mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Unify group control equation codes.
This commit is contained in:
parent
92ee56c3b3
commit
766d02cacc
@ -283,11 +283,10 @@ namespace Opm
|
||||
|
||||
void initMatrixAndVectors(const int num_cells) const;
|
||||
|
||||
// protected functions
|
||||
// EvalWell getBhp(); this one should be something similar to getSegmentPressure();
|
||||
// EvalWell getQs(); this one should be something similar to getSegmentRates()
|
||||
// EValWell wellVolumeFractionScaled, wellVolumeFraction, wellSurfaceVolumeFraction ... these should have different names, and probably will be needed.
|
||||
// bool crossFlowAllowed(const Simulator& ebosSimulator) const; probably will be needed
|
||||
EvalWell getBhp() const;
|
||||
EvalWell getQs(const int comp_idx) const;
|
||||
EvalWell getWQTotal() const;
|
||||
|
||||
// xw = inv(D)*(rw - C*x)
|
||||
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
|
||||
|
||||
@ -381,8 +380,20 @@ namespace Opm
|
||||
const Well::ProductionControls& prod_controls,
|
||||
Opm::DeferredLogger& deferred_logger);
|
||||
|
||||
void assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
|
||||
void assembleGroupInjectionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
|
||||
void assembleGroupProductionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor);
|
||||
void assembleGroupInjectionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const InjectorType& injectorType,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor,
|
||||
Opm::DeferredLogger& deferred_logger);
|
||||
|
||||
void assemblePressureEq(const int seg) const;
|
||||
|
||||
|
@ -690,7 +690,7 @@ namespace Opm
|
||||
}
|
||||
if (pressure_controlled_well) {
|
||||
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
|
||||
const EvalWell rate = this->getSegmentRate(0, compIdx);
|
||||
const EvalWell rate = this->getQs(compIdx);
|
||||
well_potentials[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
|
||||
}
|
||||
return;
|
||||
@ -790,7 +790,7 @@ namespace Opm
|
||||
const int np = number_of_phases_;
|
||||
well_flux.resize(np, 0.0);
|
||||
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
|
||||
const EvalWell rate = well_copy.getSegmentRate(0, compIdx);
|
||||
const EvalWell rate = well_copy.getQs(compIdx);
|
||||
well_flux[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
|
||||
}
|
||||
debug_cost_counter_ += well_copy.debug_cost_counter_;
|
||||
@ -1621,6 +1621,18 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
typename MultisegmentWell<TypeTag>::EvalWell
|
||||
MultisegmentWell<TypeTag>::
|
||||
getBhp() const
|
||||
{
|
||||
return getSegmentPressure(0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
typename MultisegmentWell<TypeTag>::EvalWell
|
||||
MultisegmentWell<TypeTag>::
|
||||
@ -1634,6 +1646,18 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
typename MultisegmentWell<TypeTag>::EvalWell
|
||||
MultisegmentWell<TypeTag>::
|
||||
getQs(const int comp_idx) const
|
||||
{
|
||||
return getSegmentRate(0, comp_idx);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
typename MultisegmentWell<TypeTag>::EvalWell
|
||||
MultisegmentWell<TypeTag>::
|
||||
@ -1690,6 +1714,18 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
typename MultisegmentWell<TypeTag>::EvalWell
|
||||
MultisegmentWell<TypeTag>::
|
||||
getWQTotal() const
|
||||
{
|
||||
return getSegmentGTotal(0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
void
|
||||
MultisegmentWell<TypeTag>::
|
||||
@ -1763,7 +1799,7 @@ namespace Opm
|
||||
double efficiencyFactor = well.getEfficiencyFactor();
|
||||
|
||||
if (wellIsStopped_) {
|
||||
control_eq = getSegmentGTotal(0);
|
||||
control_eq = getWQTotal();
|
||||
} else if (this->isInjector() ) {
|
||||
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
|
||||
const auto& controls = inj_controls;
|
||||
@ -1796,7 +1832,7 @@ namespace Opm
|
||||
switch(current) {
|
||||
case Well::InjectorCMode::RATE:
|
||||
{
|
||||
control_eq = getSegmentGTotal(0) / scaling - controls.surface_rate;
|
||||
control_eq = getWQTotal() / scaling - controls.surface_rate;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -1828,7 +1864,7 @@ namespace Opm
|
||||
|
||||
}
|
||||
|
||||
control_eq = coeff*getSegmentGTotal(0) / scaling - controls.reservoir_rate;
|
||||
control_eq = coeff*getWQTotal() / scaling - controls.reservoir_rate;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -1836,22 +1872,22 @@ namespace Opm
|
||||
{
|
||||
std::vector<EvalWell> rates(3, 0.);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
rates[ Water ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
rates[ Water ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
rates[ Oil ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
rates[ Oil ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
rates[ Gas ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
rates[ Gas ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
}
|
||||
control_eq = getSegmentPressure(0) - calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
||||
control_eq = getBhp() - calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
||||
break;
|
||||
}
|
||||
|
||||
case Well::InjectorCMode::BHP:
|
||||
{
|
||||
const auto& bhp = controls.bhp_limit;
|
||||
control_eq = getSegmentPressure(0) - bhp;
|
||||
control_eq = getBhp() - bhp;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -1881,21 +1917,21 @@ namespace Opm
|
||||
case Well::ProducerCMode::ORAT:
|
||||
{
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
||||
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
const EvalWell& rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
control_eq = rate - controls.oil_rate;
|
||||
break;
|
||||
}
|
||||
case Well::ProducerCMode::WRAT:
|
||||
{
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
||||
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
const EvalWell& rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
control_eq = rate - controls.water_rate;
|
||||
break;
|
||||
}
|
||||
case Well::ProducerCMode::GRAT:
|
||||
{
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
||||
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
const EvalWell& rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
control_eq = rate - controls.gas_rate;
|
||||
break;
|
||||
|
||||
@ -1904,8 +1940,8 @@ namespace Opm
|
||||
{
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
||||
EvalWell rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))
|
||||
-getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))
|
||||
-getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
control_eq = rate - controls.liquid_rate;
|
||||
break;
|
||||
}
|
||||
@ -1919,7 +1955,7 @@ namespace Opm
|
||||
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
||||
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
||||
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
||||
total_rate += getSegmentRate(0, flowPhaseToEbosCompIdx(phase) ) * convert_coeff[phase];
|
||||
total_rate += getQs(flowPhaseToEbosCompIdx(phase) ) * convert_coeff[phase];
|
||||
}
|
||||
|
||||
if (controls.prediction_mode) {
|
||||
@ -1945,22 +1981,22 @@ namespace Opm
|
||||
}
|
||||
case Well::ProducerCMode::BHP:
|
||||
{
|
||||
control_eq = getSegmentPressure(0) - controls.bhp_limit;
|
||||
control_eq = getBhp() - controls.bhp_limit;
|
||||
break;
|
||||
}
|
||||
case Well::ProducerCMode::THP:
|
||||
{
|
||||
std::vector<EvalWell> rates(3, 0.);
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||
rates[ Water ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
rates[ Water ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
rates[ Oil ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
rates[ Oil ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
}
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
||||
rates[ Gas ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
rates[ Gas ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
}
|
||||
control_eq = getSegmentPressure(0) - calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
||||
control_eq = getBhp() - calculateBhpFromThp(rates, well, summaryState, deferred_logger);
|
||||
break;
|
||||
}
|
||||
case Well::ProducerCMode::GRUP:
|
||||
@ -1968,7 +2004,7 @@ namespace Opm
|
||||
assert(well.isAvailableForGroupControl());
|
||||
|
||||
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
|
||||
assembleGroupProductionControl(group, well_state, schedule, summaryState, control_eq, efficiencyFactor, deferred_logger);
|
||||
assembleGroupProductionControl(group, well_state, schedule, summaryState, control_eq, efficiencyFactor);
|
||||
break;
|
||||
}
|
||||
case Well::ProducerCMode::CMODE_UNDEFINED:
|
||||
@ -2112,168 +2148,54 @@ namespace Opm
|
||||
|
||||
template <typename TypeTag>
|
||||
void
|
||||
MultisegmentWell<TypeTag>::
|
||||
assembleGroupInjectionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, EvalWell& control_eq, double efficiencyFactor, Opm::DeferredLogger& deferred_logger)
|
||||
MultisegmentWell<TypeTag>::assembleGroupInjectionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const InjectorType& injectorType,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor,
|
||||
Opm::DeferredLogger& deferred_logger)
|
||||
{
|
||||
|
||||
if (!group.isAvailableForGroupControl()) {
|
||||
// We cannot go any further up the hierarchy. This could
|
||||
// be the FIELD group, or any group for which this has
|
||||
// been set in GCONINJE or GCONPROD. If we are here
|
||||
// anyway, it is likely that the deck set inconsistent
|
||||
// requirements, such as GRUP control mode on a well with
|
||||
// no appropriate controls defined on any of its
|
||||
// containing groups. We will therefore use the wells' bhp
|
||||
// limit equation as a fallback.
|
||||
const auto& controls = well_ecl_.injectionControls(summaryState);
|
||||
control_eq = getSegmentPressure(0) - controls.bhp_limit;
|
||||
return;
|
||||
}
|
||||
|
||||
const auto& well = well_ecl_;
|
||||
// The total rate primary variable is the scaled surface rate
|
||||
// sum, also for injectors, so we must scale it to get a
|
||||
// proper surface injection rate. This is different from
|
||||
// standard wells, where the primary variable is unscaled if
|
||||
// the well is an injector.
|
||||
const auto& pu = phaseUsage();
|
||||
|
||||
int phasePos;
|
||||
Well::GuideRateTarget wellTarget;
|
||||
Phase injectionPhase;
|
||||
double scaling = 1.0;
|
||||
|
||||
switch (injectorType) {
|
||||
case InjectorType::WATER:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
wellTarget = Well::GuideRateTarget::WAT;
|
||||
injectionPhase = Phase::WATER;
|
||||
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
|
||||
break;
|
||||
}
|
||||
case InjectorType::OIL:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
wellTarget = Well::GuideRateTarget::OIL;
|
||||
injectionPhase = Phase::OIL;
|
||||
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
|
||||
break;
|
||||
}
|
||||
case InjectorType::GAS:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
wellTarget = Well::GuideRateTarget::GAS;
|
||||
injectionPhase = Phase::GAS;
|
||||
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
|
||||
}
|
||||
|
||||
const Group::InjectionCMode& currentGroupControl = well_state.currentInjectionGroupControl(injectionPhase, group.name());
|
||||
if (currentGroupControl == Group::InjectionCMode::FLD ||
|
||||
currentGroupControl == Group::InjectionCMode::NONE) {
|
||||
// Inject share of parents control
|
||||
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
|
||||
|
||||
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
||||
|
||||
assembleGroupInjectionControl(parent, well_state, schedule, summaryState, injectorType, control_eq, efficiencyFactor, deferred_logger);
|
||||
return;
|
||||
}
|
||||
|
||||
assert(group.hasInjectionControl(injectionPhase));
|
||||
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
|
||||
|
||||
const std::vector<double>& groupInjectionReductions = well_state.currentInjectionGroupReductionRates(group.name());
|
||||
double groupTargetReduction = groupInjectionReductions[phasePos];
|
||||
double fraction = wellGroupHelpers::fractionFromInjectionPotentials(well.name(), group.name(), schedule,well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(wellTarget), pu, injectionPhase,false);
|
||||
|
||||
switch(currentGroupControl) {
|
||||
case Group::InjectionCMode::NONE:
|
||||
{
|
||||
// The NONE case is handled earlier
|
||||
// Should not be here.
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::RATE:
|
||||
{
|
||||
double target = std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getSegmentGTotal(0) / scaling - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::RESV:
|
||||
{
|
||||
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
||||
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
||||
double coeff = convert_coeff[phasePos];
|
||||
double target = std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getSegmentGTotal(0) / scaling - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::REIN:
|
||||
{
|
||||
double productionRate = well_state.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
|
||||
productionRate /= efficiencyFactor;
|
||||
double target = std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getSegmentGTotal(0) / scaling - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::VREP:
|
||||
{
|
||||
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
||||
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
||||
double coeff = convert_coeff[phasePos];
|
||||
double voidageRate = well_state.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
|
||||
|
||||
double injReduction = 0.0;
|
||||
std::vector<double> groupInjectionReservoirRates = well_state.currentInjectionGroupReservoirRates(group.name());
|
||||
if (groupcontrols.phase != Phase::WATER)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Aqua]];
|
||||
|
||||
if (groupcontrols.phase != Phase::OIL)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Liquid]];
|
||||
|
||||
if (groupcontrols.phase != Phase::GAS)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Vapour]];
|
||||
|
||||
voidageRate -= injReduction;
|
||||
|
||||
double target = std::max(0.0, ( voidageRate/coeff - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getSegmentGTotal(0) / scaling - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::FLD:
|
||||
{
|
||||
// The FLD case is handled earlier
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::SALE:
|
||||
{
|
||||
// only for gas injectors
|
||||
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
|
||||
|
||||
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
|
||||
double inj_rate = well_state.currentInjectionREINRates(group.name())[phasePos];
|
||||
if (schedule.gConSump(current_step_).has(group.name())) {
|
||||
const auto& gconsump = schedule.gConSump(current_step_).get(group.name(), summaryState);
|
||||
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
||||
inj_rate += gconsump.import_rate;
|
||||
inj_rate -= gconsump.consumption_rate;
|
||||
}
|
||||
}
|
||||
const auto& gconsale = schedule.gConSale(current_step_).get(group.name(), summaryState);
|
||||
inj_rate -= gconsale.sales_target;
|
||||
|
||||
inj_rate /= efficiencyFactor;
|
||||
double target = std::max(0.0, (inj_rate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getSegmentGTotal(0) /scaling - fraction * target;
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "Unvalid group control specified for group " + well.groupName(), deferred_logger );
|
||||
}
|
||||
|
||||
const EvalWell injection_rate = getWQTotal() / scaling;
|
||||
|
||||
// Call the generic implementation.
|
||||
Base::getGroupInjectionControl(group,
|
||||
well_state,
|
||||
schedule,
|
||||
summaryState,
|
||||
injectorType,
|
||||
getBhp(),
|
||||
injection_rate,
|
||||
control_eq,
|
||||
efficiencyFactor);
|
||||
}
|
||||
|
||||
|
||||
@ -2281,122 +2203,26 @@ namespace Opm
|
||||
|
||||
template <typename TypeTag>
|
||||
void
|
||||
MultisegmentWell<TypeTag>::
|
||||
assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficiencyFactor, Opm::DeferredLogger& deferred_logger)
|
||||
MultisegmentWell<TypeTag>::assembleGroupProductionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor)
|
||||
{
|
||||
|
||||
const auto& well = well_ecl_;
|
||||
const auto pu = phaseUsage();
|
||||
|
||||
const Group::ProductionCMode& currentGroupControl = well_state.currentProductionGroupControl(group.name());
|
||||
if (currentGroupControl == Group::ProductionCMode::FLD ||
|
||||
currentGroupControl == Group::ProductionCMode::NONE) {
|
||||
if (!group.isAvailableForGroupControl()) {
|
||||
// We cannot go any further up the hierarchy. This could
|
||||
// be the FIELD group, or any group for which this has
|
||||
// been set in GCONINJE or GCONPROD. If we are here
|
||||
// anyway, it is likely that the deck set inconsistent
|
||||
// requirements, such as GRUP control mode on a well with
|
||||
// no appropriate controls defined on any of its
|
||||
// containing groups. We will therefore use the wells' bhp
|
||||
// limit equation as a fallback.
|
||||
const auto& controls = well_ecl_.productionControls(summaryState);
|
||||
control_eq = getSegmentPressure(0) - controls.bhp_limit;
|
||||
return;
|
||||
} else {
|
||||
// Produce share of parents control
|
||||
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
|
||||
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
||||
assembleGroupProductionControl(parent, well_state, schedule, summaryState, control_eq, efficiencyFactor, deferred_logger);
|
||||
return;
|
||||
std::vector<EvalWell> rates(pu.num_phases);
|
||||
const int compIndices[3] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
|
||||
const BlackoilPhases::PhaseIndex phases[3] = { BlackoilPhases::Aqua, BlackoilPhases::Liquid, BlackoilPhases::Vapour };
|
||||
for (int canonical_phase = 0; canonical_phase < 3; ++canonical_phase) {
|
||||
const auto phase = phases[canonical_phase];
|
||||
if (pu.phase_used[phase]) {
|
||||
const auto compIdx = compIndices[canonical_phase];
|
||||
rates[pu.phase_pos[phase]] = getQs(Indices::canonicalToActiveComponentIndex(compIdx));
|
||||
}
|
||||
}
|
||||
|
||||
if (!group.isProductionGroup()) {
|
||||
// use bhp as control eq and let the updateControl code find a vallied control
|
||||
const auto& controls = well.productionControls(summaryState);
|
||||
control_eq = getSegmentPressure(0) - controls.bhp_limit;
|
||||
return;
|
||||
}
|
||||
|
||||
const auto& groupcontrols = group.productionControls(summaryState);
|
||||
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group.name());
|
||||
|
||||
switch(currentGroupControl) {
|
||||
case Group::ProductionCMode::NONE:
|
||||
{
|
||||
// The NONE case is handled earlier
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::ORAT:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]];
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::OIL), pu);
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.oil_target - groupTargetReduction) / efficiencyFactor;
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
||||
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
control_eq = rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::WRAT:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Water]];
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::WAT), pu);
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.gas_target - groupTargetReduction) / efficiencyFactor;
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
||||
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
control_eq = rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::GRAT:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Gas]];
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::GAS), pu);
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.gas_target - groupTargetReduction) / efficiencyFactor;
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::gasCompIdx));
|
||||
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
control_eq = rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::LRAT:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]] + groupTargetReductions[pu.phase_pos[Water]];
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::LIQ), pu);
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.liquid_target - groupTargetReduction) / efficiencyFactor; assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
||||
EvalWell rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))
|
||||
-getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
control_eq = rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::CRAT:
|
||||
{
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "CRAT group control not implemented for producers", deferred_logger );
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::RESV:
|
||||
{
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "RESV group control not implemented for producers", deferred_logger );
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::PRBL:
|
||||
{
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "PRBL group control not implemented for producers", deferred_logger );
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::FLD:
|
||||
{
|
||||
// The FLD case is handled earlier
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "Unvallied group control specified for group " + well.groupName(), deferred_logger );
|
||||
}
|
||||
Base::getGroupProductionControl(group, well_state, schedule, summaryState, getBhp(), rates, control_eq, efficiencyFactor);
|
||||
}
|
||||
|
||||
|
||||
@ -4110,5 +3936,4 @@ namespace Opm
|
||||
const double sign = mass_rate <= 0. ? 1.0 : -1.0;
|
||||
return sign * (friction_pressure_loss + constriction_pressure_loss);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -410,10 +410,25 @@ namespace Opm
|
||||
|
||||
void updateThp(WellState& well_state, Opm::DeferredLogger& deferred_logger) const;
|
||||
|
||||
void assembleControlEq(const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, Opm::DeferredLogger& deferred_logger);
|
||||
void assembleControlEq(const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
Opm::DeferredLogger& deferred_logger);
|
||||
|
||||
void assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
|
||||
void assembleGroupInjectionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
|
||||
void assembleGroupProductionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor);
|
||||
void assembleGroupInjectionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const InjectorType& injectorType,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor,
|
||||
Opm::DeferredLogger& deferred_logger);
|
||||
|
||||
// handle the non reasonable fractions due to numerical overshoot
|
||||
void processFractions() const;
|
||||
|
@ -764,8 +764,10 @@ namespace Opm
|
||||
|
||||
template <typename TypeTag>
|
||||
void
|
||||
StandardWell<TypeTag>::
|
||||
assembleControlEq(const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, Opm::DeferredLogger& deferred_logger)
|
||||
StandardWell<TypeTag>::assembleControlEq(const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
Opm::DeferredLogger& deferred_logger)
|
||||
{
|
||||
EvalWell control_eq(numWellEq_ + numEq, 0.);
|
||||
|
||||
@ -952,7 +954,7 @@ namespace Opm
|
||||
assert(well.isAvailableForGroupControl());
|
||||
|
||||
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
|
||||
assembleGroupProductionControl(group, well_state, schedule, summaryState, control_eq, efficiencyFactor, deferred_logger);
|
||||
assembleGroupProductionControl(group, well_state, schedule, summaryState, control_eq, efficiencyFactor);
|
||||
break;
|
||||
}
|
||||
case Well::ProducerCMode::CMODE_UNDEFINED:
|
||||
@ -978,157 +980,24 @@ namespace Opm
|
||||
|
||||
template <typename TypeTag>
|
||||
void
|
||||
StandardWell<TypeTag>::
|
||||
assembleGroupInjectionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, EvalWell& control_eq, double efficiencyFactor, Opm::DeferredLogger& deferred_logger)
|
||||
StandardWell<TypeTag>::assembleGroupInjectionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const InjectorType& injectorType,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor,
|
||||
Opm::DeferredLogger& deferred_logger)
|
||||
{
|
||||
if (!group.isAvailableForGroupControl()) {
|
||||
// We cannot go any further up the hierarchy. This could
|
||||
// be the FIELD group, or any group for which this has
|
||||
// been set in GCONINJE or GCONPROD. If we are here
|
||||
// anyway, it is likely that the deck set inconsistent
|
||||
// requirements, such as GRUP control mode on a well with
|
||||
// no appropriate controls defined on any of its
|
||||
// containing groups. We will therefore use the wells' bhp
|
||||
// limit equation as a fallback.
|
||||
const auto& controls = well_ecl_.injectionControls(summaryState);
|
||||
control_eq = getBhp() - controls.bhp_limit;
|
||||
return;
|
||||
}
|
||||
|
||||
const auto& well = well_ecl_;
|
||||
const auto pu = phaseUsage();
|
||||
|
||||
int phasePos;
|
||||
Well::GuideRateTarget wellTarget;
|
||||
Phase injectionPhase;
|
||||
|
||||
switch (injectorType) {
|
||||
case InjectorType::WATER:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
wellTarget = Well::GuideRateTarget::WAT;
|
||||
injectionPhase = Phase::WATER;
|
||||
break;
|
||||
}
|
||||
case InjectorType::OIL:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
wellTarget = Well::GuideRateTarget::OIL;
|
||||
injectionPhase = Phase::OIL;
|
||||
break;
|
||||
}
|
||||
case InjectorType::GAS:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
wellTarget = Well::GuideRateTarget::GAS;
|
||||
injectionPhase = Phase::GAS;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
|
||||
}
|
||||
const Group::InjectionCMode& currentGroupControl = well_state.currentInjectionGroupControl(injectionPhase, group.name());
|
||||
|
||||
if (currentGroupControl == Group::InjectionCMode::FLD ||
|
||||
currentGroupControl == Group::InjectionCMode::NONE) {
|
||||
// Inject share of parents control
|
||||
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
|
||||
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
||||
assembleGroupInjectionControl(parent, well_state, schedule, summaryState, injectorType, control_eq, efficiencyFactor, deferred_logger);
|
||||
return;
|
||||
}
|
||||
|
||||
assert(group.hasInjectionControl(injectionPhase));
|
||||
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
|
||||
|
||||
const std::vector<double>& groupInjectionReductions = well_state.currentInjectionGroupReductionRates(group.name());
|
||||
double groupTargetReduction = groupInjectionReductions[phasePos];
|
||||
double fraction = wellGroupHelpers::fractionFromInjectionPotentials(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(wellTarget), pu, injectionPhase,false);
|
||||
switch(currentGroupControl) {
|
||||
case Group::InjectionCMode::NONE:
|
||||
{
|
||||
// The NONE case is handled earlier
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::RATE:
|
||||
{
|
||||
double target = std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getWQTotal() - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::RESV:
|
||||
{
|
||||
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
||||
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
||||
double coeff = convert_coeff[phasePos];
|
||||
double target = std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getWQTotal() - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::REIN:
|
||||
{
|
||||
double productionRate = well_state.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
|
||||
double target = std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getWQTotal() - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::VREP:
|
||||
{
|
||||
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
||||
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
||||
double coeff = convert_coeff[phasePos];
|
||||
double voidageRate = well_state.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
|
||||
|
||||
double injReduction = 0.0;
|
||||
std::vector<double> groupInjectionReservoirRates = well_state.currentInjectionGroupReservoirRates(group.name());
|
||||
if (groupcontrols.phase != Phase::WATER)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Aqua]];
|
||||
|
||||
if (groupcontrols.phase != Phase::OIL)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Liquid]];
|
||||
|
||||
if (groupcontrols.phase != Phase::GAS)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Vapour]];
|
||||
|
||||
voidageRate -= injReduction;
|
||||
|
||||
double target = std::max(0.0, ( voidageRate/coeff - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getWQTotal() - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::FLD:
|
||||
{
|
||||
// The FLD case is handled earlier
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::SALE:
|
||||
{
|
||||
// only for gas injectors
|
||||
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
|
||||
|
||||
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
|
||||
double inj_rate = well_state.currentInjectionREINRates(group.name())[phasePos];
|
||||
if (schedule.gConSump(current_step_).has(group.name())) {
|
||||
const auto& gconsump = schedule.gConSump(current_step_).get(group.name(), summaryState);
|
||||
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
||||
inj_rate += gconsump.import_rate;
|
||||
inj_rate -= gconsump.consumption_rate;
|
||||
}
|
||||
}
|
||||
const auto& gconsale = schedule.gConSale(current_step_).get(group.name(), summaryState);
|
||||
inj_rate -= gconsale.sales_target;
|
||||
|
||||
double target = std::max(0.0, (inj_rate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = getWQTotal() - fraction * target;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "Unvalid group control specified for group " + well.groupName(), deferred_logger );
|
||||
}
|
||||
|
||||
|
||||
Base::getGroupInjectionControl(group,
|
||||
well_state,
|
||||
schedule,
|
||||
summaryState,
|
||||
injectorType,
|
||||
getBhp(),
|
||||
getWQTotal(),
|
||||
control_eq,
|
||||
efficiencyFactor);
|
||||
}
|
||||
|
||||
|
||||
@ -1136,78 +1005,14 @@ namespace Opm
|
||||
|
||||
template <typename TypeTag>
|
||||
void
|
||||
StandardWell<TypeTag>::
|
||||
assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficiencyFactor, Opm::DeferredLogger& deferred_logger)
|
||||
StandardWell<TypeTag>::assembleGroupProductionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor)
|
||||
{
|
||||
const auto& well = well_ecl_;
|
||||
const auto pu = phaseUsage();
|
||||
|
||||
const Group::ProductionCMode& currentGroupControl = well_state.currentProductionGroupControl(group.name());
|
||||
if (currentGroupControl == Group::ProductionCMode::FLD ||
|
||||
currentGroupControl == Group::ProductionCMode::NONE) {
|
||||
if (!group.isAvailableForGroupControl()) {
|
||||
// We cannot go any further up the hierarchy. This could
|
||||
// be the FIELD group, or any group for which this has
|
||||
// been set in GCONINJE or GCONPROD. If we are here
|
||||
// anyway, it is likely that the deck set inconsistent
|
||||
// requirements, such as GRUP control mode on a well with
|
||||
// no appropriate controls defined on any of its
|
||||
// containing groups. We will therefore use the wells' bhp
|
||||
// limit equation as a fallback.
|
||||
const auto& controls = well_ecl_.productionControls(summaryState);
|
||||
control_eq = getBhp() - controls.bhp_limit;
|
||||
return;
|
||||
} else {
|
||||
// Produce share of parents control
|
||||
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
|
||||
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
||||
assembleGroupProductionControl(parent, well_state, schedule, summaryState, control_eq, efficiencyFactor, deferred_logger);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (!group.isProductionGroup()) {
|
||||
// use bhp as control eq and let the updateControl code find a vallied control
|
||||
const auto& controls = well.productionControls(summaryState);
|
||||
control_eq = getBhp() - controls.bhp_limit;
|
||||
return;
|
||||
}
|
||||
|
||||
// ------------------------------- New code start --------------------------------
|
||||
|
||||
// If we are here, we are at the topmost group to be visited in the recursion.
|
||||
// This is the group containing the control we will check against.
|
||||
wellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, Base::rateConverter_, Base::pvtRegionIdx_);
|
||||
wellGroupHelpers::FractionCalculator fcalc(schedule, well_state, current_step_, Base::guide_rate_, tcalc.guideTargetMode(), pu);
|
||||
|
||||
auto localFraction = [&](const std::string& child) {
|
||||
return fcalc.localFraction(child, "");
|
||||
};
|
||||
|
||||
auto localReduction = [&](const std::string& group_name) {
|
||||
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group_name);
|
||||
return tcalc.calcModeRateFromRates(groupTargetReductions);
|
||||
};
|
||||
|
||||
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
|
||||
// Assume we have a chain of groups as follows: BOTTOM -> MIDDLE -> TOP.
|
||||
// Then ...
|
||||
// TODO finish explanation.
|
||||
const auto chain = wellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, current_step_);
|
||||
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
|
||||
const size_t num_ancestors = chain.size() - 1;
|
||||
double target = orig_target;
|
||||
for (size_t ii = 0; ii < num_ancestors; ++ii) {
|
||||
target -= localReduction(chain[ii]);
|
||||
// Next lines: different from in WellGroupHelpers.hpp
|
||||
// if (ii == num_ancestors - 1) {
|
||||
// // Final level. Add my reduction back.
|
||||
// target += current_rate*efficiencyFactor;
|
||||
// }
|
||||
target *= localFraction(chain[ii+1]);
|
||||
}
|
||||
const double target_rate = target / efficiencyFactor;
|
||||
|
||||
std::vector<EvalWell> rates(pu.num_phases);
|
||||
const int compIndices[3] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
|
||||
const BlackoilPhases::PhaseIndex phases[3] = { BlackoilPhases::Aqua, BlackoilPhases::Liquid, BlackoilPhases::Vapour };
|
||||
@ -1218,110 +1023,8 @@ namespace Opm
|
||||
rates[pu.phase_pos[phase]] = getQs(Indices::canonicalToActiveComponentIndex(compIdx));
|
||||
}
|
||||
}
|
||||
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
|
||||
|
||||
control_eq = current_rate - target_rate;
|
||||
|
||||
// ------------------------------- New code end --------------------------------
|
||||
|
||||
|
||||
#if 0
|
||||
const auto& groupcontrols = group.productionControls(summaryState);
|
||||
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group.name());
|
||||
|
||||
switch(currentGroupControl) {
|
||||
case Group::ProductionCMode::NONE:
|
||||
{
|
||||
// The NONE case is handled earlier
|
||||
assert(false);
|
||||
}
|
||||
case Group::ProductionCMode::ORAT:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]];
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::OIL), pu);
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.oil_target - groupTargetReduction) / efficiencyFactor;
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
||||
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
control_eq = rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::WRAT:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Water]];
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::WAT), pu);
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.water_target - groupTargetReduction) / efficiencyFactor;
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
||||
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
||||
control_eq = rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::GRAT:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Gas]];
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::GAS), pu);
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.gas_target - groupTargetReduction) / efficiencyFactor;
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::gasCompIdx));
|
||||
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
||||
control_eq = rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::LRAT:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]] + groupTargetReductions[pu.phase_pos[Water]];
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::LIQ), pu);
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.liquid_target - groupTargetReduction) / efficiencyFactor;
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
||||
|
||||
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))
|
||||
- getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
||||
control_eq = rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::CRAT:
|
||||
{
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "CRAT group control not implemented for producers", deferred_logger );
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::RESV:
|
||||
{
|
||||
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]]
|
||||
+ groupTargetReductions[pu.phase_pos[Gas]]
|
||||
+ groupTargetReductions[pu.phase_pos[Water]];
|
||||
|
||||
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::RES), pu);
|
||||
|
||||
EvalWell total_rate(numWellEq_ + numEq, 0.); // reservoir rate
|
||||
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
||||
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
|
||||
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
||||
total_rate -= getQs( flowPhaseToEbosCompIdx(phase) ) * convert_coeff[phase];
|
||||
}
|
||||
|
||||
const double rate_target = std::max(0.0, groupcontrols.resv_target - groupTargetReduction) / efficiencyFactor;
|
||||
assert(FluidSystem::phaseIsActive(FluidSystem::gasCompIdx));
|
||||
control_eq = total_rate - fraction * rate_target;
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::PRBL:
|
||||
{
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "PRBL group control not implemented for producers", deferred_logger );
|
||||
break;
|
||||
}
|
||||
case Group::ProductionCMode::FLD:
|
||||
{
|
||||
// The FLD case is handled earlier
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
OPM_DEFLOG_THROW(std::runtime_error, "Unvallied group control specified for group " + well.groupName(), deferred_logger );
|
||||
}
|
||||
#endif
|
||||
Base::getGroupProductionControl(group, well_state, schedule, summaryState, getBhp(), rates, control_eq, efficiencyFactor);
|
||||
}
|
||||
|
||||
|
||||
|
@ -508,6 +508,28 @@ namespace Opm
|
||||
const Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
template <class EvalWell>
|
||||
void getGroupInjectionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const InjectorType& injectorType,
|
||||
const EvalWell& bhp,
|
||||
const EvalWell& injection_rate,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor);
|
||||
|
||||
template <class EvalWell>
|
||||
void getGroupProductionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const EvalWell& bhp,
|
||||
const std::vector<EvalWell>& rates,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor);
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
@ -1814,6 +1814,255 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
template <class EvalWell>
|
||||
void
|
||||
WellInterface<TypeTag>::getGroupInjectionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const InjectorType& injectorType,
|
||||
const EvalWell& bhp,
|
||||
const EvalWell& injection_rate,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor)
|
||||
{
|
||||
if (!group.isAvailableForGroupControl()) {
|
||||
// We cannot go any further up the hierarchy. This could
|
||||
// be the FIELD group, or any group for which this has
|
||||
// been set in GCONINJE or GCONPROD. If we are here
|
||||
// anyway, it is likely that the deck set inconsistent
|
||||
// requirements, such as GRUP control mode on a well with
|
||||
// no appropriate controls defined on any of its
|
||||
// containing groups. We will therefore use the wells' bhp
|
||||
// limit equation as a fallback.
|
||||
const auto& controls = well_ecl_.injectionControls(summaryState);
|
||||
control_eq = bhp - controls.bhp_limit;
|
||||
return;
|
||||
}
|
||||
|
||||
const auto& well = well_ecl_;
|
||||
const auto pu = phaseUsage();
|
||||
|
||||
int phasePos = -1;
|
||||
Well::GuideRateTarget wellTarget;
|
||||
Phase injectionPhase;
|
||||
|
||||
switch (injectorType) {
|
||||
case InjectorType::WATER:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
wellTarget = Well::GuideRateTarget::WAT;
|
||||
injectionPhase = Phase::WATER;
|
||||
break;
|
||||
}
|
||||
case InjectorType::OIL:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
wellTarget = Well::GuideRateTarget::OIL;
|
||||
injectionPhase = Phase::OIL;
|
||||
break;
|
||||
}
|
||||
case InjectorType::GAS:
|
||||
{
|
||||
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
wellTarget = Well::GuideRateTarget::GAS;
|
||||
injectionPhase = Phase::GAS;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
// Should not be here.
|
||||
assert(false);
|
||||
}
|
||||
const Group::InjectionCMode& currentGroupControl = well_state.currentInjectionGroupControl(injectionPhase, group.name());
|
||||
|
||||
if (currentGroupControl == Group::InjectionCMode::FLD ||
|
||||
currentGroupControl == Group::InjectionCMode::NONE) {
|
||||
// Inject share of parents control
|
||||
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
|
||||
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
||||
getGroupInjectionControl(parent, well_state, schedule, summaryState, injectorType, bhp, injection_rate, control_eq, efficiencyFactor);
|
||||
return;
|
||||
}
|
||||
|
||||
assert(group.hasInjectionControl(injectionPhase));
|
||||
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
|
||||
|
||||
const std::vector<double>& groupInjectionReductions = well_state.currentInjectionGroupReductionRates(group.name());
|
||||
double groupTargetReduction = groupInjectionReductions[phasePos];
|
||||
double fraction = wellGroupHelpers::fractionFromInjectionPotentials(well.name(),
|
||||
group.name(),
|
||||
schedule,
|
||||
well_state,
|
||||
current_step_,
|
||||
guide_rate_,
|
||||
GuideRateModel::convert_target(wellTarget),
|
||||
pu,
|
||||
injectionPhase,
|
||||
false);
|
||||
switch (currentGroupControl) {
|
||||
case Group::InjectionCMode::NONE:
|
||||
{
|
||||
// The NONE case is handled earlier
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::RATE:
|
||||
{
|
||||
double target = std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = injection_rate - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::RESV:
|
||||
{
|
||||
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
||||
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
|
||||
double coeff = convert_coeff[phasePos];
|
||||
double target = std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = injection_rate - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::REIN:
|
||||
{
|
||||
double productionRate = well_state.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
|
||||
double target = std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = injection_rate - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::VREP:
|
||||
{
|
||||
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
||||
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
|
||||
double coeff = convert_coeff[phasePos];
|
||||
double voidageRate = well_state.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
|
||||
|
||||
double injReduction = 0.0;
|
||||
std::vector<double> groupInjectionReservoirRates = well_state.currentInjectionGroupReservoirRates(group.name());
|
||||
if (groupcontrols.phase != Phase::WATER)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Aqua]];
|
||||
|
||||
if (groupcontrols.phase != Phase::OIL)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Liquid]];
|
||||
|
||||
if (groupcontrols.phase != Phase::GAS)
|
||||
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Vapour]];
|
||||
|
||||
voidageRate -= injReduction;
|
||||
|
||||
double target = std::max(0.0, ( voidageRate/coeff - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = injection_rate - fraction * target;
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::FLD:
|
||||
{
|
||||
// The FLD case is handled earlier
|
||||
assert(false);
|
||||
break;
|
||||
}
|
||||
case Group::InjectionCMode::SALE:
|
||||
{
|
||||
// only for gas injectors
|
||||
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
|
||||
|
||||
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
|
||||
double inj_rate = well_state.currentInjectionREINRates(group.name())[phasePos];
|
||||
if (schedule.gConSump(current_step_).has(group.name())) {
|
||||
const auto& gconsump = schedule.gConSump(current_step_).get(group.name(), summaryState);
|
||||
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
||||
inj_rate += gconsump.import_rate;
|
||||
inj_rate -= gconsump.consumption_rate;
|
||||
}
|
||||
}
|
||||
const auto& gconsale = schedule.gConSale(current_step_).get(group.name(), summaryState);
|
||||
inj_rate -= gconsale.sales_target;
|
||||
|
||||
double target = std::max(0.0, (inj_rate - groupTargetReduction)) / efficiencyFactor;
|
||||
control_eq = injection_rate - fraction * target;
|
||||
break;
|
||||
}
|
||||
// default:
|
||||
// OPM_DEFLOG_THROW(std::runtime_error, "Unvalid group control specified for group " + well.groupName(), deferred_logger );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename TypeTag>
|
||||
template <class EvalWell>
|
||||
void
|
||||
WellInterface<TypeTag>::getGroupProductionControl(const Group& group,
|
||||
const WellState& well_state,
|
||||
const Opm::Schedule& schedule,
|
||||
const SummaryState& summaryState,
|
||||
const EvalWell& bhp,
|
||||
const std::vector<EvalWell>& rates,
|
||||
EvalWell& control_eq,
|
||||
double efficiencyFactor)
|
||||
{
|
||||
const auto& well = well_ecl_;
|
||||
const auto pu = phaseUsage();
|
||||
|
||||
const Group::ProductionCMode& currentGroupControl = well_state.currentProductionGroupControl(group.name());
|
||||
if (currentGroupControl == Group::ProductionCMode::FLD ||
|
||||
currentGroupControl == Group::ProductionCMode::NONE) {
|
||||
if (!group.isAvailableForGroupControl()) {
|
||||
// We cannot go any further up the hierarchy. This could
|
||||
// be the FIELD group, or any group for which this has
|
||||
// been set in GCONINJE or GCONPROD. If we are here
|
||||
// anyway, it is likely that the deck set inconsistent
|
||||
// requirements, such as GRUP control mode on a well with
|
||||
// no appropriate controls defined on any of its
|
||||
// containing groups. We will therefore use the wells' bhp
|
||||
// limit equation as a fallback.
|
||||
const auto& controls = well_ecl_.productionControls(summaryState);
|
||||
control_eq = bhp - controls.bhp_limit;
|
||||
return;
|
||||
} else {
|
||||
// Produce share of parents control
|
||||
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
|
||||
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
||||
getGroupProductionControl(parent, well_state, schedule, summaryState, bhp, rates, control_eq, efficiencyFactor);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (!group.isProductionGroup()) {
|
||||
// use bhp as control eq and let the updateControl code find a vallied control
|
||||
const auto& controls = well.productionControls(summaryState);
|
||||
control_eq = bhp - controls.bhp_limit;
|
||||
return;
|
||||
}
|
||||
|
||||
// If we are here, we are at the topmost group to be visited in the recursion.
|
||||
// This is the group containing the control we will check against.
|
||||
wellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, rateConverter_, pvtRegionIdx_);
|
||||
wellGroupHelpers::FractionCalculator fcalc(schedule, well_state, current_step_, guide_rate_, tcalc.guideTargetMode(), pu);
|
||||
|
||||
auto localFraction = [&](const std::string& child) {
|
||||
return fcalc.localFraction(child, "");
|
||||
};
|
||||
|
||||
auto localReduction = [&](const std::string& group_name) {
|
||||
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group_name);
|
||||
return tcalc.calcModeRateFromRates(groupTargetReductions);
|
||||
};
|
||||
|
||||
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
|
||||
const auto chain = wellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, current_step_);
|
||||
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
|
||||
const size_t num_ancestors = chain.size() - 1;
|
||||
double target = orig_target;
|
||||
for (size_t ii = 0; ii < num_ancestors; ++ii) {
|
||||
target -= localReduction(chain[ii]);
|
||||
target *= localFraction(chain[ii+1]);
|
||||
}
|
||||
const double target_rate = target / efficiencyFactor;
|
||||
|
||||
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
|
||||
|
||||
control_eq = current_rate - target_rate;
|
||||
}
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
Loading…
Reference in New Issue
Block a user