mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-07 23:13:01 -06:00
Refactored limiter functions.
The two limiter functions were very similar, and were unified in a single method, with a bool argument to choose method variety.
This commit is contained in:
parent
e368094cd0
commit
763d14ce4d
@ -411,10 +411,10 @@ namespace Opm
|
||||
{
|
||||
switch (limiter_method_) {
|
||||
case MinUpwindFace:
|
||||
applyMinUpwindFaceLimiter(cell, tof);
|
||||
applyMinUpwindLimiter(cell, true, tof);
|
||||
break;
|
||||
case MinUpwindAverage:
|
||||
applyMinUpwindAverageLimiter(cell, tof);
|
||||
applyMinUpwindLimiter(cell, false, tof);
|
||||
break;
|
||||
default:
|
||||
THROW("Limiter type not implemented: " << limiter_method_);
|
||||
@ -424,18 +424,24 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTofDiscGal::applyMinUpwindFaceLimiter(const int cell, double* tof)
|
||||
void TransportModelTracerTofDiscGal::applyMinUpwindLimiter(const int cell, const bool face_min, double* tof)
|
||||
{
|
||||
if (basis_func_->degree() != 1) {
|
||||
THROW("This limiter only makes sense for our DG1 implementation.");
|
||||
}
|
||||
|
||||
// Limiter principles:
|
||||
// 1. Let M be the minimum TOF value on the upstream faces,
|
||||
// evaluated in the upstream cells. Then the value at all
|
||||
// points in this cell shall be at least M.
|
||||
// Upstream faces whose flux does not exceed the relative
|
||||
// flux threshold are not considered for this minimum.
|
||||
// 1. Let M be either:
|
||||
// - the minimum TOF value of all upstream faces,
|
||||
// evaluated in the upstream cells
|
||||
// (chosen if face_min is true).
|
||||
// or:
|
||||
// - the minimum average TOF value of all upstream cells
|
||||
// (chosen if face_min is false).
|
||||
// Then the value at all points in this cell shall be at
|
||||
// least M. Upstream faces whose flux does not exceed the
|
||||
// relative flux threshold are not considered for this
|
||||
// minimum.
|
||||
// 2. The TOF shall not be below zero in any point.
|
||||
|
||||
// Find total upstream/downstream fluxes.
|
||||
@ -492,11 +498,15 @@ namespace Opm
|
||||
min_here_tof = std::min(min_here_tof, tof_here);
|
||||
if (upstream) {
|
||||
if (interior) {
|
||||
basis_func_->eval(upstream_cell, nc, &basis_nb_[0]);
|
||||
const double tof_upstream
|
||||
= std::inner_product(basis_nb_.begin(), basis_nb_.end(),
|
||||
tof_coeff_ + num_basis*upstream_cell, 0.0);
|
||||
min_upstream_tof = std::min(min_upstream_tof, tof_upstream);
|
||||
if (face_min) {
|
||||
basis_func_->eval(upstream_cell, nc, &basis_nb_[0]);
|
||||
const double tof_upstream
|
||||
= std::inner_product(basis_nb_.begin(), basis_nb_.end(),
|
||||
tof_coeff_ + num_basis*upstream_cell, 0.0);
|
||||
min_upstream_tof = std::min(min_upstream_tof, tof_upstream);
|
||||
} else {
|
||||
min_upstream_tof = std::min(min_upstream_tof, tof_coeff_[num_basis*upstream_cell]);
|
||||
}
|
||||
} else {
|
||||
// Allow tof down to 0 on inflow boundaries.
|
||||
min_upstream_tof = std::min(min_upstream_tof, 0.0);
|
||||
@ -535,110 +545,6 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTofDiscGal::applyMinUpwindAverageLimiter(const int cell, double* tof)
|
||||
{
|
||||
if (basis_func_->degree() != 1) {
|
||||
THROW("This limiter only makes sense for our DG1 implementation.");
|
||||
}
|
||||
|
||||
// Limiter principles:
|
||||
// 1. Let M be the average TOF value of the upstream cells.
|
||||
/// Then the value at all points in this cell shall be at least M.
|
||||
// Upstream faces whose flux does not exceed the relative
|
||||
// flux threshold are not considered for this minimum.
|
||||
// 2. The TOF shall not be below zero in any point.
|
||||
|
||||
// Find total upstream/downstream fluxes.
|
||||
double upstream_flux = 0.0;
|
||||
double downstream_flux = 0.0;
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
if (cell == grid_.face_cells[2*face]) {
|
||||
flux = darcyflux_[face];
|
||||
} else {
|
||||
flux = -darcyflux_[face];
|
||||
}
|
||||
if (flux < 0.0) {
|
||||
upstream_flux += flux;
|
||||
} else {
|
||||
downstream_flux += flux;
|
||||
}
|
||||
}
|
||||
// In the presence of sources, significant fluxes may be missing from the computed fluxes,
|
||||
// setting the total flux to the (positive) maximum avoids this: since source is either
|
||||
// inflow or outflow, not both, either upstream_flux or downstream_flux must be correct.
|
||||
const double total_flux = std::max(-upstream_flux, downstream_flux);
|
||||
|
||||
// Find minimum tof on upstream faces and for this cell.
|
||||
const int dim = grid_.dimensions;
|
||||
const int num_basis = basis_func_->numBasisFunc();
|
||||
double min_upstream_tof = 1e100;
|
||||
double min_here_tof = 1e100;
|
||||
int num_upstream_faces = 0;
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
int upstream_cell = -1;
|
||||
if (cell == grid_.face_cells[2*face]) {
|
||||
flux = darcyflux_[face];
|
||||
upstream_cell = grid_.face_cells[2*face+1];
|
||||
} else {
|
||||
flux = -darcyflux_[face];
|
||||
upstream_cell = grid_.face_cells[2*face];
|
||||
}
|
||||
const bool upstream = (flux < -total_flux*limiter_relative_flux_threshold_);
|
||||
if (upstream) {
|
||||
++num_upstream_faces;
|
||||
}
|
||||
bool interior = (upstream_cell >= 0);
|
||||
|
||||
// Evaluate the solution in all corners.
|
||||
for (int fnode = grid_.face_nodepos[face]; fnode < grid_.face_nodepos[face+1]; ++fnode) {
|
||||
const double* nc = grid_.node_coordinates + dim*grid_.face_nodes[fnode];
|
||||
basis_func_->eval(cell, nc, &basis_[0]);
|
||||
const double tof_here = std::inner_product(basis_.begin(), basis_.end(),
|
||||
tof_coeff_ + num_basis*cell, 0.0);
|
||||
min_here_tof = std::min(min_here_tof, tof_here);
|
||||
if (upstream) {
|
||||
if (interior) {
|
||||
min_upstream_tof = std::min(min_upstream_tof, tof_coeff_[num_basis*upstream_cell]);
|
||||
} else {
|
||||
// Allow tof down to 0 on inflow boundaries.
|
||||
min_upstream_tof = std::min(min_upstream_tof, 0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute slope multiplier (limiter).
|
||||
if (num_upstream_faces == 0) {
|
||||
min_upstream_tof = 0.0;
|
||||
min_here_tof = 0.0;
|
||||
}
|
||||
if (min_upstream_tof < 0.0) {
|
||||
min_upstream_tof = 0.0;
|
||||
}
|
||||
const double tof_c = tof_coeff_[num_basis*cell];
|
||||
double limiter = (tof_c - min_upstream_tof)/(tof_c - min_here_tof);
|
||||
if (tof_c < min_upstream_tof) {
|
||||
// Handle by setting a flat solution.
|
||||
std::cout << "Trouble in cell " << cell << std::endl;
|
||||
limiter = 0.0;
|
||||
basis_func_->addConstant(min_upstream_tof - tof_c, tof + num_basis*cell);
|
||||
}
|
||||
ASSERT(limiter >= 0.0);
|
||||
|
||||
// Actually do the limiting (if applicable).
|
||||
if (limiter < 1.0) {
|
||||
// std::cout << "Applying limiter in cell " << cell << ", limiter = " << limiter << std::endl;
|
||||
basis_func_->multiplyGradient(limiter, tof + num_basis*cell);
|
||||
} else {
|
||||
// std::cout << "Not applying limiter in cell " << cell << "!" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTofDiscGal::applyLimiterAsPostProcess()
|
||||
|
@ -130,8 +130,7 @@ namespace Opm
|
||||
// (will read data from tof_coeff_, it is ok to call
|
||||
// with tof_coeff as tof argument.
|
||||
void applyLimiter(const int cell, double* tof);
|
||||
void applyMinUpwindFaceLimiter(const int cell, double* tof);
|
||||
void applyMinUpwindAverageLimiter(const int cell, double* tof);
|
||||
void applyMinUpwindLimiter(const int cell, const bool face_min, double* tof);
|
||||
void applyLimiterAsPostProcess();
|
||||
void applyLimiterAsSimultaneousPostProcess();
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user