fix FullyImplicitTwophasePolymersolver constructor problem.

add some input commits for debugging.
This commit is contained in:
Liu Ming 2013-12-09 22:57:44 +08:00
parent fb12565ddf
commit 6fc24236df
7 changed files with 561 additions and 27 deletions

Binary file not shown.

262
examples/sim_2p_fim.cpp Normal file
View File

@ -0,0 +1,262 @@
/*
*/
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/simulator/initState.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/props/IncompPropertiesBasic.hpp>
#include <opm/core/props/IncompPropertiesFromDeck.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/autodiff/polymer/SimulatorFullyImplicitTwophase.hpp>
#include <opm/autodiff/polymer/IncompPropsAdInterface.hpp>
#include <opm/autodiff/polymer/IncompPropsAdBasic.hpp>
#include <opm/autodiff/polymer/IncompPropsAdFromDeck.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/filesystem.hpp>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
boost::scoped_ptr<EclipseGridParser> deck;
boost::scoped_ptr<GridManager> grid;
boost::scoped_ptr<IncompPropsAdInterface> props;
TwophaseState state;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
deck.reset(new EclipseGridParser(deck_filename));
// Grid init
grid.reset(new GridManager(*deck));
// Rock and fluid init
props.reset(new IncompPropsAdFromDeck(*deck, *grid->c_grid()));
// Gravity.
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
int num_cells = grid->c_grid()->number_of_cells;
if (param.has("init_saturation")) {
//initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
const double init_saturation = param.get<double>("init_saturation");
for (int c = 0; c < num_cells; ++c) {
state.saturation()[2*c] = init_saturation;
state.saturation()[2*c+1] = 1. - init_saturation;
}
} else {
if (deck->hasField("PRESSURE")) {
// Set saturations from SWAT/SGAS, pressure from PRESSURE.
std::vector<double>& s = state.saturation();
std::vector<double>& p = state.pressure();
const std::vector<double>& p_deck = deck->getFloatingPointValue("PRESSURE");
// water-oil or water-gas: we require SWAT
if (!deck->hasField("SWAT")) {
OPM_THROW(std::runtime_error, "initStateFromDeck(): missing SWAT keyword in 2-phase init");
}
const std::vector<double>& sw_deck = deck->getFloatingPointValue("SWAT");
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid->c_grid()->global_cell == NULL) ? c : grid->c_grid()->global_cell[c];
s[2*c] = sw_deck[c_deck];
s[2*c + 1] = 1.0 - sw_deck[c_deck];
p[c] = p_deck[c_deck];
}
}
}
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
props.reset(new IncompPropsAdBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
// Rock compressibility.
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
int num_cells = grid->c_grid()->number_of_cells;
}
// Warn if gravity but no density difference.
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
if (deck->hasField("SRC")) {
const std::vector<double>& src_deck = deck->getFloatingPointValue("SRC");
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid->c_grid()->global_cell == NULL) ? c : grid->c_grid()->global_cell[c];
src[c] = src_deck[c_deck];
}
}
} else {
// Compute pore volumes, in order to enable specifying injection rate
// terms of total pore volume.
std::vector<double> porevol;
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
in: num_cells = grid->c_grid()->number_of_cells;
// Linear solver.
LinearSolverFactory linsolver(param);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
std::string filename = output_dir + "/epoch_timing.param";
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
// open file to clean it. The file is appended to in SimulatorTwophase
filename = output_dir + "/step_timing.param";
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
step_os.close();
param.writeParam(output_dir + "/simulation.param");
}
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< " (number of epochs: "
<< (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;
SimulatorReport rep;
if (!use_deck) {
// Simple simulation without a deck.
SimulatorFullyImplicitTwophase simulator(param,
*grid->c_grid(),
*props,
linsolver,
src);
SimulatorTimer simtimer;
simtimer.init(param);
warnIfUnusedParams(param);
rep = simulator.run(simtimer, state, src);
} else {
// With a deck, we may have more epochs etc.
int step = 0;
SimulatorTimer simtimer;
// Use timer for last epoch to obtain total time.
deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
simtimer.init(*deck);
const double total_time = simtimer.totalTime();
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
// Set epoch index.
deck->setCurrentEpoch(epoch);
// Update the timer.
if (deck->hasField("TSTEP")) {
simtimer.init(*deck);
} else {
if (epoch != 0) {
OPM_THROW(std::runtime_error, "No TSTEP in deck for epoch " << epoch);
}
simtimer.init(param);
}
simtimer.setCurrentStepNum(step);
simtimer.setTotalTime(total_time);
// Report on start of epoch.
std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------"
<< "\n (number of steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create and run simulator.
SimulatorFullyImplicitTwophase simulator(param,
*grid->c_grid(),
*props,
linsolver,
src);
if (epoch == 0) {
warnIfUnusedParams(param);
}
SimulatorReport epoch_rep = simulator.run(simtimer, state, src);
if (output) {
epoch_rep.reportParam(epoch_os);
}
// Update total timing report and remember step number.
rep += epoch_rep;
step = simtimer.currentStepNum();
}
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
if (output) {
std::string filename = output_dir + "/walltime.param";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
rep.reportParam(tot_os);
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}

View File

@ -0,0 +1,91 @@
#include "config.h"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include <cassert>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/io/vtk/writeVtkData.hpp>
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/props/IncompPropertiesBasic.hpp>
#include <opm/polymer/fullyimplicit/FullyImplicitTwoPhaseSolver.hpp>
#include <opm/polymer/fullyimplicit/IncompPropsAdBasic.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
int main (int argc, char** argv)
try
{
int nx = 20;
int ny = 20;
int nz = 1;
double dx = 10.0;
double dy = 10.0;
double dz = 10.0;
using namespace Opm;
parameter::ParameterGroup param(argc, argv, false);
GridManager grid_manager(nx, ny, nz, dx, dy, dz);
const UnstructuredGrid& grid = *grid_manager.c_grid();
int num_cells = grid.number_of_cells;
int num_phases = 2;
using namespace Opm::unit;
using namespace Opm::prefix;
std::vector<double> density(num_phases, 1000.0);
std::vector<double> viscosity(num_phases, 1.0*centi*Poise);
double porosity = 0.5;
double permeability = 10.0*milli*darcy;
SaturationPropsBasic::RelPermFunc rel_perm_func = SaturationPropsBasic::Linear;
IncompPropsAdBasic props(num_phases, rel_perm_func, density, viscosity,
porosity, permeability, grid.dimensions, num_cells);
std::vector<double> omega;
std::vector<double> src(num_cells, 0.0);
src[0] = 1.;
src[num_cells-1] = -1.;
FlowBCManager bcs;
LinearSolverUmfpack linsolver;
FullyImplicitTwoPhaseSolver solver(grid, props, linsolver);
std::vector<double> porevol;
Opm::computePorevolume(grid, props.porosity(), porevol);
const double dt = param.getDefault("dt", 0.1) * day;
const int num_time_steps = param.getDefault("nsteps", 20);
std::vector<int> allcells(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells[cell] = cell;
}
TwophaseState state;
state.init(grid, 2);
//initial sat
for (int c = 0; c < num_cells; ++c) {
state.saturation()[2*c] = 0.2;
state.saturation()[2*c+1] = 0.8;
}
std::vector<double> p(num_cells, 200*Opm::unit::barsa);
state.pressure() = p;
// state.setFirstSat(allcells, props, TwophaseState::MinSat);
std::ostringstream vtkfilename;
for (int i = 0; i < num_time_steps; ++i) {
solver.step(dt, state, src);
vtkfilename.str("");
vtkfilename << "sim_2p_fincomp-" << std::setw(3) << std::setfill('0') << i << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
Opm::writeVtkData(grid, dm, vtkfile);
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}

View File

@ -0,0 +1,146 @@
#include "config.h"
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include <cassert>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/io/vtk/writeVtkData.hpp>
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/props/IncompPropertiesBasic.hpp>
#include <opm/polymer/fullyimplicit/FullyImplicitTwophasePolymerSolver.hpp>
#include <opm/polymer/fullyimplicit/PolymerPropsAd.hpp>
#include <opm/polymer/fullyimplicit/IncompPropsAdBasic.hpp>
#include <opm/polymer/PolymerState.hpp>
#include <opm/polymer/PolymerInflow.hpp>
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
int main (int argc, char** argv)
try
{
using namespace Opm;
parameter::ParameterGroup param(argc, argv, false);
bool use_poly_deck = param.has("deck_filename");
if (!use_poly_deck) {
OPM_THROW(std::runtime_error, "Polymer Properties must be read from deck_filename\n");
}
std::string deck_filename = param.get<std::string>("deck_filename");
EclipseGridParser deck = EclipseGridParser(deck_filename);
int nx = param.getDefault("nx", 20);
int ny = param.getDefault("ny", 20);
int nz = 1;
double dx = 2.0;
double dy = 2.0;
double dz = 0.5;
GridManager grid_manager(nx, ny, nz, dx, dy, dz);
const UnstructuredGrid& grid = *grid_manager.c_grid();
int num_cells = grid.number_of_cells;
int num_phases = 2;
using namespace Opm::unit;
using namespace Opm::prefix;
std::vector<double> density(num_phases, 1000.0);
std::vector<double> viscosity(num_phases, 1.0*centi*Poise);
viscosity[0] = 0.5 * centi * Poise;
viscosity[0] = 5 * centi * Poise;
double porosity = 0.35;
double permeability = 10.0*milli*darcy;
SaturationPropsBasic::RelPermFunc rel_perm_func = SaturationPropsBasic::Linear;
IncompPropsAdBasic props(num_phases, rel_perm_func, density, viscosity,
porosity, permeability, grid.dimensions, num_cells);
// Init polymer properties.
// Setting defaults to provide a simple example case.
PolymerProperties polymer_props(deck);
#if 0
if (use_poly_deck) {
} else {
double c_max = param.getDefault("c_max_limit", 5.0);
double mix_param = param.getDefault("mix_param", 1.0);
double rock_density = param.getDefault("rock_density", 1000.0);
double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
double c_max_ads = param.getDefault("c_max_ads", 1.);
int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption);
std::vector<double> c_vals_visc(2, -1e100);
c_vals_visc[0] = 0.0;
c_vals_visc[1] = 7.0;
std::vector<double> visc_mult_vals(2, -1e100);
visc_mult_vals[0] = 1.0;
// poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
visc_mult_vals[1] = 20.0;
std::vector<double> c_vals_ads(3, -1e100);
c_vals_ads[0] = 0.0;
c_vals_ads[1] = 2.0;
c_vals_ads[2] = 8.0;
std::vector<double> ads_vals(3, -1e100);
ads_vals[0] = 0.0;
ads_vals[1] = 0.0015;
ads_vals[2] = 0.0025;
PolymerProperties polymer_props;
polymer_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals);
}
#endif
PolymerPropsAd polymer_props_ad(polymer_props);
std::vector<double> omega;
std::vector<double> src(num_cells, 0.0);
std::vector<double> src_polymer(num_cells);
src[0] = 10. / day;
src[num_cells-1] = -1. / day;
PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 30.0)*Opm::unit::day,
param.getDefault("poly_end_days", 80.0)*Opm::unit::day,
param.getDefault("poly_amount", polymer_props.cMax()));
FlowBCManager bcs;
LinearSolverUmfpack linsolver;
FullyImplicitTwophasePolymerSolver solver(grid, props,polymer_props_ad, linsolver);
std::vector<double> porevol;
Opm::computePorevolume(grid, props.porosity(), porevol);
const double dt = param.getDefault("dt", 10.) * day;
const int num_time_steps = param.getDefault("nsteps", 10);
std::vector<int> allcells(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells[cell] = cell;
}
PolymerState state;
state.init(grid, 2);
//initial sat
for (int c = 0; c < num_cells; ++c) {
state.saturation()[2*c] = 0.2;
state.saturation()[2*c+1] = 0.8;
}
std::vector<double> p(num_cells, 200*Opm::unit::barsa);
state.pressure() = p;
std::vector<double> c(num_cells, 0.0);
state.concentration() = c;
std::ostringstream vtkfilename;
double currentime = 0;
for (int i = 0; i < num_time_steps; ++i) {
currentime += dt;
polymer_inflow.getInflowValues(currentime, currentime+dt, src_polymer);
solver.step(dt, state, src, src_polymer);
vtkfilename.str("");
vtkfilename << "sim_poly2p_fincomp_ad_" << std::setw(3) << std::setfill('0') << i << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
Opm::writeVtkData(grid, dm, vtkfile);
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}

View File

@ -64,11 +64,11 @@ typedef Eigen::Array<double,
const LinearSolverInterface& linsolver)
: grid_ (grid)
, fluid_(fluid)
, polymer_props_ad_ (polymer_props_ad_)
, polymer_props_ad_ (polymer_props_ad)
, linsolver_(linsolver)
, cells_ (buildAllCells(grid.number_of_cells))
, ops_(grid)
, residual_(std::vector<ADB>(fluid.numPhases() + 1, ADB::null()))
, residual_(std::vector<ADB>(3, ADB::null()))
{
}
@ -82,7 +82,6 @@ typedef Eigen::Array<double,
PolymerState& x,
const std::vector<double>& src,
const std::vector<double>& polymer_inflow)
// const bool if_polymer_actived)
{
V pvol(grid_.number_of_cells);
@ -100,6 +99,10 @@ typedef Eigen::Array<double,
const double rtol = 5.0e-8;
const int maxit = 15;
std::cout << "Primary variables:\n";
std::cout << "pressure\n"<<old_state.pressure<< std::endl;
std::cout << "saturation\n"<<old_state.saturation[0] << std::endl;
std::cout << "concentration\n"<<old_state.concentration << std::endl;
assemble(pvdt, old_state, x, src, polymer_inflow);//, if_polymer_actived);
const double r0 = residualNorm();
@ -162,11 +165,9 @@ typedef Eigen::Array<double,
const DataBlock s_all = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
for (int phase = 0; phase < np; ++phase) {
state.saturation[phase] = ADB::constant(s_all.col(phase));
// state.saturation[1] = ADB::constant(s_all.col(1));
}
// Concentration
assert(not x.concentration().empty());
const V c = Eigen::Map<const V>(&x.concentration()[0], nc);
@ -256,29 +257,28 @@ typedef Eigen::Array<double,
+ ops_.div*mflux - source;
}
double amount = PolymerInjectedAmount(polymer_inflow);
bool use_polymer = (amount != 0);
std::cout << "\n Polymer Amount\n"
<< std::setprecision(9)
<< std::setw(18) << amount << std::endl;
const int nc = grid_.number_of_cells;
if (use_polymer) {
// bool use_polymer = 1;//(amount != 0);
// const int nc = grid_.number_of_cells;
// if (use_polymer) {
// Mass balance equation for polymer
const V src_polymer = Eigen::Map<const V>(&polymer_inflow[0], nc);
const ADB src_polymer = polymerSource(kr ,src, polymer_inflow, state);
ADB mc = computeMc(state);
ADB mflux = computeMassFlux(0, trans, kr, state);
residual_[2] = pvdt * (state.saturation[0] * state.concentration
- old_state.saturation[0] * old_state.concentration)
+ ops_.div * state.concentration * mc * mflux - src_polymer;
} else {
residual_[2] = ADB::constant(V::Zero(nc));
}
// } else {
// residual_[2] = ADB::constant(V::Zero(nc));
// }
for (int i = 0; i < 3; ++i)
std::cout<<"residual_["<<i<<"]\n"<<residual_[i] << std::endl;
}
double
FullyImplicitTwophasePolymerSolver::
PolymerInjectedAmount(const std::vector<double>& polymer_inflow) const
polymerInjectedAmount(const std::vector<double>& polymer_inflow) const
{
double amount = 0;
for (int i = 0; i < int(polymer_inflow.size()); ++i) {
@ -292,7 +292,8 @@ typedef Eigen::Array<double,
ADB
FullyImplicitTwophasePolymerSolver::accumSource(const int phase,
const std::vector<ADB>& kr,
const std::vector<double>& src) const
const std::vector<double>& src
) const
{
//extract the source to out and in source.
std::vector<double> outsrc;
@ -313,7 +314,6 @@ typedef Eigen::Array<double,
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
// compute the out-fracflow.
ADB f_out = computeFracFlow(phase, kr);
// compute the in-fracflow.
@ -323,11 +323,44 @@ typedef Eigen::Array<double,
} else if (phase == 0) {
f_in = V::Ones(grid_.number_of_cells);
}
return f_out * outSrc + f_in * inSrc;
return f_out * outSrc + f_in * inSrc ;
}
ADB
FullyImplicitTwophasePolymerSolver::
polymerSource(
const std::vector<ADB>& kr,
const std::vector<double>& src,
const std::vector<double>& polymer_inflow_c,
const SolutionState& state) const
{
//extract the source to out and in source.
std::vector<double> outsrc;
std::vector<double> insrc;
std::vector<double>::const_iterator it;
for (it = src.begin(); it != src.end(); ++it) {
if (*it < 0) {
outsrc.push_back(*it);
insrc.push_back(0.0);
} else if (*it > 0) {
insrc.push_back(*it);
outsrc.push_back(0.0);
} else {
outsrc.emplace_back(0);
insrc.emplace_back(0);
}
}
const V source = Eigen::Map<const V>(& src[0], grid_.number_of_cells);
const V outSrc = Eigen::Map<const V>(& outsrc[0], grid_.number_of_cells);
const V inSrc = Eigen::Map<const V>(& insrc[0], grid_.number_of_cells);
const V polyin = Eigen::Map<const V>(& polymer_inflow_c[0], grid_.number_of_cells);
// compute the out-fracflow.
ADB f_out = computeFracFlow(0, kr);
// compute the in-fracflow.
V f_in = V::Ones(grid_.number_of_cells);
return f_out * outSrc * state.concentration + f_in * inSrc * polyin ;
}
ADB
@ -355,8 +388,8 @@ typedef Eigen::Array<double,
if (np != 2) {
OPM_THROW(std::logic_error, "Only two-phase ok in FullyImplicitTwophasePolymerSolver.");
}
ADB mass_res = vertcat(residual_[0], residual_[1]);
mass_res = collapseJacs(vertcat(mass_res, residual_[2]));
ADB mass_phase_res = vertcat(residual_[0], residual_[1]);
ADB mass_res = collapseJacs(vertcat(mass_phase_res, residual_[2]));
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = mass_res.derivative()[0];
V dx(V::Zero(mass_res.size()));
@ -391,7 +424,6 @@ typedef Eigen::Array<double,
int varstart = nc;
const V dsw = subset(dx, Span(nc, 1, varstart));
varstart += dsw.size();
std::cout << dx.size() << " " << varstart << std::endl;
const V dc = subset(dx, Span(nc, 1, varstart));
varstart += dc.size();

View File

@ -87,7 +87,11 @@ namespace Opm {
const SolutionState& state) const;
double
residualNorm() const;
ADB
polymerSource(const std::vector<ADB>& kr,
const std::vector<double>& src,
const std::vector<double>& polymer_inflow_c,
const SolutionState& state) const;
ADB
computeMc(const SolutionState& state) const;
@ -100,7 +104,7 @@ namespace Opm {
ADB
transMult(const ADB& p) const;
double
PolymerInjectedAmount(const std::vector<double>& polymer_inflow) const;
polymerInjectedAmount(const std::vector<double>& polymer_inflow) const;
};
} // namespace Opm
#endif// OPM_FULLYIMPLICITTWOPHASESOLVER_HEADER_INCLUDED

View File

@ -65,7 +65,6 @@ namespace Opm {
*/
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
PolymerPropsAd(const PolymerProperties& polymer_props);
~PolymerPropsAd();