cleaning code

This commit is contained in:
hnil
2022-05-05 14:21:28 +02:00
committed by Atgeirr Flø Rasmussen
parent 5a917dd11e
commit 6c407506a9
8 changed files with 251 additions and 317 deletions

View File

@@ -264,13 +264,8 @@ namespace Opm {
const SimulatorReportSingle& lastReport() const;
void addWellContributions(SparseMatrixAdapter& jacobian) const
{
for ( const auto& well: well_container_ ) {
well->addWellContributions(jacobian);
}
}
void addWellContributions(SparseMatrixAdapter& jacobian) const;
// called at the beginning of a report step
void beginReportStep(const int time_step);
@@ -296,118 +291,20 @@ namespace Opm {
using PressureMatrix = Dune::BCRSMatrix<Dune::FieldMatrix<double, 1, 1>>;
int numLocalWellsEnd() const
{
auto w = schedule().getWellsatEnd();
w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end());
return w.size();
}
int numLocalWellsEnd() const;
void addWellPressureEquations(PressureMatrix& jacobian, const BVector& weights,const bool use_well_weights) const
{
int nw = this->numLocalWellsEnd();
int rdofs = local_num_cells_;
for(int i=0; i < nw; i++){
int wdof = rdofs + i;
jacobian[wdof][wdof] = 1.0;// better scaling ?
}
void addWellPressureEquations(PressureMatrix& jacobian, const BVector& weights,const bool use_well_weights) const;
for (const auto& well : well_container_) {
well->addWellPressureEquations(jacobian, weights, pressureVarIndex, use_well_weights, this->wellState());
}
}
std::vector<std::vector<int>> getMaxWellConnections() const
{
std::vector<std::vector<int>> wells;
// Create cartesian to compressed mapping
const auto& globalCell = grid().globalCell();
const auto& cartesianSize = grid().logicalCartesianSize();
auto size = cartesianSize[0]*cartesianSize[1]*cartesianSize[2];
std::vector<int> cartesianToCompressed(size, -1);
auto begin = globalCell.begin();
for ( auto cell = begin, end= globalCell.end(); cell != end; ++cell )
{
cartesianToCompressed[ *cell ] = cell - begin;
}
auto schedule_wells = schedule().getWellsatEnd();
schedule_wells.erase(std::remove_if(schedule_wells.begin(), schedule_wells.end(), not_on_process_), schedule_wells.end());
wells.reserve(schedule_wells.size());
// initialize the additional cell connections introduced by wells.
for ( const auto& well : schedule_wells )
{
std::vector<int> compressed_well_perforations;
// All possible completions of the well
const auto& completionSet = well.getConnections();
compressed_well_perforations.reserve(completionSet.size());
for ( size_t c=0; c < completionSet.size(); c++ )
{
const auto& completion = completionSet.get(c);
int i = completion.getI();
int j = completion.getJ();
int k = completion.getK();
int cart_grid_idx = i + cartesianSize[0]*(j + cartesianSize[1]*k);
int compressed_idx = cartesianToCompressed[cart_grid_idx];
if ( compressed_idx >= 0 ) // Ignore completions in inactive/remote cells.
{
compressed_well_perforations.push_back(compressed_idx);
}
}
if ( ! compressed_well_perforations.empty() )
{
std::sort(compressed_well_perforations.begin(),
compressed_well_perforations.end());
wells.push_back(compressed_well_perforations);
}
}
return wells;
}
std::vector<std::vector<int>> getMaxWellConnections() const;
void addWellPressureEquationsStruct(PressureMatrix& jacobian) const
{
int nw = this->numLocalWellsEnd();
int rdofs = local_num_cells_;
for(int i=0; i < nw; i++){
int wdof = rdofs + i;
jacobian.entry(wdof,wdof) = 1.0;// better scaling ?
}
std::vector<std::vector<int>> wellconnections = getMaxWellConnections();
for(int i=0; i < nw; i++){
const auto& perfcells = wellconnections[i];
for(int perfcell : perfcells){
int wdof = rdofs + i;
jacobian.entry(wdof,perfcell) = 0.0;
jacobian.entry(perfcell, wdof) = 0.0;
}
}
// for (const auto& well : well_container_) {
// well->addWellPressureEquationsStruct(jacobian);
// }
}
void addWellPressureEquationsStruct(PressureMatrix& jacobian) const;
void initGliftEclWellMap(GLiftEclWells &ecl_well_map);
/// \brief Get list of local nonshut wells
const std::vector<WellInterfacePtr>& localNonshutWells()
{
return well_container_;
}
const std::vector<WellInterfacePtr>& localNonshutWells() const;
int numLocalNonshutWells() const
{
return well_container_.size();
}
protected:
Simulator& ebosSimulator_;

View File

@@ -1173,10 +1173,140 @@ namespace Opm {
Ax.axpy( alpha, scaleAddRes_ );
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addWellContributions(SparseMatrixAdapter& jacobian) const
{
for ( const auto& well: well_container_ ) {
well->addWellContributions(jacobian);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addWellPressureEquations(PressureMatrix& jacobian, const BVector& weights,const bool use_well_weights) const
{
int nw = this->numLocalWellsEnd();
int rdofs = local_num_cells_;
for(int i=0; i < nw; i++){
int wdof = rdofs + i;
jacobian[wdof][wdof] = 1.0;// better scaling ?
}
for (const auto& well : well_container_) {
well->addWellPressureEquations(jacobian, weights, pressureVarIndex, use_well_weights, this->wellState());
}
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::
numLocalWellsEnd() const
{
auto w = schedule().getWellsatEnd();
w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end());
return w.size();
}
template<typename TypeTag>
std::vector<std::vector<int>>
BlackoilWellModel<TypeTag>::
getMaxWellConnections() const
{
std::vector<std::vector<int>> wells;
// Create cartesian to compressed mapping
const auto& globalCell = grid().globalCell();
const auto& cartesianSize = grid().logicalCartesianSize();
auto size = cartesianSize[0]*cartesianSize[1]*cartesianSize[2];
std::vector<int> cartesianToCompressed(size, -1);
auto begin = globalCell.begin();
for ( auto cell = begin, end= globalCell.end(); cell != end; ++cell )
{
cartesianToCompressed[ *cell ] = cell - begin;
}
auto schedule_wells = schedule().getWellsatEnd();
schedule_wells.erase(std::remove_if(schedule_wells.begin(), schedule_wells.end(), not_on_process_), schedule_wells.end());
wells.reserve(schedule_wells.size());
// initialize the additional cell connections introduced by wells.
for ( const auto& well : schedule_wells )
{
std::vector<int> compressed_well_perforations;
// All possible completions of the well
const auto& completionSet = well.getConnections();
compressed_well_perforations.reserve(completionSet.size());
for ( size_t c=0; c < completionSet.size(); c++ )
{
const auto& completion = completionSet.get(c);
int i = completion.getI();
int j = completion.getJ();
int k = completion.getK();
int cart_grid_idx = i + cartesianSize[0]*(j + cartesianSize[1]*k);
int compressed_idx = cartesianToCompressed[cart_grid_idx];
if ( compressed_idx >= 0 ) // Ignore completions in inactive/remote cells.
{
compressed_well_perforations.push_back(compressed_idx);
}
}
if ( ! compressed_well_perforations.empty() )
{
std::sort(compressed_well_perforations.begin(),
compressed_well_perforations.end());
wells.push_back(compressed_well_perforations);
}
}
return wells;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
addWellPressureEquationsStruct(PressureMatrix& jacobian) const
{
int nw = this->numLocalWellsEnd();
int rdofs = local_num_cells_;
for(int i=0; i < nw; i++){
int wdof = rdofs + i;
jacobian.entry(wdof,wdof) = 1.0;// better scaling ?
}
std::vector<std::vector<int>> wellconnections = getMaxWellConnections();
for(int i=0; i < nw; i++){
const auto& perfcells = wellconnections[i];
for(int perfcell : perfcells){
int wdof = rdofs + i;
jacobian.entry(wdof,perfcell) = 0.0;
jacobian.entry(perfcell, wdof) = 0.0;
}
}
}
template<typename TypeTag>
const std::vector<WellInterfacePtr>&
BlackoilWellModel<TypeTag>::
localNonshutWells() const;
{
return well_container_;
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::
numLocalNonshutWells() const
{
return well_container_.size();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::

View File

@@ -756,96 +756,62 @@ namespace Opm
const bool use_well_weights,
const WellState& well_state) const
{
// We need to change matrix A as follows
// A -= C^T D^-1 B
// D is a (nseg x nseg) block matrix with (4 x 4) blocks.
// B and C are (nseg x ncells) block matrices with (4 x 4 blocks).
// They have nonzeros at (i, j) only if this well has a
// perforation at cell j connected to segment i. The code
// assumes that no cell is connected to more than one segment,
// i.e. the columns of B/C have no more than one nonzero.
// Add the pressure contribution to the cpr system for the well
// Add for coupling from well to reservoir
const auto seg_pressure_var_ind = this->SPres;
const int welldof_ind = this->duneC_.M() + this->index_of_well_;
for (size_t rowC = 0; rowC < this->duneC_.N(); ++rowC) {
for (auto colC = this->duneC_[rowC].begin(), endC = this->duneC_[rowC].end(); colC != endC; ++colC) {
const auto row_index = colC.index();
const auto& bw = weights[row_index];
double matel = 0.0;
//if(this->isPressureControlled(well_state)){
// jacobian[row_index][welldof_ind] = 0.0;
if(not(this->isPressureControlled(well_state))){
if(not(this->isPressureControlled(well_state))){
for (size_t rowC = 0; rowC < this->duneC_.N(); ++rowC) {
for (auto colC = this->duneC_[rowC].begin(), endC = this->duneC_[rowC].end(); colC != endC; ++colC) {
const auto row_index = colC.index();
const auto& bw = weights[row_index];
double matel = 0.0;
for(int i = 0; i< bw.size(); ++i){
matel += bw[i]*(*colC)[seg_pressure_var_ind][i];
}
jacobian[row_index][welldof_ind] += matel;
}
}
}
//BVector segment_weights(this->duneB_.N());
auto well_weight = weights[0]*0.0;
int num_perfs = 0;
//segment_weights = 0.0;
for (size_t rowB = 0; rowB < this->duneB_.N(); ++rowB) {
//segment_weights[rowB] = 0.0;
//int num_perfs = 0;
for (auto colB = this->duneB_[rowB].begin(), endB = this->duneB_[rowB].end(); colB != endB; ++colB) {
const auto col_index = colB.index();
const auto& bw = weights[col_index];
//segment_weights[rowB] += bw;
well_weight += bw;
num_perfs += 1;
// make cpr weights for well by pure avarage of reservoir weights of the perforations
if(not(this->isPressureControlled(well_state))){
auto well_weight = weights[0]*0.0;
int num_perfs = 0;
for (size_t rowB = 0; rowB < this->duneB_.N(); ++rowB) {
for (auto colB = this->duneB_[rowB].begin(), endB = this->duneB_[rowB].end(); colB != endB; ++colB) {
const auto col_index = colB.index();
const auto& bw = weights[col_index];
well_weight += bw;
num_perfs += 1;
}
}
//segment_weights[rowB] /= num_perfs;
}
well_weight /= num_perfs;
assert(num_perfs>0);
double diag_ell = 0.0;
for (size_t rowB = 0; rowB < this->duneB_.N(); ++rowB) {
//const auto& bw = segment_weights[rowB];
const auto& bw = well_weight;
for (auto colB = this->duneB_[rowB].begin(), endB = this->duneB_[rowB].end(); colB != endB; ++colB) {
const auto col_index = colB.index();
double matel = 0.0;
//if(this->isPressureControlled(well_state)){
// jacobian[welldof_ind][col_index] = 0.0;
if(not(this->isPressureControlled(well_state))){
well_weight /= num_perfs;
assert(num_perfs>0);
// Add for coupling from reservoir to well and caclulate diag elelement corresping to incompressible standard well
double diag_ell = 0.0;
for (size_t rowB = 0; rowB < this->duneB_.N(); ++rowB) {
const auto& bw = well_weight;
for (auto colB = this->duneB_[rowB].begin(), endB = this->duneB_[rowB].end(); colB != endB; ++colB) {
const auto col_index = colB.index();
double matel = 0.0;
for(int i = 0; i< bw.size(); ++i){
matel += bw[i] *(*colB)[i][pressureVarIndex];
}
jacobian[welldof_ind][col_index] += matel;
diag_ell -= matel;
}
}
}
}
if(this->isPressureControlled(well_state)){
jacobian[welldof_ind][welldof_ind] = 1.0;
}else{
assert(diag_ell > 0.0);
jacobian[welldof_ind][welldof_ind] = diag_ell;
}else{
jacobian[welldof_ind][welldof_ind] = 1.0; // maybe we could have used diag_ell if calculated
}
// for (size_t rowD = 0; rowD < this->duneD_.N(); ++rowD) {
// //const auto& bw = segment_weights[rowD];
// const auto& bw = well_weight;
// //const auto row_index = rowD.index();
// for (auto colD = this->duneD_[rowD].begin(), endD = this->duneD_[rowD].end(); colD != endD; ++colD) {
// const auto col_index = colD.index();
// if(rowD == col_index){//need?
// double matel = 0.0;
// for(int i = 0; i< bw.size(); ++i){
// matel += bw[i]*(*colD)[i][seg_pressure_var_ind];
// }
// jacobian[welldof_ind][welldof_ind] += matel;
// }
// }
// }
// assert(jacobian[welldof_ind][welldof_ind] != 0);
// }
}

View File

@@ -182,8 +182,6 @@ namespace Opm
virtual void addWellContributions(SparseMatrixAdapter& mat) const override;
// virtual void addWellPressureEquationsStruct(PressureMatrix& mat) const override;
virtual void addWellPressureEquations(PressureMatrix& mat,
const BVector& x,
const int pressureVarIndex,

View File

@@ -550,7 +550,7 @@ namespace Opm
// do the local inversion of D.
try {
this->duneD_ = this->invDuneD_;
this->duneD_ = this->invDuneD_; // Not strictly need if not cpr with well contributions is used
Dune::ISTLUtility::invertMatrix(this->invDuneD_[0][0]);
} catch( ... ) {
OPM_DEFLOG_THROW(NumericalIssue,"Error when inverting local well equations for well " + name(), deferred_logger);
@@ -2167,39 +2167,6 @@ namespace Opm
}
}
// template <typename TypeTag>
// void
// StandardWell<TypeTag>::addWellPressureEquationsStruct(PressureMatrix& jacobian) const
// {
// // sustem is the pressur variant of
// // We need to change matrx A as follows
// // A CT
// // B D
// // we need to add the elemenst of CT
// // then we need to ad the quasiimpes type well equation for B D if the well is not
// // BHP contolled
// const int welldof_ind = this->duneC_.M() + this->index_of_well_;
// for (auto colC = this->duneC_[0].begin(), endC = this->duneC_[0].end(); colC != endC; ++colC) {
// const auto row_index = colC.index();
// double matel = 0;
// jacobian.entry(row_index, welldof_ind) = matel;
// }
// jacobian.entry(welldof_ind, welldof_ind) = 0.0;
// // set the matrix elements for well reservoir coupling
// for (auto colB = this->duneB_[0].begin(), endB = this->duneB_[0].end(); colB != endB; ++colB) {
// const auto col_index = colB.index();
// double matel = 0;
// jacobian.entry(welldof_ind, col_index) = matel;
// }
// }
template <typename TypeTag>
void
StandardWell<TypeTag>::addWellPressureEquations(PressureMatrix& jacobian,
@@ -2208,76 +2175,65 @@ namespace Opm
const bool use_well_weights,
const WellState& well_state) const
{
// sustem is the pressur variant of
// We need to change matrx A as follows
// A CT
// B D
// we need to add the elemenst of CT
// then we need to ad the quasiimpes type well equation for B D if the well is not
// BHP contolled
// Add the well contributions in cpr
// use_well_weights is a quasiimpes formulation which is not implemented in multisegment
int bhp_var_index = Bhp;
int nperf = 0;
auto cell_weights = weights[0]*0.0;
auto cell_weights = weights[0]*0.0;// not need for not(use_well_weights)
assert(this->duneC_.M() == weights.size());
const int welldof_ind = this->duneC_.M() + this->index_of_well_;
for (auto colC = this->duneC_[0].begin(), endC = this->duneC_[0].end(); colC != endC; ++colC) {
const auto row_ind = colC.index();
const auto& bw = weights[row_ind];
double matel = 0;
if(not(this->isPressureControlled(well_state))){
// do not assume anything about pressure controlled with use_well_weights (work fine with the assumtion also)
if(not(this->isPressureControlled(well_state)) || use_well_weights){
// make coupling for reservoir to well
const int welldof_ind = this->duneC_.M() + this->index_of_well_;
for (auto colC = this->duneC_[0].begin(), endC = this->duneC_[0].end(); colC != endC; ++colC) {
const auto row_ind = colC.index();
const auto& bw = weights[row_ind];
double matel = 0;
assert((*colC).M() == bw.size());
for (size_t i = 0; i < bw.size(); ++i) {
matel += (*colC)[bhp_var_index][i] * bw[i];
}
jacobian[row_ind][welldof_ind] = matel;
cell_weights += bw;
nperf += 1;
}
jacobian[row_ind][welldof_ind] = matel;
//if(not(use_well_weights)){
cell_weights += bw;
nperf += 1;
//}
}
cell_weights /= nperf;
// make quasipes weights for bhp it should be trival
//using VectorBlockType = BVectorWell;
//VectorBlockType
BVectorWell bweights(1);
size_t blockSz = this->numWellEq_;
bweights[0].resize(blockSz);
bweights[0] = 0.0;
double diagElem = 0;
{
// const DiagMatrixBlockWellType& invA = invDuneD_[0][0];
BVectorWell rhs(1);
rhs[0].resize(blockSz);
rhs[0][bhp_var_index] = 1.0;
DiagMatrixBlockWellType inv_diag_block = this->invDuneD_[0][0];
DiagMatrixBlockWellType inv_diag_block_transpose = Opm::wellhelpers::transposeDenseDynMatrix(inv_diag_block);
// diag_block_transpose.solve(bweights, rhs);
//HACK due to template errors
{
if(use_well_weights){
// calculate weighs and set diagonal element
//NB! use this options without treating pressure controlled separated
//NB! calculate quasiimpes well weights NB do not work well with trueimpes reservoir weights
double abs_max = 0;
if(this->isPressureControlled(well_state)){
// examples run ok without this branch also
bweights[0][blockSz-1] = 1.0;
diagElem = 1.0;// better scaling
}else{
for (size_t i = 0; i < blockSz; ++i) {
bweights[0][i] = 0;
for (size_t j = 0; j < blockSz; ++j) {
bweights[0][i] += inv_diag_block_transpose[i][j]*rhs[0][j];
}
abs_max = std::max(abs_max, std::fabs(bweights[0][i]));
BVectorWell rhs(1);
rhs[0].resize(blockSz);
rhs[0][bhp_var_index] = 1.0;
DiagMatrixBlockWellType inv_diag_block = this->invDuneD_[0][0];
DiagMatrixBlockWellType inv_diag_block_transpose = Opm::wellhelpers::transposeDenseDynMatrix(inv_diag_block);
for (size_t i = 0; i < blockSz; ++i) {
bweights[0][i] = 0;
for (size_t j = 0; j < blockSz; ++j) {
bweights[0][i] += inv_diag_block_transpose[i][j]*rhs[0][j];
}
assert(abs_max>0.0);
for (size_t i = 0; i < blockSz; ++i) {
bweights[0][i] /= abs_max;
}
diagElem = 1.0/abs_max;
abs_max = std::max(abs_max, std::fabs(bweights[0][i]));
}
assert(abs_max>0.0);
for (size_t i = 0; i < blockSz; ++i) {
bweights[0][i] /= abs_max;
}
diagElem = 1.0/abs_max;
}else{
// set diagonal element
if(this->isPressureControlled(well_state)){
bweights[0][blockSz-1] = 1.0;
diagElem = 1.0;// better scaling?
diagElem = 1.0;// better scaling could have used the calculation below if weights were calculated
}else{
for (size_t i = 0; i < cell_weights.size(); ++i) {
bweights[0][i] = cell_weights[i];
@@ -2291,26 +2247,20 @@ namespace Opm
}
}
//inv_diag_block_transpose.mv(rhs[0], bweights[0]);
// NB how to scale to make it most symmetric
//double abs_max = *std::max_element(
// bweights[0].begin(), bweights[0].end(), [](double a, double b) { return std::fabs(a) < std::fabs(b); });
}
//
jacobian[welldof_ind][welldof_ind] = diagElem;
// set the matrix elements for well reservoir coupling
for (auto colB = this->duneB_[0].begin(), endB = this->duneB_[0].end(); colB != endB; ++colB) {
const auto col_index = colB.index();
const auto& bw = bweights[0];
double matel = 0;
for (size_t i = 0; i < bw.size(); ++i) {
const double w = bw[i];
matel += (*colB)[i][pressureVarIndex] * bw[i];
}
jacobian[welldof_ind][col_index] = matel;
if(not(this->isPressureControlled(well_state)) || use_well_weights){
for (auto colB = this->duneB_[0].begin(), endB = this->duneB_[0].end(); colB != endB; ++colB) {
const auto col_index = colB.index();
const auto& bw = bweights[0];
double matel = 0;
for (size_t i = 0; i < bw.size(); ++i) {
const double w = bw[i];
matel += (*colB)[i][pressureVarIndex] * bw[i];
}
jacobian[welldof_ind][col_index] = matel;
}
}

View File

@@ -232,7 +232,8 @@ namespace Opm {
return cube;
}
// explicite transpose of dense matrix due to compilation problems
// used for caclulating quasiimpes well weights
template <class DenseMatrix>
DenseMatrix transposeDenseDynMatrix(const DenseMatrix& M)
{

View File

@@ -225,47 +225,13 @@ public:
// Add well contributions to matrix
virtual void addWellContributions(SparseMatrixAdapter&) const = 0;
virtual bool isPressureControlled(const WellState& well_state) const
{
//return false;
bool thp_controlled_well = false;
bool bhp_controlled_well = false;
const auto& ws = well_state.well(this->index_of_well_);
if (this->isInjector()) {
const Well::InjectorCMode& current = ws.injection_cmode;
if (current == Well::InjectorCMode::THP) {
thp_controlled_well = true;
}
if (current == Well::InjectorCMode::BHP) {
bhp_controlled_well = true;
}
} else {
const Well::ProducerCMode& current = ws.production_cmode;
if (current == Well::ProducerCMode::THP) {
thp_controlled_well = true;
}
if (current == Well::ProducerCMode::BHP) {
bhp_controlled_well = true;
}
}
bool ispressureControlled = (bhp_controlled_well || thp_controlled_well);
return ispressureControlled;
}
virtual bool isPressureControlled(const WellState& well_state) const;
// virtual void addWellPressureEquationsStruct(PressureMatrix&) const
// {
// THROW(std::logic_error, "Not implemented for this welltype ");
// }
virtual void addWellPressureEquations(PressureMatrix& mat,
const BVector& x,
const int pressureVarIndex,
const bool use_well_weights,
const WellState& well_state) const = 0;
// {
//THROW(std::logic_error, "Not implemented for this welltype ");
// }
void addCellRates(RateVector& rates, int cellIdx) const;

View File

@@ -534,7 +534,33 @@ namespace Opm
assembleWellEqWithoutIteration(ebosSimulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
}
template<typename TypeTag>
void
WellInterface<TypeTag>::isPressureControlled(const WellState& well_state) const
{
bool thp_controlled_well = false;
bool bhp_controlled_well = false;
const auto& ws = well_state.well(this->index_of_well_);
if (this->isInjector()) {
const Well::InjectorCMode& current = ws.injection_cmode;
if (current == Well::InjectorCMode::THP) {
thp_controlled_well = true;
}
if (current == Well::InjectorCMode::BHP) {
bhp_controlled_well = true;
}
} else {
const Well::ProducerCMode& current = ws.production_cmode;
if (current == Well::ProducerCMode::THP) {
thp_controlled_well = true;
}
if (current == Well::ProducerCMode::BHP) {
bhp_controlled_well = true;
}
}
bool ispressureControlled = (bhp_controlled_well || thp_controlled_well);
return ispressureControlled;
}
template<typename TypeTag>
void