mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
make the coupled tutorial compile again, clean up the interface between the problem and the model
This commit is contained in:
parent
f0c2b59779
commit
74b2d5bd23
13
examples/CMakeLists.txt
Normal file
13
examples/CMakeLists.txt
Normal file
@ -0,0 +1,13 @@
|
||||
add_definitions(-DYASPGRID -DGRIDDIM=2 -DENABLE_UG)
|
||||
|
||||
# add build targets
|
||||
ADD_EXECUTABLE("tutorial_decoupled" tutorial_decoupled.cc)
|
||||
TARGET_LINK_LIBRARIES("tutorial_decoupled" ${DumuxLinkLibraries})
|
||||
|
||||
ADD_EXECUTABLE("tutorial_coupled" tutorial_coupled.cc)
|
||||
TARGET_LINK_LIBRARIES("tutorial_coupled" ${DumuxLinkLibraries})
|
||||
|
||||
# add required libraries and includes to the build flags
|
||||
LINK_DIRECTORIES(${DumuxLinkDirectories})
|
||||
INCLUDE_DIRECTORIES(${DumuxIncludeDirectories})
|
||||
|
25
examples/Makefile.am
Normal file
25
examples/Makefile.am
Normal file
@ -0,0 +1,25 @@
|
||||
# tests where program to build and program to run are equal
|
||||
NORMALTESTS = tutorial_decoupled tutorial_coupled
|
||||
|
||||
# list of tests to run
|
||||
#TESTS = $(NORMALTESTS)
|
||||
|
||||
# programs just to build when "make check" is used
|
||||
bin_PROGRAMS = $(NORMALTESTS)
|
||||
|
||||
dist_noinst_DATA = tutorial_decoupled.cc tutorial_coupled.cc
|
||||
|
||||
tutorial_decoupleddir = $(EXTRA_DIST=CMakeLists.txt
|
||||
includedir)/dumux/tutorial
|
||||
tutorial_decoupled_HEADERS = tutorial_soilproperties_decoupled.hh \
|
||||
tutorialproblem_decoupled.hh
|
||||
tutorial_decoupled_SOURCES = tutorial_decoupled.cc
|
||||
|
||||
tutorial_coupleddir = $(EXTRA_DIST=CMakeLists.txt
|
||||
includedir)/dumux/tutorial
|
||||
tutorial_coupled_HEADERS = tutorial_soilproperties_coupled.hh \
|
||||
tutorialproblem_coupled.hh
|
||||
tutorial_coupled_SOURCES = tutorial_coupled.cc
|
||||
|
||||
EXTRA_DIST=CMakeLists.txt
|
||||
include $(top_srcdir)/am/global-rules
|
117
examples/tutorial_coupled.cc
Normal file
117
examples/tutorial_coupled.cc
Normal file
@ -0,0 +1,117 @@
|
||||
/*****************************************************************************
|
||||
* Copyright (C) 2007-2008 by Klaus Mosthaf *
|
||||
* Copyright (C) 2007-2008 by Bernd Flemisch *
|
||||
* Copyright (C) 2008-2009 by Andreas Lauser *
|
||||
* Institute of Hydraulic Engineering *
|
||||
* University of Stuttgart, Germany *
|
||||
* email: <givenname>.<name>@iws.uni-stuttgart.de *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version, as long as this copyright notice *
|
||||
* is included in its original form. *
|
||||
* *
|
||||
* This program is distributed WITHOUT ANY WARRANTY. *
|
||||
*****************************************************************************/
|
||||
|
||||
#include "config.h" /*@\label{tutorial-coupled:include-config-h}@*/
|
||||
|
||||
#include "tutorialproblem_coupled.hh" /*@\label{tutorial-coupled:include-problem-header}@*/
|
||||
|
||||
#include <dune/common/mpihelper.hh>
|
||||
#include <dune/common/exceptions.hh>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
void usage(const char *progname)
|
||||
{
|
||||
std::cout << "usage: " << progname << "[--restart restartTime] gridFile.dgf tEnd dt\n";
|
||||
exit(1);
|
||||
};
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
try {
|
||||
// Specify the type tag of the problem to be solved. All the
|
||||
// other information can then be retrieved by the property
|
||||
// system.
|
||||
typedef TTAG(TutorialProblemCoupled) TypeTag; /*@\label{tutorial-coupled:set-type-tag}@*/
|
||||
typedef GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar; /*@\label{tutorial-coupled:retrieve-scalar-type}@*/
|
||||
typedef GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid; /*@\label{tutorial-coupled:retrieve-grid-type}@*/
|
||||
typedef GET_PROP_TYPE(TypeTag, PTAG(Problem)) Problem; /*@\label{tutorial-coupled:retrieve-problem-type}@*/
|
||||
typedef Dune::GridPtr<Grid> GridPointer; /*@\label{tutorial-coupled:set-grid-pointer}@*/
|
||||
typedef Dune::FieldVector<Grid::ctype, Grid::dimensionworld> GlobalPosition;
|
||||
|
||||
// Initialize the message passing interface using DUNE's
|
||||
// MPIHelper. This line is essential if you would like to run
|
||||
// your problem on more than one processor at the same
|
||||
// time. If MPI should not be used, MPIHelper does nothing.
|
||||
Dune::MPIHelper::instance(argc, argv); /*@\label{tutorial-coupled:init-mpi}@*/
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// parse the command line arguments
|
||||
////////////////////////////////////////////////////////////
|
||||
if (argc < 4)
|
||||
usage(argv[0]);
|
||||
|
||||
// parse restart time if restart is requested
|
||||
int argPos = 1;
|
||||
bool restart = false;
|
||||
double restartTime = 0;
|
||||
if (std::string("--restart") == argv[argPos]) { /*@\label{tutorial-coupled:parse-restart-time}@*/
|
||||
restart = true;
|
||||
++argPos;
|
||||
|
||||
std::istringstream(argv[argPos++]) >> restartTime;
|
||||
}
|
||||
|
||||
// read the file name of the DGF file, the initial time step
|
||||
// and the end time
|
||||
if (argc - argPos != 3) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
|
||||
const char *dgfFileName = argv[argPos++]; /*@\label{tutorial-coupled:parse-dgf-filename}@*/
|
||||
|
||||
double tEnd, dt; /*@\label{tutorial-coupled:parse-tEn-and-dt}@*/
|
||||
std::istringstream(argv[argPos++]) >> tEnd;
|
||||
std::istringstream(argv[argPos++]) >> dt;
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// create the grid
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// Load the grid from a DGF file
|
||||
GridPointer gridPtr = GridPointer(dgfFileName); /*@\label{tutorial-coupled:create-grid}@*/
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// instantiate and run the simulation
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
// instantiate the problem
|
||||
Problem problem(gridPtr->leafView()); /*@\label{tutorial-coupled:instantiate-problem}@*/
|
||||
|
||||
// restore the simulation's state from the hard-disk if a
|
||||
// restart was requested
|
||||
if (restart) /*@\label{tutorial-coupled:restart}@*/
|
||||
problem.deserialize(restartTime);
|
||||
|
||||
// run the simulation
|
||||
if (!problem.simulate(dt, tEnd)) /*@\label{tutorial-coupled:execute}@*/
|
||||
return 2;
|
||||
|
||||
return 0;
|
||||
}
|
||||
catch (Dune::Exception &e) { /*@\label{tutorial-coupled:catch-dune-exceptions}@*/
|
||||
// Catch exceptions thrown somewhere in DUNE
|
||||
std::cerr << "Dune reported error: " << e << std::endl;
|
||||
}
|
||||
catch (...) { /*@\label{tutorial-coupled:catch-other-exceptions}@*/
|
||||
// Catch exceptions thrown elsewhere
|
||||
std::cerr << "Unknown exception thrown!\n";
|
||||
throw;
|
||||
}
|
||||
|
||||
return 3;
|
||||
}
|
95
examples/tutorial_decoupled.cc
Normal file
95
examples/tutorial_decoupled.cc
Normal file
@ -0,0 +1,95 @@
|
||||
#include "config.h"
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <dune/grid/sgrid.hh> /*@\label{tutorial-decoupled:include-begin}@*/
|
||||
#include <dune/grid/io/file/vtk/vtkwriter.hh>
|
||||
#include <dune/istl/io.hh>
|
||||
#include <dune/common/timer.hh>
|
||||
#include "dumux/fractionalflow/variableclass2p.hh"
|
||||
#include "dumux/material/fluids/water.hh"
|
||||
#include "dumux/material/fluids/oil.hh"
|
||||
#include "tutorial_soilproperties_decoupled.hh"
|
||||
#include "dumux/material/twophaserelations.hh"
|
||||
#include "tutorialproblem_decoupled.hh"
|
||||
#include "dumux/diffusion/fv/fvtotalvelocity2p.hh"
|
||||
#include "dumux/transport/fv/fvsaturationwetting2p.hh"
|
||||
#include "dumux/fractionalflow/impes/impes.hh"
|
||||
#include "dumux/timedisc/timeloop.hh" /*@\label{tutorial-decoupled:include-end}@*/
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
try{
|
||||
// define the problem dimensions
|
||||
const int dim=2; /*@\label{tutorial-decoupled:dim}@*/
|
||||
|
||||
// create a grid object
|
||||
typedef double NumberType; /*@\label{tutorial-decoupled:grid-begin}@*/
|
||||
typedef Dune::SGrid<dim,dim> GridType;
|
||||
typedef GridType::LevelGridView GridView;
|
||||
typedef Dune::FieldVector<GridType::ctype,dim> FieldVector;
|
||||
Dune::FieldVector<int,dim> N(10); N[0] = 30;
|
||||
FieldVector L(0);
|
||||
FieldVector H(300); H[0] = 600;
|
||||
GridType grid(N,L,H);
|
||||
GridView gridView(grid.levelView(0));/*@\label{tutorial-decoupled:grid-end}@*/
|
||||
|
||||
|
||||
// define fluid and solid properties and constitutive relationships
|
||||
Dune::Water wettingfluid; /*@\label{tutorial-decoupled:water}@*/
|
||||
Dune::Oil nonwettingfluid; /*@\label{tutorial-decoupled:oil}@*/
|
||||
Dune::TutorialSoil<GridType, NumberType> soil; /*@\label{tutorial-decoupled:soil}@*/
|
||||
Dune::TwoPhaseRelations<GridType, NumberType> materialLaw(soil, wettingfluid, nonwettingfluid);/*@\label{tutorial-decoupled:twophaserelations}@*/
|
||||
|
||||
// create object containing the variables
|
||||
typedef Dune::VariableClass<GridView, NumberType> VariableType;
|
||||
VariableType variables(gridView);
|
||||
|
||||
// create object including the problem definition
|
||||
typedef Dune::TutorialProblemDecoupled<GridView, NumberType, VariableType> Problem;
|
||||
Problem problem(variables, wettingfluid, nonwettingfluid, soil, materialLaw,L, H); /*@\label{tutorial-decoupled:problem}@*/
|
||||
|
||||
// create object including the discretisation of the pressure equation
|
||||
typedef Dune::FVTotalVelocity2P<GridView, NumberType, VariableType, Problem> DiffusionType;
|
||||
DiffusionType diffusion(gridView, problem, "pw"); /*@\label{tutorial-decoupled:diffusion}@*/
|
||||
|
||||
// create object including the space discretisation of the saturation equation
|
||||
typedef Dune::FVSaturationWetting2P<GridView, NumberType, VariableType, Problem> TransportType;
|
||||
TransportType transport(gridView, problem, "vt"); /*@\label{tutorial-decoupled:transport}@*/
|
||||
|
||||
// some parameters used in the IMPES-object
|
||||
int iterFlag = 2;
|
||||
int nIter = 30;
|
||||
double maxDefect = 1e-5;
|
||||
|
||||
// create object including the IMPES (IMplicit Pressure Explicit Saturation) algorithm
|
||||
typedef Dune::IMPES<GridView, DiffusionType, TransportType, VariableType> IMPESType;
|
||||
IMPESType impes(diffusion, transport, iterFlag, nIter, maxDefect); /*@\label{tutorial-decoupled:impes}@*/
|
||||
|
||||
// some parameters needed for the TimeLoop-object
|
||||
double tStart = 0; // start simulation at t = tStart
|
||||
double tEnd = 1e8; // stop simulation at t = tEnd
|
||||
const char* fileName = "tutorial_decoupled"; // name of the output files
|
||||
int modulo = 1; // define time step interval in which output files are generated
|
||||
double cFLFactor = 0.9; // security factor for the Courant-Friedrichs-Lewy-Criterion
|
||||
|
||||
// create TimeLoop-object
|
||||
Dune::TimeLoop<GridType, IMPESType > timeloop(tStart, tEnd, fileName, modulo, cFLFactor); /*@\label{tutorial-decoupled:timeloop}@*/
|
||||
|
||||
Dune::Timer timer;
|
||||
timer.reset();
|
||||
|
||||
// start simulation
|
||||
timeloop.execute(impes); /*@\label{tutorial-decoupled:execute}@*/
|
||||
|
||||
return 0;
|
||||
}
|
||||
catch (Dune::Exception &e){
|
||||
std::cerr << "Dune reported error: " << e << std::endl;
|
||||
return 1;
|
||||
}
|
||||
catch (...){
|
||||
std::cerr << "Unknown exception thrown!" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
}
|
251
examples/tutorialproblem_coupled.hh
Normal file
251
examples/tutorialproblem_coupled.hh
Normal file
@ -0,0 +1,251 @@
|
||||
// $Id$
|
||||
/*****************************************************************************
|
||||
* Copyright (C) 2008-2009 by Melanie Darcis *
|
||||
* Copyright (C) 2009 by Andreas Lauser *
|
||||
* Institute of Hydraulic Engineering *
|
||||
* University of Stuttgart, Germany *
|
||||
* email: <givenname>.<name>@iws.uni-stuttgart.de *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version, as long as this copyright notice *
|
||||
* is included in its original form. *
|
||||
* *
|
||||
* This program is distributed WITHOUT ANY WARRANTY. *
|
||||
*****************************************************************************/
|
||||
#ifndef DUNE_TUTORIALPROBLEM_COUPLED_HH
|
||||
#define DUNE_TUTORIALPROBLEM_COUPLED_HH
|
||||
|
||||
// fluid properties
|
||||
#include <dumux/material/fluids/water.hh>
|
||||
#include <dumux/material/fluids/oil.hh>
|
||||
|
||||
// the numerical model
|
||||
#include <dumux/boxmodels/2p/2pboxmodel.hh>
|
||||
|
||||
// the grid used
|
||||
#include <dune/grid/yaspgrid.hh>
|
||||
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
||||
|
||||
// the soil to be used
|
||||
#include "tutorialsoil_coupled.hh"
|
||||
|
||||
namespace Dune
|
||||
{
|
||||
|
||||
// forward declaration of the problem class
|
||||
template <class TypeTag>
|
||||
class TutorialProblemCoupled;
|
||||
|
||||
//////////
|
||||
// Specify the properties of the problem
|
||||
//////////
|
||||
namespace Properties
|
||||
{
|
||||
// create a new type tag for the problem
|
||||
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP));
|
||||
|
||||
// Set the "Problem" property
|
||||
SET_PROP(TutorialProblemCoupled, Problem)
|
||||
{
|
||||
typedef Dune::TutorialProblemCoupled<TTAG(TutorialProblemCoupled)> type;
|
||||
};
|
||||
|
||||
// Set the grid type
|
||||
SET_TYPE_PROP(TutorialProblemCoupled, Grid, Dune::YaspGrid<2>);
|
||||
|
||||
// Set the wetting phase
|
||||
SET_TYPE_PROP(TutorialProblemCoupled, WettingPhase, Dune::Water);
|
||||
|
||||
// Set the non-wetting phase
|
||||
SET_TYPE_PROP(TutorialProblemCoupled, NonwettingPhase, Dune::Oil);
|
||||
|
||||
// Set the soil properties
|
||||
SET_PROP(TutorialProblemCoupled, Soil)
|
||||
{
|
||||
private:
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
||||
|
||||
public:
|
||||
typedef Dune::TutorialSoil<Grid, Scalar> type;
|
||||
};
|
||||
|
||||
// Enable gravity
|
||||
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, true);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \ingroup TwoPBoxProblems
|
||||
* \brief The problem used for the tutorial of the coupled models
|
||||
*/
|
||||
template <class TypeTag = TTAG(TutorialProblemCoupled) >
|
||||
class TutorialProblemCoupled : public TwoPBoxProblem<TypeTag,
|
||||
TutorialProblemCoupled<TypeTag> >
|
||||
{
|
||||
typedef TutorialProblemCoupled<TypeTag> ThisType;
|
||||
typedef TwoPBoxProblem<TypeTag, ThisType> ParentType;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
|
||||
|
||||
// Grid and world dimension
|
||||
enum {
|
||||
dim = GridView::dimension,
|
||||
dimWorld = GridView::dimensionworld,
|
||||
};
|
||||
|
||||
typedef typename GridView::Grid::ctype CoordScalar;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
||||
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices;
|
||||
typedef typename GridView::template Codim<0>::Entity Element;
|
||||
typedef typename GridView::template Codim<dim>::Entity Vertex;
|
||||
typedef typename GridView::IntersectionIterator IntersectionIterator;
|
||||
typedef Dune::FieldVector<CoordScalar, dim> LocalPosition;
|
||||
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
||||
|
||||
typedef typename GET_PROP(TypeTag, PTAG(SolutionTypes)) SolutionTypes;
|
||||
typedef typename SolutionTypes::PrimaryVarVector PrimaryVarVector;
|
||||
typedef typename SolutionTypes::BoundaryTypeVector BoundaryTypeVector;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry;
|
||||
|
||||
|
||||
public:
|
||||
TutorialProblemCoupled(const GridView &gridView)
|
||||
: ParentType(gridView)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \name Problem parameters
|
||||
*/
|
||||
// \{
|
||||
|
||||
/*!
|
||||
* \brief Returns the temperature within the domain.
|
||||
*
|
||||
* We use 10°C...
|
||||
*/
|
||||
Scalar temperature() const
|
||||
{ return 283.15; };
|
||||
|
||||
// \}
|
||||
|
||||
/*!
|
||||
* \name Boundary conditions
|
||||
*/
|
||||
// \{
|
||||
|
||||
/*!
|
||||
* \brief Specifies which kind of boundary condition should be
|
||||
* used for which equation on a given boundary segment.
|
||||
*/
|
||||
void boundaryTypes(BoundaryTypeVector &values,
|
||||
const Element &element,
|
||||
const FVElementGeometry &fvElemGeom,
|
||||
const IntersectionIterator &isIt,
|
||||
int scvIdx,
|
||||
int boundaryFaceIdx) const
|
||||
{
|
||||
const GlobalPosition &pos = element.geometry().corner(scvIdx);
|
||||
if (pos[0] < eps_)
|
||||
// dirichlet conditions on left boundary
|
||||
values = BoundaryConditions::dirichlet;
|
||||
else
|
||||
// neuman for the remaining boundaries
|
||||
values = BoundaryConditions::neumann;
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Evaluate the boundary conditions for a dirichlet
|
||||
* boundary segment.
|
||||
*
|
||||
* For this method, the \a values parameter stores primary variables.
|
||||
*/
|
||||
void dirichlet(PrimaryVarVector &values,
|
||||
const Element &element,
|
||||
const FVElementGeometry &fvElemGeom,
|
||||
const IntersectionIterator &isIt,
|
||||
int scvIdx,
|
||||
int boundaryFaceIdx) const
|
||||
{
|
||||
values[Indices::pW] = 200.0e3; // 200 000 Pa = 2 bar
|
||||
values[Indices::sN] = 1.0; // 100 % oil saturation
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Evaluate the boundary conditions for a neumann
|
||||
* boundary segment.
|
||||
*
|
||||
* For this method, the \a values parameter stores the mass flux
|
||||
* in normal direction of each phase. Negative values mean influx.
|
||||
*/
|
||||
void neumann(PrimaryVarVector &values,
|
||||
const Element &element,
|
||||
const FVElementGeometry &fvElemGeom,
|
||||
const IntersectionIterator &isIt,
|
||||
int scvIdx,
|
||||
int boundaryFaceIdx) const
|
||||
{
|
||||
const GlobalPosition &pos = element.geometry().corner(scvIdx);
|
||||
if (pos[0]> right_ - eps_) {
|
||||
// outflow of 0.3 g/(m * s) oil on the right boundary of the
|
||||
// domain
|
||||
values[Indices::phase2Mass(Indices::wPhase)] = 0;
|
||||
values[Indices::phase2Mass(Indices::nPhase)] = 0.3e-3;
|
||||
} else {
|
||||
// no-flow on the remaining neumann-boundaries
|
||||
values[Indices::phase2Mass(Indices::wPhase)] = 0;
|
||||
values[Indices::phase2Mass(Indices::nPhase)] = 0;
|
||||
}
|
||||
}
|
||||
// \}
|
||||
|
||||
/*!
|
||||
* \name Volume terms
|
||||
*/
|
||||
// \{
|
||||
|
||||
/*!
|
||||
* \brief Evaluate the initial value for a control volume.
|
||||
*
|
||||
* For this method, the \a values parameter stores primary
|
||||
* variables.
|
||||
*/
|
||||
void initial(PrimaryVarVector &values,
|
||||
const Element &element,
|
||||
const FVElementGeometry &fvElemGeom,
|
||||
int scvIdx) const
|
||||
{
|
||||
values[Indices::pW] = 200.0e3; // 200 000 Pa = 2 bar
|
||||
values[Indices::sN] = 1.0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Evaluate the source term for all phases within a given
|
||||
* sub-control-volume.
|
||||
*
|
||||
* For this method, the \a values parameter stores the rate mass
|
||||
* generated or annihilate per volume unit. Positive values mean
|
||||
* that mass is created, negative ones mean that it vanishes.
|
||||
*/
|
||||
void source(PrimaryVarVector &values,
|
||||
const Element &element,
|
||||
const FVElementGeometry &,
|
||||
int subControlVolumeIdx) const
|
||||
{
|
||||
values[Indices::phase2Mass(Indices::wPhase)] = 0.0;
|
||||
values[Indices::phase2Mass(Indices::nPhase)] = 0.0;
|
||||
}
|
||||
// \}
|
||||
|
||||
private:
|
||||
static const Scalar eps_ = 3e-6;
|
||||
|
||||
static const Scalar right_ = 5.0;
|
||||
};
|
||||
} //end namespace
|
||||
|
||||
#endif
|
112
examples/tutorialproblem_decoupled.hh
Normal file
112
examples/tutorialproblem_decoupled.hh
Normal file
@ -0,0 +1,112 @@
|
||||
#ifndef TUTORIALPROBLEM_DECOUPLED_HH
|
||||
#define TUTORIALPROBLEM_DECOUPLED_HH
|
||||
|
||||
#include "dumux/fractionalflow/fractionalflowproblem.hh"
|
||||
|
||||
namespace Dune
|
||||
{
|
||||
|
||||
/** \todo Please doc me! */
|
||||
|
||||
template<class GridView, class Scalar, class VC> class TutorialProblemDecoupled /*@\label{tutorial-decoupled:tutorialproblem}@*/
|
||||
: public FractionalFlowProblem<GridView, Scalar, VC>
|
||||
{
|
||||
enum
|
||||
{dim=GridView::dimension, dimWorld = GridView::dimensionworld};
|
||||
typedef typename GridView::Grid Grid;
|
||||
typedef typename GridView::Traits::template Codim<0>::Entity Element;
|
||||
typedef Dune::FieldVector<Scalar,dim> LocalPosition;
|
||||
typedef Dune::FieldVector<Scalar,dimWorld> GlobalPosition;
|
||||
|
||||
public:
|
||||
TutorialProblemDecoupled(VC& variables, Fluid& wettingphase, Fluid& nonwettingphase, Matrix2p<Grid, Scalar>& soil,
|
||||
TwoPhaseRelations<Grid, Scalar>& materialLaw = *(new TwoPhaseRelations<Grid,Scalar>),
|
||||
const FieldVector<Scalar,dim> Left = 0, const FieldVector<Scalar,dim> Right = 0)
|
||||
: FractionalFlowProblem<GridView, Scalar, VC>(variables, wettingphase, nonwettingphase, soil, materialLaw),
|
||||
Left_(Left[0]), Right_(Right[0]), eps_(1e-8)
|
||||
{}
|
||||
|
||||
// function returning source/sink terms for the pressure equation
|
||||
// depending on the position within the domain
|
||||
virtual Scalar sourcePress (const GlobalPosition& globalPos, const Element& e, /*@\label{tutorial-decoupled:qpress}@*/
|
||||
const LocalPosition& localPos)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
// function returning the boundary condition type for solution
|
||||
// of the pressure equation depending on the position within the domain
|
||||
typename BoundaryConditions::Flags bctypePress(const GlobalPosition& globalPos, const Element& e, /*@\label{tutorial-decoupled:bctypepress}@*/
|
||||
const LocalPosition& localPos) const
|
||||
{
|
||||
if (globalPos[0] < eps_)
|
||||
{
|
||||
return BoundaryConditions::dirichlet;
|
||||
}
|
||||
// all other boundaries
|
||||
return BoundaryConditions::neumann;
|
||||
}
|
||||
|
||||
// function returning the boundary condition type for solution
|
||||
// of the saturation equation depending on the position within the domain
|
||||
BoundaryConditions::Flags bctypeSat (const GlobalPosition& globalPos, const Element& e, /*@\label{tutorial-decoupled:bctypesat}@*/
|
||||
const LocalPosition& localPos) const
|
||||
{
|
||||
if (globalPos[0]> (Right_ - eps_) || globalPos[0] < eps_)
|
||||
{
|
||||
return Dune::BoundaryConditions::dirichlet;
|
||||
}
|
||||
// all other boundaries
|
||||
return Dune::BoundaryConditions::neumann;
|
||||
}
|
||||
|
||||
// function returning the Dirichlet boundary condition for the solution
|
||||
// of the pressure equation depending on the position within the domain
|
||||
Scalar dirichletPress(const GlobalPosition& globalPos, const Element& e, /*@\label{tutorial-decoupled:gpress}@*/
|
||||
const LocalPosition& localPos) const
|
||||
{
|
||||
return 2e5;
|
||||
}
|
||||
|
||||
// function returning the Dirichlet boundary condition for the solution
|
||||
// of the saturation equation depending on the position within the domain
|
||||
Scalar dirichletSat(const GlobalPosition& globalPos, const Element& e, /*@\label{tutorial-decoupled:gsat}@*/
|
||||
const LocalPosition& localPos) const
|
||||
{
|
||||
if (globalPos[0] < eps_)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
// all other boundaries
|
||||
return 0;
|
||||
}
|
||||
|
||||
// function returning the Neumann boundary condition for the solution
|
||||
// of the pressure equation depending on the position within the domain
|
||||
Scalar neumannPress(const GlobalPosition& globalPos, const Element& e, /*@\label{tutorial-decoupled:jpress}@*/
|
||||
const LocalPosition& localPos) const
|
||||
{
|
||||
if (globalPos[0]> Right_ - eps_)
|
||||
{
|
||||
return 3e-7;
|
||||
}
|
||||
// all other boundaries
|
||||
return 0;
|
||||
}
|
||||
|
||||
// function returning the initial saturation
|
||||
// depending on the position within the domain
|
||||
Scalar initSat (const GlobalPosition& globalPos, const Element& e, /*@\label{tutorial-decoupled:initsat}@*/
|
||||
const FieldVector<Scalar,dim>& xi) const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
private:
|
||||
Scalar Left_;
|
||||
Scalar Right_;
|
||||
|
||||
Scalar eps_;
|
||||
};
|
||||
} // end namespace
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user