterior DOF)
Scalar distZ = zIn - zEx;// NB could be precalculated Scalar distZ = zIn - zEx; // NB could be precalculated
// //
//const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); // const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
calculateFluxes_(globalFocusDofIdx, calculateFluxes_(flux,
flux, problem, // should be removed
problem,// should be removed
intQuantsIn, intQuantsIn,
intQuantsEx, intQuantsEx,
timeIdx,//input timeIdx, // input
Vin, Vin,
Vex, Vex,
globalIndexIn, globalIndexIn,
globalIndexEx, globalIndexEx,
distZ*g, distZ * g,
thpres, thpres,
trans, trans,
faceArea);// should be removed faceArea); // should be removed
} }
// This function demonstrates compatibility with the ElementContext-based interface.
// Actually using it will lead to double work since the element context already contains
// fluxes through its stored ExtensiveQuantities.
static void computeFlux(RateVector& flux, static void computeFlux(RateVector& flux,
const ElementContext& elemCtx, const ElementContext& elemCtx,
unsigned scvfIdx, unsigned scvfIdx,
unsigned timeIdx) //const unsigned timeIdx)
{ {
assert(timeIdx == 0); assert(timeIdx == 0);
@ -253,15 +252,14 @@ public:
unsigned exteriorDofIdx = scvf.exteriorIndex(); unsigned exteriorDofIdx = scvf.exteriorIndex();
assert(interiorDofIdx != exteriorDofIdx); assert(interiorDofIdx != exteriorDofIdx);
//unsigned I = stencil.globalSpaceIndex(interiorDofIdx); // unsigned I = stencil.globalSpaceIndex(interiorDofIdx);
//unsigned J = stencil.globalSpaceIndex(exteriorDofIdx); // unsigned J = stencil.globalSpaceIndex(exteriorDofIdx);
Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0); Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0); Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx); const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx); const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx); Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
//Scalar faceArea = scvf.area(); Scalar faceArea = scvf.area();
Scalar faceArea = 1.0;
Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx); Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
// estimate the gravity correction: for performance reasons we use a simplified // estimate the gravity correction: for performance reasons we use a simplified
@ -283,44 +281,38 @@ public:
// exterior DOF) // exterior DOF)
Scalar distZ = zIn - zEx; Scalar distZ = zIn - zEx;
// calculateFluxes_(flux,
//const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx); problem, // only used for trans compressibility
unsigned focusDofIdx = elemCtx.focusDofIndex();
const auto& globalFocusDofIdx = stencil.globalSpaceIndex(focusDofIdx);
calculateFluxes_(globalFocusDofIdx,
flux,
problem,//only used for trans compressibility
intQuantsIn, intQuantsIn,
intQuantsEx, intQuantsEx,
timeIdx,//input timeIdx, // input
Vin, Vin,
Vex, Vex,
globalIndexIn, globalIndexIn,
globalIndexEx, globalIndexEx,
distZ*g, distZ * g,
thpres, thpres,
trans, trans,
faceArea faceArea);
);
} }
static void calculateFluxes_(unsigned globalFocusDofIdx, static void calculateFluxes_(
RateVector& flux, RateVector& flux,
const Problem& problem, //only used for rockCompressibility which should be moved to intensive quantities const Problem& problem, // only used for rockCompressibility which should be moved to intensive quantities
const IntensiveQuantities& intQuantsIn, const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx, const IntensiveQuantities& intQuantsEx,
const unsigned timeIdx, const unsigned timeIdx,
const Scalar& Vin, const Scalar& Vin,
const Scalar& Vex, const Scalar& Vex,
const unsigned& globalIndexIn, const unsigned& globalIndexIn,
const unsigned& globalIndexEx, const unsigned& globalIndexEx,
const Scalar& distZg, const Scalar& distZg,
const Scalar& thpres, const Scalar& thpres,
const Scalar& trans, const Scalar& trans,
const Scalar& faceArea // may be removed but need for compatibility with volume local assembly const Scalar& faceArea
){ )
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { {
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) if (!FluidSystem::phaseIsActive(phaseIdx))
continue; continue;
// darcy flux calculation // darcy flux calculation
@ -328,72 +320,71 @@ public:
// //
short upIdx; short upIdx;
// fake intices should only be used to get upwind anc compatibility with old functions // fake intices should only be used to get upwind anc compatibility with old functions
short interiorDofIdx = 0;//NB short interiorDofIdx = 0; // NB
short exteriorDofIdx = 1;//NB short exteriorDofIdx = 1; // NB
Evaluation pressureDifference; Evaluation pressureDifference;
ExtensiveQuantities::calculatePhasePressureDiff_(upIdx, ExtensiveQuantities::calculatePhasePressureDiff_(upIdx,
dnIdx, dnIdx,
pressureDifference, pressureDifference,
intQuantsIn, intQuantsIn,
intQuantsEx, intQuantsEx,
timeIdx,//input timeIdx, // input
phaseIdx,//input phaseIdx, // input
interiorDofIdx,//input interiorDofIdx, // input
exteriorDofIdx,//intput exteriorDofIdx, // intput
Vin, Vin,
Vex, Vex,
globalIndexIn, globalIndexIn,
globalIndexEx, globalIndexEx,
distZg, distZg,
thpres); thpres);
const IntensiveQuantities& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx; const IntensiveQuantities& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
unsigned globalUpIndex; unsigned globalUpIndex;
if(upIdx == interiorDofIdx){ if (upIdx == interiorDofIdx) {
//up = intQuantsIn; // up = intQuantsIn;
globalUpIndex = globalIndexIn; globalUpIndex = globalIndexIn;
}else{ } else {
//up = intQuantsEx; // up = intQuantsEx;
globalUpIndex = globalIndexEx; globalUpIndex = globalIndexEx;
} }
// TODO: should the rock compaction transmissibility multiplier be upstreamed // TODO: should the rock compaction transmissibility multiplier be upstreamed
// or averaged? all fluids should see the same compaction?! // or averaged? all fluids should see the same compaction?!
//const auto& globalIndex = stencil.globalSpaceIndex(upstreamIdx); // const auto& globalIndex = stencil.globalSpaceIndex(upstreamIdx);
const Evaluation& transMult = up.rockCompTransMultiplier(); const Evaluation& transMult = up.rockCompTransMultiplier();
//const Evaluation& transMult = // const Evaluation& transMult =
// problem.template rockCompTransMultiplier<Evaluation>(up, globalUpIndex); // problem.template rockCompTransMultiplier<Evaluation>(up, globalUpIndex);
Evaluation darcyFlux; Evaluation darcyFlux;
if(pressureDifference == 0){ if (pressureDifference == 0) {
darcyFlux = 0.0; //NB maybe we could drop calculations darcyFlux = 0.0; // NB maybe we could drop calculations
}else{ } else {
//if (upIdx == interiorDofIdx) // if (upIdx == interiorDofIdx)
if(globalUpIndex == globalIndexIn) if (globalUpIndex == globalIndexIn)
darcyFlux = darcyFlux = pressureDifference * up.mobility(phaseIdx) * transMult * (-trans / faceArea);
pressureDifference*up.mobility(phaseIdx)*transMult*(-trans/faceArea); else
else darcyFlux = pressureDifference * (Toolbox::value(up.mobility(phaseIdx)) * Toolbox::value(transMult) * (-trans / faceArea));
darcyFlux = }
pressureDifference*(Toolbox::value(up.mobility(phaseIdx))*Toolbox::value(transMult)*(-trans/faceArea)); // const auto& darcyFlux = extQuants.volumeFlux(phaseIdx);
} // unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
//const auto& darcyFlux = extQuants.volumeFlux(phaseIdx);
//unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx)); // const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
unsigned pvtRegionIdx = up.pvtRegionIndex();
//const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx); using FluidState = typename IntensiveQuantities::FluidState;
unsigned pvtRegionIdx = up.pvtRegionIndex(); // if (upIdx == globalFocusDofIdx){
using FluidState = typename IntensiveQuantities::FluidState; if (globalUpIndex == globalIndexIn) {
//if (upIdx == globalFocusDofIdx){ const auto& invB
if (globalUpIndex == globalFocusDofIdx){ = getInvB_<FluidSystem, FluidState, Evaluation>(up.fluidState(), phaseIdx, pvtRegionIdx);
const auto& invB = getInvB_<FluidSystem, FluidState, Evaluation>(up.fluidState(), phaseIdx, pvtRegionIdx); const auto& surfaceVolumeFlux = invB * darcyFlux;
const auto& surfaceVolumeFlux = invB*darcyFlux; evalPhaseFluxes_<Evaluation, Evaluation, FluidState>(
evalPhaseFluxes_<Evaluation,Evaluation,FluidState>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState()); flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
}else{ } else {
const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx); const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx);
const auto& surfaceVolumeFlux = invB*darcyFlux; const auto& surfaceVolumeFlux = invB * darcyFlux;
evalPhaseFluxes_<Scalar,Evaluation,FluidState>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState()); evalPhaseFluxes_<Scalar, Evaluation, FluidState>(
} flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
}
} }
// // deal with solvents (if present) // // deal with solvents (if present)
@ -419,7 +410,7 @@ public:
// DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx); // DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
} }
static void computeSource(RateVector& source, static void computeSource(RateVector& source,
const Problem& problem, const Problem& problem,
unsigned globalSpaceIdex, unsigned globalSpaceIdex,

View File

@ -443,9 +443,8 @@ private:
const IntensiveQuantities* intQuantsExP = model_().cachedIntensiveQuantities(globJ, /*timeIdx*/ 0); const IntensiveQuantities* intQuantsExP = model_().cachedIntensiveQuantities(globJ, /*timeIdx*/ 0);
assert(intQuantsExP); assert(intQuantsExP);
const IntensiveQuantities& intQuantsEx = *intQuantsExP; const IntensiveQuantities& intQuantsEx = *intQuantsExP;
unsigned globalFocusDofIdx = globI;
LocalResidual::computeFlux( LocalResidual::computeFlux(
adres, problem_(), globalFocusDofIdx, globI, globJ, intQuantsIn, intQuantsEx, 0); adres, problem_(), globI, globJ, intQuantsIn, intQuantsEx, 0);
adres *= trans_[globI][loc]; adres *= trans_[globI][loc];
setResAndJacobi(res, bMat, adres); setResAndJacobi(res, bMat, adres);
residual_[globI] += res; residual_[globI] += res;