Add classes handling correct MPI implementation

Make some changes to Georgs original code:
dynamically allocated arrays with std::vectors instead
Implement new class structure handling what
MPI communication implementation to use
create extra scopes to avoid reuse of index variable i

Update related tests:
Update test_cuowneroverlapcopy to account for new
class strucutre
Also remove line that invalidates the MPI tests for multiple processes
This commit is contained in:
Tobias Meyer Andersen 2024-02-01 11:47:55 +01:00
parent eb6f9dc1f9
commit 7235f34f0e
3 changed files with 353 additions and 251 deletions

View File

@ -22,32 +22,46 @@
#include <memory>
#include <mutex>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <vector>
namespace Opm::cuistl
{
/**
* @brief CUDA compatiable variant of Dune::OwnerOverlapCopyCommunication
*
* This class can essentially be seen as an adapter around Dune::OwnerOverlapCopyCommunication, and should work as
* a Dune::OwnerOverlapCopyCommunication on CuVectors
*
*
* @note This currently only has the functionality to parallelize the linear solve.
*
* @tparam field_type should be a field_type supported by CuVector (double, float)
* @tparam block_size the block size used (this is relevant for say figuring out the correct indices)
* @tparam OwnerOverlapCopyCommunicationType should mimic Dune::OwnerOverlapCopyCommunication.
*/
template <class field_type, int block_size, class OwnerOverlapCopyCommunicationType>
class CuOwnerOverlapCopy
{
* @brief GPUSender is a wrapper class for classes which will implement copOwnerToAll
* This is implemented with the intention of creating communicators with generic GPUSender
* To hide implementation that will either use GPU aware MPI or not
* @tparam field_type is float or double
* @tparam OwnerOverlapCopyCommunicationType is typically a Dune::LinearOperator::communication_type
*/
template<class field_type, class OwnerOverlapCopyCommunicationType>
class GPUSender {
public:
using X = CuVector<field_type>;
CuOwnerOverlapCopy(const OwnerOverlapCopyCommunicationType& cpuOwnerOverlapCopy)
: m_cpuOwnerOverlapCopy(cpuOwnerOverlapCopy)
GPUSender(const OwnerOverlapCopyCommunicationType& cpuOwnerOverlapCopy) : m_cpuOwnerOverlapCopy(cpuOwnerOverlapCopy){}
/**
* @brief copyOwnerToAll will copy source to the CPU, then call OwnerOverlapCopyCommunicationType::copyOwnerToAll on
* the copied data, and copy the result back to the GPU
* @param[in] source
* @param[out] dest
*/
virtual void copyOwnerToAll(const X& source, X& dest) const = 0;
virtual void initIndexSet() const = 0;
/**
* @brief project will project x to the owned subspace
*
* For each component i which is not owned, x_i will be set to 0
*
* @param[inout] x the vector to project
*/
void project(X& x) const
{
std::call_once(this->m_initializedIndices, [&]() { initIndexSet(); });
x.setZeroAtIndexSet(*m_indicesCopy);
}
/**
* @brief dot will carry out the dot product between x and y on the owned indices, then sum up the result across MPI
* processes.
@ -74,247 +88,53 @@ public:
auto xDotX = field_type(0);
this->dot(x, x, xDotX);
using std::sqrt;
return sqrt(xDotX);
// using std::sqrt;
return std::sqrt(xDotX);
}
/**
* @brief project will project x to the owned subspace
*
* For each component i which is not owned, x_i will be set to 0
*
* @param[inout] x the vector to project
*/
void project(X& x) const
{
std::call_once(m_initializedIndices, [&]() { initIndexSet(); });
x.setZeroAtIndexSet(*m_indicesCopy);
}
/**
* @brief copyOwnerToAll will copy source to the CPU, then call OwnerOverlapCopyCommunicationType::copyOwnerToAll on
* the copied data, and copy the result back to the GPU
* @param[in] source
* @param[out] dest
*/
void copyOwnerToAll_orig(const X& source, X& dest) const
{
// TODO: [perf] Can we reduce copying from the GPU here?
// TODO: [perf] Maybe create a global buffer instead?
auto sourceAsDuneVector = source.template asDuneBlockVector<block_size>();
auto destAsDuneVector = dest.template asDuneBlockVector<block_size>();
m_cpuOwnerOverlapCopy.copyOwnerToAll(sourceAsDuneVector, destAsDuneVector);
dest.copyFromHost(destAsDuneVector);
}
// Georgs new code intended to use GPU direct
void copyOwnerToAll(const X& source, X& dest) const
{
printf("\n\nGPU DIRECT CODE IS RUN\n\n");
printf("Compile time check:\n");
#if defined(MPIX_CUDA_AWARE_SUPPORT) && MPIX_CUDA_AWARE_SUPPORT
printf("This MPI library has CUDA-aware support.\n", MPIX_CUDA_AWARE_SUPPORT);
#elif defined(MPIX_CUDA_AWARE_SUPPORT) && !MPIX_CUDA_AWARE_SUPPORT
printf("This MPI library does not have CUDA-aware support.\n");
#else
printf("This MPI library cannot determine if there is CUDA-aware support.\n");
#endif /* MPIX_CUDA_AWARE_SUPPORT */
printf("Run time check:\n");
#if defined(MPIX_CUDA_AWARE_SUPPORT)
if (1 == MPIX_Query_cuda_support()) {
printf("This MPI library has CUDA-aware support.\n");
} else {
printf("This MPI library does not have CUDA-aware support.\n");
}
#else /* !defined(MPIX_CUDA_AWARE_SUPPORT) */
printf("This MPI library cannot determine if there is CUDA-aware support.\n");
#endif /* MPIX_CUDA_AWARE_SUPPORT */
assert(&source == &dest); // In this context, source == dest!!!
std::call_once(m_initializedIndices, [&]() { initIndexSet(); });
int rank;
MPI_Comm_rank(m_cpuOwnerOverlapCopy.communicator(), &rank);
dest.prepareSendBuf(*m_GPUSendBuf, *m_commpair_indicesOwner);
// Start MPI stuff here...
// Note: This has been taken from DUNE's parallel/communicator.hh
MPI_Request* sendRequests = new MPI_Request[messageInformation_.size()];
MPI_Request* recvRequests = new MPI_Request[messageInformation_.size()];
size_t numberOfRealRecvRequests = 0;
typedef typename InformationMap::const_iterator const_iterator;
const const_iterator end = messageInformation_.end();
size_t i=0;
int* processMap = new int[messageInformation_.size()];
for(const_iterator info = messageInformation_.begin(); info != end; ++info, ++i) {
processMap[i]=info->first;
if(info->second.second.size_) {
MPI_Irecv(m_GPURecvBuf->data()+info->second.second.start_,
info->second.second.size_,
MPI_BYTE,
info->first,
commTag_,
m_cpuOwnerOverlapCopy.communicator(),
&recvRequests[i]);
numberOfRealRecvRequests += 1;
} else {
recvRequests[i]=MPI_REQUEST_NULL;
}
}
i=0;
for(const_iterator info = messageInformation_.begin(); info != end; ++info, ++i) {
if(info->second.first.size_) {
MPI_Issend(m_GPUSendBuf->data()+info->second.first.start_,
info->second.first.size_,
MPI_BYTE,
info->first,
commTag_,
m_cpuOwnerOverlapCopy.communicator(),
&sendRequests[i]);
} else {
sendRequests[i]=MPI_REQUEST_NULL;
}
}
i=0;
int finished = MPI_UNDEFINED;
MPI_Status status;
for(i=0; i< numberOfRealRecvRequests; i++) {
status.MPI_ERROR=MPI_SUCCESS;
MPI_Waitany(messageInformation_.size(), recvRequests, &finished, &status);
if(status.MPI_ERROR!=MPI_SUCCESS) {
std::cerr<< rank << ": MPI_Error occurred while receiving message from "<< processMap[finished] << std::endl;
assert(false);
}
}
MPI_Status recvStatus;
for(i=0; i< messageInformation_.size(); i++) {
if(MPI_SUCCESS!=MPI_Wait(&sendRequests[i], &recvStatus)) {
std::cerr << rank << ": MPI_Error occurred while sending message to " << processMap[finished] << std::endl;
assert(false);
}
}
delete[] processMap;
delete[] sendRequests;
delete[] recvRequests;
// ...End of MPI stuff
dest.syncFromRecvBuf(*m_GPURecvBuf, *m_commpair_indicesCopy);
}
private:
const OwnerOverlapCopyCommunicationType& m_cpuOwnerOverlapCopy;
protected:
// Used to call the initIndexSet. Note that this is kind of a
// premature optimization, in the sense that we could just initialize these indices
// always, but they are not always used.
mutable std::once_flag m_initializedIndices;
mutable std::unique_ptr<CuVector<int>> m_indicesCopy;
mutable std::unique_ptr<CuVector<int>> m_indicesOwner;
mutable std::unique_ptr<CuVector<int>> m_indicesCopy;
const OwnerOverlapCopyCommunicationType& m_cpuOwnerOverlapCopy;
};
mutable std::unique_ptr<CuVector<int>> m_commpair_indicesCopy;
mutable std::unique_ptr<CuVector<int>> m_commpair_indicesOwner;
mutable std::unique_ptr<CuVector<field_type>> m_GPUSendBuf;
mutable std::unique_ptr<CuVector<field_type>> m_GPURecvBuf;
/**
* @brief Derived class of GPUSender that handles MPI calls that should NOT use GPU direct communicatoin
* The implementation moves data fromthe GPU to the CPU and then sends it using regular MPI
* @tparam field_type is float or double
* @tparam block_size is the blocksize of the blockelements in the matrix
* @tparam OwnerOverlapCopyCommunicationType is typically a Dune::LinearOperator::communication_type
*/
template <class field_type, int block_size, class OwnerOverlapCopyCommunicationType>
class GPUObliviousMPISender : public GPUSender<field_type, OwnerOverlapCopyCommunicationType>
{
public:
using X = CuVector<field_type>;
struct MessageInformation
{
MessageInformation() : start_(0), size_(0) {}
MessageInformation(size_t start, size_t size) : start_(start), size_(size) {}
size_t start_; // offset in elements of "field_type"
size_t size_; // size in bytes
};
typedef std::map<int,std::pair<MessageInformation,MessageInformation> > InformationMap;
mutable InformationMap messageInformation_;
typedef std::map<int,std::pair<std::vector<int>,std::vector<int> > > IM;
mutable IM m_im;
constexpr static int commTag_ = 0; // So says DUNE
void buildCommPairIdxs() const
{
int rank;
MPI_Comm_rank(m_cpuOwnerOverlapCopy.communicator(), &rank);
auto &ri = m_cpuOwnerOverlapCopy.remoteIndices();
auto end = ri.end();
std::vector<int> commpair_indicesCopyOnCPU;
std::vector<int> commpair_indicesOwnerCPU;
for(auto process = ri.begin(); process != end; ++process) {
int size = 0;
m_im[process->first] = std::pair(std::vector<int>(), std::vector<int>());
for(int send = 0; send < 2; ++send) {
auto remoteEnd = send ? process->second.first->end()
: process->second.second->end();
auto remote = send ? process->second.first->begin()
: process->second.second->begin();
while(remote != remoteEnd) {
if (send ? (remote->localIndexPair().local().attribute() == 1)
: (remote->attribute() == 1)) {
++size;
if (send) {
m_im[process->first].first.push_back(remote->localIndexPair().local().local());
} else {
m_im[process->first].second.push_back(remote->localIndexPair().local().local());
}
}
++remote;
}
}
GPUObliviousMPISender(const OwnerOverlapCopyCommunicationType& cpuOwnerOverlapCopy)
: GPUSender<field_type, OwnerOverlapCopyCommunicationType>(cpuOwnerOverlapCopy)
{
}
int sendBufIdx = 0;
int recvBufIdx = 0;
for (auto it = m_im.begin(); it != m_im.end(); it++) {
int noSend = it->second.first.size();
int noRecv = it->second.second.size();
if (noSend + noRecv > 0) {
messageInformation_.insert(
std::make_pair(it->first,
std::make_pair(MessageInformation(
sendBufIdx * block_size,
noSend * block_size * sizeof(field_type)),
MessageInformation(
recvBufIdx * block_size,
noRecv * block_size * sizeof(field_type)))));
for(int x = 0; x < noSend; x++) {
for(int bs = 0; bs < block_size; bs++) {
commpair_indicesOwnerCPU.push_back(it->second.first[x] * block_size + bs);
}
}
for(int x = 0; x < noRecv; x++) {
for(int bs = 0; bs < block_size; bs++) {
commpair_indicesCopyOnCPU.push_back(it->second.second[x] * block_size + bs);
}
}
sendBufIdx += noSend;
recvBufIdx += noRecv;
}
}
m_commpair_indicesCopy = std::make_unique<CuVector<int>>(commpair_indicesCopyOnCPU);
m_commpair_indicesOwner = std::make_unique<CuVector<int>>(commpair_indicesOwnerCPU);
m_GPUSendBuf = std::make_unique<CuVector<field_type>>(sendBufIdx * block_size);
m_GPURecvBuf = std::make_unique<CuVector<field_type>>(recvBufIdx * block_size);
void copyOwnerToAll(const X& source, X& dest) const override {
// TODO: [perf] Can we reduce copying from the GPU here?
// TODO: [perf] Maybe create a global buffer instead?
auto sourceAsDuneVector = source.template asDuneBlockVector<block_size>();
auto destAsDuneVector = dest.template asDuneBlockVector<block_size>();
this->m_cpuOwnerOverlapCopy.copyOwnerToAll(sourceAsDuneVector, destAsDuneVector);
dest.copyFromHost(destAsDuneVector);
}
void initIndexSet() const
private:
void initIndexSet() const override
{
// We need indices that we we will use in the project, dot and norm calls.
// TODO: [premature perf] Can this be run once per instance? Or do we need to rebuild every time?
const auto& pis = m_cpuOwnerOverlapCopy.indexSet();
const auto& pis = this->m_cpuOwnerOverlapCopy.indexSet();
std::vector<int> indicesCopyOnCPU;
std::vector<int> indicesOwnerCPU;
for (const auto& index : pis) {
@ -331,11 +151,265 @@ private:
}
}
m_indicesCopy = std::make_unique<CuVector<int>>(indicesCopyOnCPU);
m_indicesOwner = std::make_unique<CuVector<int>>(indicesOwnerCPU);
this->m_indicesCopy = std::make_unique<CuVector<int>>(indicesCopyOnCPU);
this->m_indicesOwner = std::make_unique<CuVector<int>>(indicesOwnerCPU);
}
};
/**
* @brief Derived class of GPUSender that handles MPI made with CUDA aware MPI
* The copOwnerToAll function uses MPI calls refering to data that resides on the GPU in order
* to send it directly to other GPUs, skipping the staging step on the CPU
* @tparam field_type is float or double
* @tparam block_size is the blocksize of the blockelements in the matrix
* @tparam OwnerOverlapCopyCommunicationType is typically a Dune::LinearOperator::communication_type
*/
template <class field_type, int block_size, class OwnerOverlapCopyCommunicationType>
class GPUAwareMPISender : public GPUSender<field_type, OwnerOverlapCopyCommunicationType>
{
public:
using X = CuVector<field_type>;
GPUAwareMPISender(const OwnerOverlapCopyCommunicationType& cpuOwnerOverlapCopy)
: GPUSender<field_type, OwnerOverlapCopyCommunicationType>(cpuOwnerOverlapCopy)
{
}
void copyOwnerToAll(const X& source, X& dest) const override
{
OPM_ERROR_IF(&source != &dest, "The provided CuVectors' address did not match"); // In this context, source == dest!!!
std::call_once(this->m_initializedIndices, [&]() { initIndexSet(); });
int rank = this->m_cpuOwnerOverlapCopy.communicator().rank();
dest.prepareSendBuf(*m_GPUSendBuf, *m_commpairIndicesOwner);
// Start MPI stuff here...
// Note: This has been taken from DUNE's parallel/communicator.hh
std::vector<MPI_Request> sendRequests(m_messageInformation.size());
std::vector<MPI_Request> recvRequests(m_messageInformation.size());
std::vector<int> processMap(m_messageInformation.size());
size_t numberOfRealRecvRequests = 0;
using const_iterator = typename InformationMap::const_iterator;
const const_iterator end = m_messageInformation.end();
{
size_t i = 0;
for(const_iterator info = m_messageInformation.begin(); info != end; ++info, ++i) {
processMap[i]=info->first;
if(info->second.second.size_) {
MPI_Irecv(m_GPURecvBuf->data()+info->second.second.start_,
info->second.second.size_,
MPI_BYTE,
info->first,
m_commTag,
this->m_cpuOwnerOverlapCopy.communicator(),
&recvRequests[i]);
numberOfRealRecvRequests += 1;
} else {
recvRequests[i]=MPI_REQUEST_NULL;
}
}
}
{
size_t i = 0;
for(const_iterator info = m_messageInformation.begin(); info != end; ++info, ++i) {
if(info->second.first.size_) {
MPI_Issend(m_GPUSendBuf->data()+info->second.first.start_,
info->second.first.size_,
MPI_BYTE,
info->first,
m_commTag,
this->m_cpuOwnerOverlapCopy.communicator(),
&sendRequests[i]);
} else {
sendRequests[i]=MPI_REQUEST_NULL;
}
}
}
int finished = MPI_UNDEFINED;
MPI_Status status;
for(size_t i = 0; i < numberOfRealRecvRequests; i++) {
status.MPI_ERROR=MPI_SUCCESS;
MPI_Waitany(m_messageInformation.size(), recvRequests.data(), &finished, &status);
if(status.MPI_ERROR!=MPI_SUCCESS) {
std::cerr<< rank << ": MPI_Error occurred while receiving message from "<< processMap[finished] << std::endl;
OPM_THROW(std::runtime_error, "MPI_Error while receiving message");
}
}
MPI_Status recvStatus;
for(size_t i = 0; i < m_messageInformation.size(); i++) {
if(MPI_SUCCESS!=MPI_Wait(&sendRequests[i], &recvStatus)) {
std::cerr << rank << ": MPI_Error occurred while sending message to " << processMap[finished] << std::endl;
OPM_THROW(std::runtime_error, "MPI_Error while sending message");
}
}
// ...End of MPI stuff
dest.syncFromRecvBuf(*m_GPURecvBuf, *m_commpairIndicesCopy);
}
private:
mutable std::unique_ptr<CuVector<int>> m_commpairIndicesCopy;
mutable std::unique_ptr<CuVector<int>> m_commpairIndicesOwner;
mutable std::unique_ptr<CuVector<field_type>> m_GPUSendBuf;
mutable std::unique_ptr<CuVector<field_type>> m_GPURecvBuf;
struct MessageInformation
{
MessageInformation() : start_(0), size_(0) {}
MessageInformation(size_t start, size_t size) : start_(start), size_(size) {}
size_t start_; // offset in elements of "field_type"
size_t size_; // size in bytes
};
using InformationMap = std::map<int,std::pair<MessageInformation,MessageInformation> >;
mutable InformationMap m_messageInformation;
using IM = std::map<int,std::pair<std::vector<int>,std::vector<int> > >;
mutable IM m_im;
constexpr static int m_commTag = 0; // So says DUNE
void buildCommPairIdxs() const
{
auto &ri = this->m_cpuOwnerOverlapCopy.remoteIndices();
std::vector<int> commpairIndicesCopyOnCPU;
std::vector<int> commpairIndicesOwnerCPU;
for(auto process : ri) {
int size = 0;
m_im[process.first] = std::pair(std::vector<int>(), std::vector<int>());
for(int send = 0; send < 2; ++send) {
auto remoteEnd = send ? process.second.first->end()
: process.second.second->end();
auto remote = send ? process.second.first->begin()
: process.second.second->begin();
while(remote != remoteEnd) {
if (send ? (remote->localIndexPair().local().attribute() == 1)
: (remote->attribute() == 1)) {
++size;
if (send) {
m_im[process.first].first.push_back(remote->localIndexPair().local().local());
} else {
m_im[process.first].second.push_back(remote->localIndexPair().local().local());
}
}
++remote;
}
}
}
int sendBufIdx = 0;
int recvBufIdx = 0;
for (auto it = m_im.begin(); it != m_im.end(); it++) {
int noSend = it->second.first.size();
int noRecv = it->second.second.size();
if (noSend + noRecv > 0) {
m_messageInformation.insert(
std::make_pair(it->first,
std::make_pair(MessageInformation(
sendBufIdx * block_size,
noSend * block_size * sizeof(field_type)),
MessageInformation(
recvBufIdx * block_size,
noRecv * block_size * sizeof(field_type)))));
for(int x = 0; x < noSend; x++) {
for(int bs = 0; bs < block_size; bs++) {
commpairIndicesOwnerCPU.push_back(it->second.first[x] * block_size + bs);
}
}
for(int x = 0; x < noRecv; x++) {
for(int bs = 0; bs < block_size; bs++) {
commpairIndicesCopyOnCPU.push_back(it->second.second[x] * block_size + bs);
}
}
sendBufIdx += noSend;
recvBufIdx += noRecv;
}
}
m_commpairIndicesCopy = std::make_unique<CuVector<int>>(commpairIndicesCopyOnCPU);
m_commpairIndicesOwner = std::make_unique<CuVector<int>>(commpairIndicesOwnerCPU);
m_GPUSendBuf = std::make_unique<CuVector<field_type>>(sendBufIdx * block_size);
m_GPURecvBuf = std::make_unique<CuVector<field_type>>(recvBufIdx * block_size);
}
void initIndexSet() const override
{
// We need indices that we we will use in the project, dot and norm calls.
// TODO: [premature perf] Can this be run once per instance? Or do we need to rebuild every time?
const auto& pis = this->m_cpuOwnerOverlapCopy.indexSet();
std::vector<int> indicesCopyOnCPU;
std::vector<int> indicesOwnerCPU;
for (const auto& index : pis) {
if (index.local().attribute() == Dune::OwnerOverlapCopyAttributeSet::copy) {
for (int component = 0; component < block_size; ++component) {
indicesCopyOnCPU.push_back(index.local().local() * block_size + component);
}
}
if (index.local().attribute() == Dune::OwnerOverlapCopyAttributeSet::owner) {
for (int component = 0; component < block_size; ++component) {
indicesOwnerCPU.push_back(index.local().local() * block_size + component);
}
}
}
this->m_indicesCopy = std::make_unique<CuVector<int>>(indicesCopyOnCPU);
this->m_indicesOwner = std::make_unique<CuVector<int>>(indicesOwnerCPU);
buildCommPairIdxs();
}
};
/**
* @brief CUDA compatiable variant of Dune::OwnerOverlapCopyCommunication
*
* This class can essentially be seen as an adapter around Dune::OwnerOverlapCopyCommunication, and should work as
* a Dune::OwnerOverlapCopyCommunication on CuVectors
*
* @note This currently only has the functionality to parallelize the linear solve.
*
* @tparam field_type should be a field_type supported by CuVector (double, float)
* @tparam block_size the block size used (this is relevant for say figuring out the correct indices)
* @tparam OwnerOverlapCopyCommunicationType should mimic Dune::OwnerOverlapCopyCommunication.
*/
template <class field_type, int block_size, class OwnerOverlapCopyCommunicationType>
class CuOwnerOverlapCopy
{
public:
using X = CuVector<field_type>;
CuOwnerOverlapCopy(std::shared_ptr<GPUSender<field_type, OwnerOverlapCopyCommunicationType>> sender) : m_sender(sender){}
void copyOwnerToAll(const X& source, X& dest) const {
m_sender->copyOwnerToAll(source, dest);
}
void dot(const X& x, const X& y, field_type& output) const
{
m_sender->dot(x, y, output);
}
field_type norm(const X& x) const
{
return m_sender->norm(x);
}
void project(X& x) const
{
m_sender->project(x);
}
private:
std::shared_ptr<GPUSender<field_type, OwnerOverlapCopyCommunicationType>> m_sender;
};
} // namespace Opm::cuistl
#endif

View File

@ -33,8 +33,6 @@
#include <opm/simulators/linalg/cuistl/PreconditionerAdapter.hpp>
#include <opm/simulators/linalg/cuistl/detail/has_function.hpp>
namespace Opm::cuistl
{
//! @brief Wraps a CUDA solver to work with CPU data.
@ -163,10 +161,31 @@ private:
auto preconditionerReallyOnGPU = preconditionerAdapterAsHolder->getUnderlyingPreconditioner();
const auto& communication = m_opOnCPUWithMatrix.getCommunication();
// Temporary solution use the GPU Direct communication solely based on these prepcrosessor statements
bool mpiMightBeSupportedDuringCompilation = true;
bool mpiMightBeSupportedDuringRuntime = true;
#if defined(MPIX_CUDA_AWARE_SUPPORT) && !MPIX_CUDA_AWARE_SUPPORT
mpiMightBeSupportedDuringCompilation = false;
#endif /* MPIX_CUDA_AWARE_SUPPORT */
#if defined(MPIX_CUDA_AWARE_SUPPORT) && !MPIX_Query_cuda_support
mpiMightBeSupportedDuringRuntime = false;
#endif /* MPIX_CUDA_AWARE_SUPPORT */
// TODO add typename Operator communication type as a named type with using
std::shared_ptr<Opm::cuistl::GPUSender<real_type, typename Operator::communication_type>> gpuComm;
if (mpiMightBeSupportedDuringCompilation && mpiMightBeSupportedDuringRuntime){
gpuComm = std::make_shared<Opm::cuistl::GPUAwareMPISender<real_type, block_size, typename Operator::communication_type>>(communication);
}
else{
gpuComm = std::make_shared<Opm::cuistl::GPUObliviousMPISender<real_type, block_size, typename Operator::communication_type>>(communication);
}
using CudaCommunication = CuOwnerOverlapCopy<real_type, block_size, typename Operator::communication_type>;
using SchwarzOperator
= Dune::OverlappingSchwarzOperator<CuSparseMatrix<real_type>, XGPU, XGPU, CudaCommunication>;
auto cudaCommunication = std::make_shared<CudaCommunication>(communication);
auto cudaCommunication = std::make_shared<CudaCommunication>(gpuComm);
auto mpiPreconditioner = std::make_shared<CuBlockPreconditioner<XGPU, XGPU, CudaCommunication>>(
preconditionerReallyOnGPU, cudaCommunication);

View File

@ -29,7 +29,9 @@
#include <opm/simulators/linalg/cuistl/CuOwnerOverlapCopy.hpp>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp>
#include <opm/simulators/linalg/cuistl/set_device.hpp>
#include <random>
#include <mpi.h>
bool
init_unit_test_func()
@ -41,6 +43,10 @@ int
main(int argc, char** argv)
{
[[maybe_unused]] const auto& helper = Dune::MPIHelper::instance(argc, argv);
int rank, totalRanks;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &totalRanks);
Opm::cuistl::setDevice(rank, totalRanks);
boost::unit_test::unit_test_main(&init_unit_test_func, argc, argv);
}
@ -58,8 +64,10 @@ BOOST_AUTO_TEST_CASE(TestProject)
auto xCPU = std::vector<double> {{1.0, 2.0, 3.0}};
auto xGPU = Opm::cuistl::CuVector<double>(xCPU);
auto gpuComm = std::make_shared<Opm::cuistl::GPUObliviousMPISender<double, 1, Dune::OwnerOverlapCopyCommunication<int>>>(ownerOverlapCopy);
auto cuOwnerOverlapCopy
= Opm::cuistl::CuOwnerOverlapCopy<double, 1, Dune::OwnerOverlapCopyCommunication<int>>(ownerOverlapCopy);
= Opm::cuistl::CuOwnerOverlapCopy<double, 1, Dune::OwnerOverlapCopyCommunication<int>>(gpuComm);
cuOwnerOverlapCopy.project(xGPU);
@ -88,8 +96,10 @@ BOOST_AUTO_TEST_CASE(TestDot)
auto xCPU = std::vector<double> {{1.0, 2.0, 3.0}};
auto xGPU = Opm::cuistl::CuVector<double>(xCPU);
auto gpuComm = std::make_shared<Opm::cuistl::GPUObliviousMPISender<double, 1, Dune::OwnerOverlapCopyCommunication<int>>>(ownerOverlapCopy);
auto cuOwnerOverlapCopy
= Opm::cuistl::CuOwnerOverlapCopy<double, 1, Dune::OwnerOverlapCopyCommunication<int>>(ownerOverlapCopy);
= Opm::cuistl::CuOwnerOverlapCopy<double, 1, Dune::OwnerOverlapCopyCommunication<int>>(gpuComm);
double outputDune = -1.0;
auto xDune = xGPU.asDuneBlockVector<1>();
@ -100,5 +110,4 @@ BOOST_AUTO_TEST_CASE(TestDot)
BOOST_CHECK_EQUAL(outputDune, output);
BOOST_CHECK_EQUAL(4.0, output);
}