Solve submatrix system in the Schur complement

The non-diagonal elements in the sub-matrices in the Schur complement is
no longer ignored. Instead of assuming the matrix do be diagonal, and
compute the invert of the sub-matrix, small linear systems are solved
using superLU.

Tested on SPE3 and Norne. (With this fix a slightly modified norne runs
until 3292 days)
This commit is contained in:
Tor Harald Sandve 2014-11-10 10:26:12 +01:00
parent 70f390f705
commit 6c4d62d7fd

View File

@ -44,6 +44,7 @@
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
#include <Eigen/SparseLU>
namespace Opm
{
@ -241,17 +242,14 @@ namespace Opm
// Schur complement of (A B ; C D) wrt. D is A - B*inv(D)*C.
// This is applied to all 2x2 block submatrices.
// We require that D is diagonal.
// We do not explicitly compute inv(D) instead Du = C is solved
const M& D = eqs[n].derivative()[n];
if (!isDiagonal(D)) {
// std::cout << "++++++++++++++++++++++++++++++++++++++++++++\n"
// << D
// << "++++++++++++++++++++++++++++++++++++++++++++\n" << std::endl;
std::cerr << "WARNING (ignored): Cannot do Schur complement with respect to non-diagonal block." << std::endl;
//OPM_THROW(std::logic_error, "Cannot do Schur complement with respect to non-diagonal block.");
}
V diag = D.diagonal();
Eigen::DiagonalMatrix<double, Eigen::Dynamic> invD = (1.0 / diag).matrix().asDiagonal();
// Use sparse LU to solve the block submatrices
Eigen::SparseLU<Eigen::SparseMatrix<double> > solver;
solver.compute(D);
std::vector<V> vals(num_eq); // Number n will remain empty.
std::vector<std::vector<M>> jacs(num_eq); // Number n will remain empty.
for (int eq = 0; eq < num_eq; ++eq) {
@ -265,11 +263,15 @@ namespace Opm
continue;
}
// Create new jacobians.
M schur_jac = eqs[eq].derivative()[var] - B * (invD * eqs[n].derivative()[var]);
const M& C = eqs[n].derivative()[var];
const M u = solver.solve(C);
M schur_jac = eqs[eq].derivative()[var] - B * u;
jacs[eq].push_back(schur_jac);
}
// Update right hand side.
vals[eq] = eqs[eq].value().matrix() - B * (invD * eqs[n].value().matrix());
Eigen::VectorXd b = eqs[n].value().matrix();
Eigen::VectorXd v = solver.solve(b);
vals[eq] = eqs[eq].value().matrix() - B * v;
}
// Create return value.
@ -292,22 +294,13 @@ namespace Opm
{
// The equation to solve for the unknown y (to be recovered) is
// Cx + Dy = b
// y = inv(D) (b - Cx)
// Dy = (b - Cx)
// where D is the eliminated block, C is the jacobian of
// the eliminated equation with respect to the
// non-eliminated unknowms, b is the right-hand side of
// the eliminated equation, and x is the partial solution
// of the non-eliminated unknowns.
// We require that D is diagonal.
// Find inv(D).
const M& D = equation.derivative()[n];
if (!isDiagonal(D)) {
std::cerr << "WARNING (ignored): Cannot do Schur complement with respect to non-diagonal block." << std::endl;
//OPM_THROW(std::logic_error, "Cannot do Schur complement with respect to non-diagonal block.");
}
V diag = D.diagonal();
Eigen::DiagonalMatrix<double, Eigen::Dynamic> invD = (1.0 / diag).matrix().asDiagonal();
// Build C.
std::vector<M> C_jacs = equation.derivative();
@ -315,8 +308,13 @@ namespace Opm
ADB eq_coll = collapseJacs(ADB::function(equation.value(), C_jacs));
const M& C = eq_coll.derivative()[0];
// Use sparse LU to solve the block submatrices
Eigen::SparseLU<Eigen::SparseMatrix<double> > solver;
solver.compute(D);
// Compute value of eliminated variable.
V elim_var = invD * (equation.value().matrix() - C * partial_solution.matrix());
Eigen::VectorXd b = (equation.value().matrix() - C * partial_solution.matrix());
Eigen::VectorXd elim_var = solver.solve(b);
// Find the relevant sizes to use when reconstructing the full solution.
const int nelim = equation.size();