Unify group control equation codes.

This commit is contained in:
Atgeirr Flø Rasmussen 2020-03-24 11:07:14 +01:00
parent 92ee56c3b3
commit 766d02cacc
6 changed files with 435 additions and 610 deletions

View File

@ -283,11 +283,10 @@ namespace Opm
void initMatrixAndVectors(const int num_cells) const;
// protected functions
// EvalWell getBhp(); this one should be something similar to getSegmentPressure();
// EvalWell getQs(); this one should be something similar to getSegmentRates()
// EValWell wellVolumeFractionScaled, wellVolumeFraction, wellSurfaceVolumeFraction ... these should have different names, and probably will be needed.
// bool crossFlowAllowed(const Simulator& ebosSimulator) const; probably will be needed
EvalWell getBhp() const;
EvalWell getQs(const int comp_idx) const;
EvalWell getWQTotal() const;
// xw = inv(D)*(rw - C*x)
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
@ -381,8 +380,20 @@ namespace Opm
const Well::ProductionControls& prod_controls,
Opm::DeferredLogger& deferred_logger);
void assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
void assembleGroupInjectionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
void assembleGroupProductionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
EvalWell& control_eq,
double efficiencyFactor);
void assembleGroupInjectionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
EvalWell& control_eq,
double efficiencyFactor,
Opm::DeferredLogger& deferred_logger);
void assemblePressureEq(const int seg) const;

View File

@ -690,7 +690,7 @@ namespace Opm
}
if (pressure_controlled_well) {
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
const EvalWell rate = this->getSegmentRate(0, compIdx);
const EvalWell rate = this->getQs(compIdx);
well_potentials[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
}
return;
@ -790,7 +790,7 @@ namespace Opm
const int np = number_of_phases_;
well_flux.resize(np, 0.0);
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
const EvalWell rate = well_copy.getSegmentRate(0, compIdx);
const EvalWell rate = well_copy.getQs(compIdx);
well_flux[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
}
debug_cost_counter_ += well_copy.debug_cost_counter_;
@ -1621,6 +1621,18 @@ namespace Opm
template <typename TypeTag>
typename MultisegmentWell<TypeTag>::EvalWell
MultisegmentWell<TypeTag>::
getBhp() const
{
return getSegmentPressure(0);
}
template <typename TypeTag>
typename MultisegmentWell<TypeTag>::EvalWell
MultisegmentWell<TypeTag>::
@ -1634,6 +1646,18 @@ namespace Opm
template <typename TypeTag>
typename MultisegmentWell<TypeTag>::EvalWell
MultisegmentWell<TypeTag>::
getQs(const int comp_idx) const
{
return getSegmentRate(0, comp_idx);
}
template <typename TypeTag>
typename MultisegmentWell<TypeTag>::EvalWell
MultisegmentWell<TypeTag>::
@ -1690,6 +1714,18 @@ namespace Opm
template <typename TypeTag>
typename MultisegmentWell<TypeTag>::EvalWell
MultisegmentWell<TypeTag>::
getWQTotal() const
{
return getSegmentGTotal(0);
}
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
@ -1763,7 +1799,7 @@ namespace Opm
double efficiencyFactor = well.getEfficiencyFactor();
if (wellIsStopped_) {
control_eq = getSegmentGTotal(0);
control_eq = getWQTotal();
} else if (this->isInjector() ) {
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[well_index];
const auto& controls = inj_controls;
@ -1796,7 +1832,7 @@ namespace Opm
switch(current) {
case Well::InjectorCMode::RATE:
{
control_eq = getSegmentGTotal(0) / scaling - controls.surface_rate;
control_eq = getWQTotal() / scaling - controls.surface_rate;
break;
}
@ -1828,7 +1864,7 @@ namespace Opm
}
control_eq = coeff*getSegmentGTotal(0) / scaling - controls.reservoir_rate;
control_eq = coeff*getWQTotal() / scaling - controls.reservoir_rate;
break;
}
@ -1836,22 +1872,22 @@ namespace Opm
{
std::vector<EvalWell> rates(3, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
rates[ Water ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
rates[ Oil ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
rates[ Gas ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
control_eq = getSegmentPressure(0) - calculateBhpFromThp(rates, well, summaryState, deferred_logger);
control_eq = getBhp() - calculateBhpFromThp(rates, well, summaryState, deferred_logger);
break;
}
case Well::InjectorCMode::BHP:
{
const auto& bhp = controls.bhp_limit;
control_eq = getSegmentPressure(0) - bhp;
control_eq = getBhp() - bhp;
break;
}
@ -1881,21 +1917,21 @@ namespace Opm
case Well::ProducerCMode::ORAT:
{
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
const EvalWell& rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
control_eq = rate - controls.oil_rate;
break;
}
case Well::ProducerCMode::WRAT:
{
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
const EvalWell& rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
control_eq = rate - controls.water_rate;
break;
}
case Well::ProducerCMode::GRAT:
{
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
const EvalWell& rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
control_eq = rate - controls.gas_rate;
break;
@ -1904,8 +1940,8 @@ namespace Opm
{
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
EvalWell rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))
-getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))
-getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
control_eq = rate - controls.liquid_rate;
break;
}
@ -1919,7 +1955,7 @@ namespace Opm
std::vector<double> convert_coeff(number_of_phases_, 1.0);
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
for (int phase = 0; phase < number_of_phases_; ++phase) {
total_rate += getSegmentRate(0, flowPhaseToEbosCompIdx(phase) ) * convert_coeff[phase];
total_rate += getQs(flowPhaseToEbosCompIdx(phase) ) * convert_coeff[phase];
}
if (controls.prediction_mode) {
@ -1945,22 +1981,22 @@ namespace Opm
}
case Well::ProducerCMode::BHP:
{
control_eq = getSegmentPressure(0) - controls.bhp_limit;
control_eq = getBhp() - controls.bhp_limit;
break;
}
case Well::ProducerCMode::THP:
{
std::vector<EvalWell> rates(3, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
rates[ Water ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[ Oil ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
rates[ Oil ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[ Gas ] = getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
rates[ Gas ] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
control_eq = getSegmentPressure(0) - calculateBhpFromThp(rates, well, summaryState, deferred_logger);
control_eq = getBhp() - calculateBhpFromThp(rates, well, summaryState, deferred_logger);
break;
}
case Well::ProducerCMode::GRUP:
@ -1968,7 +2004,7 @@ namespace Opm
assert(well.isAvailableForGroupControl());
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
assembleGroupProductionControl(group, well_state, schedule, summaryState, control_eq, efficiencyFactor, deferred_logger);
assembleGroupProductionControl(group, well_state, schedule, summaryState, control_eq, efficiencyFactor);
break;
}
case Well::ProducerCMode::CMODE_UNDEFINED:
@ -2112,168 +2148,54 @@ namespace Opm
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
assembleGroupInjectionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, EvalWell& control_eq, double efficiencyFactor, Opm::DeferredLogger& deferred_logger)
MultisegmentWell<TypeTag>::assembleGroupInjectionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
EvalWell& control_eq,
double efficiencyFactor,
Opm::DeferredLogger& deferred_logger)
{
if (!group.isAvailableForGroupControl()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_ecl_.injectionControls(summaryState);
control_eq = getSegmentPressure(0) - controls.bhp_limit;
return;
}
const auto& well = well_ecl_;
// The total rate primary variable is the scaled surface rate
// sum, also for injectors, so we must scale it to get a
// proper surface injection rate. This is different from
// standard wells, where the primary variable is unscaled if
// the well is an injector.
const auto& pu = phaseUsage();
int phasePos;
Well::GuideRateTarget wellTarget;
Phase injectionPhase;
double scaling = 1.0;
switch (injectorType) {
case InjectorType::WATER:
{
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
wellTarget = Well::GuideRateTarget::WAT;
injectionPhase = Phase::WATER;
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
break;
}
case InjectorType::OIL:
{
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
wellTarget = Well::GuideRateTarget::OIL;
injectionPhase = Phase::OIL;
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
break;
}
case InjectorType::GAS:
{
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
wellTarget = Well::GuideRateTarget::GAS;
injectionPhase = Phase::GAS;
scaling = scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
const Group::InjectionCMode& currentGroupControl = well_state.currentInjectionGroupControl(injectionPhase, group.name());
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
// Inject share of parents control
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
efficiencyFactor *= group.getGroupEfficiencyFactor();
assembleGroupInjectionControl(parent, well_state, schedule, summaryState, injectorType, control_eq, efficiencyFactor, deferred_logger);
return;
}
assert(group.hasInjectionControl(injectionPhase));
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
const std::vector<double>& groupInjectionReductions = well_state.currentInjectionGroupReductionRates(group.name());
double groupTargetReduction = groupInjectionReductions[phasePos];
double fraction = wellGroupHelpers::fractionFromInjectionPotentials(well.name(), group.name(), schedule,well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(wellTarget), pu, injectionPhase,false);
switch(currentGroupControl) {
case Group::InjectionCMode::NONE:
{
// The NONE case is handled earlier
// Should not be here.
assert(false);
break;
}
case Group::InjectionCMode::RATE:
{
double target = std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction)) / efficiencyFactor;
control_eq = getSegmentGTotal(0) / scaling - fraction * target;
break;
}
case Group::InjectionCMode::RESV:
{
std::vector<double> convert_coeff(number_of_phases_, 1.0);
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
double coeff = convert_coeff[phasePos];
double target = std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction)) / efficiencyFactor;
control_eq = getSegmentGTotal(0) / scaling - fraction * target;
break;
}
case Group::InjectionCMode::REIN:
{
double productionRate = well_state.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
productionRate /= efficiencyFactor;
double target = std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction)) / efficiencyFactor;
control_eq = getSegmentGTotal(0) / scaling - fraction * target;
break;
}
case Group::InjectionCMode::VREP:
{
std::vector<double> convert_coeff(number_of_phases_, 1.0);
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
double coeff = convert_coeff[phasePos];
double voidageRate = well_state.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
double injReduction = 0.0;
std::vector<double> groupInjectionReservoirRates = well_state.currentInjectionGroupReservoirRates(group.name());
if (groupcontrols.phase != Phase::WATER)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Aqua]];
if (groupcontrols.phase != Phase::OIL)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Liquid]];
if (groupcontrols.phase != Phase::GAS)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Vapour]];
voidageRate -= injReduction;
double target = std::max(0.0, ( voidageRate/coeff - groupTargetReduction)) / efficiencyFactor;
control_eq = getSegmentGTotal(0) / scaling - fraction * target;
break;
}
case Group::InjectionCMode::FLD:
{
// The FLD case is handled earlier
assert(false);
break;
}
case Group::InjectionCMode::SALE:
{
// only for gas injectors
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
double inj_rate = well_state.currentInjectionREINRates(group.name())[phasePos];
if (schedule.gConSump(current_step_).has(group.name())) {
const auto& gconsump = schedule.gConSump(current_step_).get(group.name(), summaryState);
if (pu.phase_used[BlackoilPhases::Vapour]) {
inj_rate += gconsump.import_rate;
inj_rate -= gconsump.consumption_rate;
}
}
const auto& gconsale = schedule.gConSale(current_step_).get(group.name(), summaryState);
inj_rate -= gconsale.sales_target;
inj_rate /= efficiencyFactor;
double target = std::max(0.0, (inj_rate - groupTargetReduction)) / efficiencyFactor;
control_eq = getSegmentGTotal(0) /scaling - fraction * target;
break;
}
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unvalid group control specified for group " + well.groupName(), deferred_logger );
}
const EvalWell injection_rate = getWQTotal() / scaling;
// Call the generic implementation.
Base::getGroupInjectionControl(group,
well_state,
schedule,
summaryState,
injectorType,
getBhp(),
injection_rate,
control_eq,
efficiencyFactor);
}
@ -2281,122 +2203,26 @@ namespace Opm
template <typename TypeTag>
void
MultisegmentWell<TypeTag>::
assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficiencyFactor, Opm::DeferredLogger& deferred_logger)
MultisegmentWell<TypeTag>::assembleGroupProductionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
EvalWell& control_eq,
double efficiencyFactor)
{
const auto& well = well_ecl_;
const auto pu = phaseUsage();
const Group::ProductionCMode& currentGroupControl = well_state.currentProductionGroupControl(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.isAvailableForGroupControl()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_ecl_.productionControls(summaryState);
control_eq = getSegmentPressure(0) - controls.bhp_limit;
return;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
efficiencyFactor *= group.getGroupEfficiencyFactor();
assembleGroupProductionControl(parent, well_state, schedule, summaryState, control_eq, efficiencyFactor, deferred_logger);
return;
std::vector<EvalWell> rates(pu.num_phases);
const int compIndices[3] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
const BlackoilPhases::PhaseIndex phases[3] = { BlackoilPhases::Aqua, BlackoilPhases::Liquid, BlackoilPhases::Vapour };
for (int canonical_phase = 0; canonical_phase < 3; ++canonical_phase) {
const auto phase = phases[canonical_phase];
if (pu.phase_used[phase]) {
const auto compIdx = compIndices[canonical_phase];
rates[pu.phase_pos[phase]] = getQs(Indices::canonicalToActiveComponentIndex(compIdx));
}
}
if (!group.isProductionGroup()) {
// use bhp as control eq and let the updateControl code find a vallied control
const auto& controls = well.productionControls(summaryState);
control_eq = getSegmentPressure(0) - controls.bhp_limit;
return;
}
const auto& groupcontrols = group.productionControls(summaryState);
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group.name());
switch(currentGroupControl) {
case Group::ProductionCMode::NONE:
{
// The NONE case is handled earlier
assert(false);
break;
}
case Group::ProductionCMode::ORAT:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::OIL), pu);
const double rate_target = std::max(0.0, groupcontrols.oil_target - groupTargetReduction) / efficiencyFactor;
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
control_eq = rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::WRAT:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Water]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::WAT), pu);
const double rate_target = std::max(0.0, groupcontrols.gas_target - groupTargetReduction) / efficiencyFactor;
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
control_eq = rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::GRAT:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Gas]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::GAS), pu);
const double rate_target = std::max(0.0, groupcontrols.gas_target - groupTargetReduction) / efficiencyFactor;
assert(FluidSystem::phaseIsActive(FluidSystem::gasCompIdx));
const EvalWell& rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
control_eq = rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::LRAT:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]] + groupTargetReductions[pu.phase_pos[Water]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::LIQ), pu);
const double rate_target = std::max(0.0, groupcontrols.liquid_target - groupTargetReduction) / efficiencyFactor; assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
EvalWell rate = -getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))
-getSegmentRate(0, Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
control_eq = rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::CRAT:
{
OPM_DEFLOG_THROW(std::runtime_error, "CRAT group control not implemented for producers", deferred_logger );
break;
}
case Group::ProductionCMode::RESV:
{
OPM_DEFLOG_THROW(std::runtime_error, "RESV group control not implemented for producers", deferred_logger );
break;
}
case Group::ProductionCMode::PRBL:
{
OPM_DEFLOG_THROW(std::runtime_error, "PRBL group control not implemented for producers", deferred_logger );
break;
}
case Group::ProductionCMode::FLD:
{
// The FLD case is handled earlier
assert(false);
break;
}
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unvallied group control specified for group " + well.groupName(), deferred_logger );
}
Base::getGroupProductionControl(group, well_state, schedule, summaryState, getBhp(), rates, control_eq, efficiencyFactor);
}
@ -4110,5 +3936,4 @@ namespace Opm
const double sign = mass_rate <= 0. ? 1.0 : -1.0;
return sign * (friction_pressure_loss + constriction_pressure_loss);
}
}
}

View File

@ -410,10 +410,25 @@ namespace Opm
void updateThp(WellState& well_state, Opm::DeferredLogger& deferred_logger) const;
void assembleControlEq(const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, Opm::DeferredLogger& deferred_logger);
void assembleControlEq(const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
Opm::DeferredLogger& deferred_logger);
void assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
void assembleGroupInjectionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
void assembleGroupProductionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
EvalWell& control_eq,
double efficiencyFactor);
void assembleGroupInjectionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
EvalWell& control_eq,
double efficiencyFactor,
Opm::DeferredLogger& deferred_logger);
// handle the non reasonable fractions due to numerical overshoot
void processFractions() const;

View File

@ -764,8 +764,10 @@ namespace Opm
template <typename TypeTag>
void
StandardWell<TypeTag>::
assembleControlEq(const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, Opm::DeferredLogger& deferred_logger)
StandardWell<TypeTag>::assembleControlEq(const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
Opm::DeferredLogger& deferred_logger)
{
EvalWell control_eq(numWellEq_ + numEq, 0.);
@ -952,7 +954,7 @@ namespace Opm
assert(well.isAvailableForGroupControl());
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
assembleGroupProductionControl(group, well_state, schedule, summaryState, control_eq, efficiencyFactor, deferred_logger);
assembleGroupProductionControl(group, well_state, schedule, summaryState, control_eq, efficiencyFactor);
break;
}
case Well::ProducerCMode::CMODE_UNDEFINED:
@ -978,157 +980,24 @@ namespace Opm
template <typename TypeTag>
void
StandardWell<TypeTag>::
assembleGroupInjectionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, EvalWell& control_eq, double efficiencyFactor, Opm::DeferredLogger& deferred_logger)
StandardWell<TypeTag>::assembleGroupInjectionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
EvalWell& control_eq,
double efficiencyFactor,
Opm::DeferredLogger& deferred_logger)
{
if (!group.isAvailableForGroupControl()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_ecl_.injectionControls(summaryState);
control_eq = getBhp() - controls.bhp_limit;
return;
}
const auto& well = well_ecl_;
const auto pu = phaseUsage();
int phasePos;
Well::GuideRateTarget wellTarget;
Phase injectionPhase;
switch (injectorType) {
case InjectorType::WATER:
{
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
wellTarget = Well::GuideRateTarget::WAT;
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
wellTarget = Well::GuideRateTarget::OIL;
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
wellTarget = Well::GuideRateTarget::GAS;
injectionPhase = Phase::GAS;
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
const Group::InjectionCMode& currentGroupControl = well_state.currentInjectionGroupControl(injectionPhase, group.name());
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
// Inject share of parents control
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
efficiencyFactor *= group.getGroupEfficiencyFactor();
assembleGroupInjectionControl(parent, well_state, schedule, summaryState, injectorType, control_eq, efficiencyFactor, deferred_logger);
return;
}
assert(group.hasInjectionControl(injectionPhase));
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
const std::vector<double>& groupInjectionReductions = well_state.currentInjectionGroupReductionRates(group.name());
double groupTargetReduction = groupInjectionReductions[phasePos];
double fraction = wellGroupHelpers::fractionFromInjectionPotentials(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(wellTarget), pu, injectionPhase,false);
switch(currentGroupControl) {
case Group::InjectionCMode::NONE:
{
// The NONE case is handled earlier
assert(false);
break;
}
case Group::InjectionCMode::RATE:
{
double target = std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction)) / efficiencyFactor;
control_eq = getWQTotal() - fraction * target;
break;
}
case Group::InjectionCMode::RESV:
{
std::vector<double> convert_coeff(number_of_phases_, 1.0);
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
double coeff = convert_coeff[phasePos];
double target = std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction)) / efficiencyFactor;
control_eq = getWQTotal() - fraction * target;
break;
}
case Group::InjectionCMode::REIN:
{
double productionRate = well_state.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
double target = std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction)) / efficiencyFactor;
control_eq = getWQTotal() - fraction * target;
break;
}
case Group::InjectionCMode::VREP:
{
std::vector<double> convert_coeff(number_of_phases_, 1.0);
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
double coeff = convert_coeff[phasePos];
double voidageRate = well_state.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
double injReduction = 0.0;
std::vector<double> groupInjectionReservoirRates = well_state.currentInjectionGroupReservoirRates(group.name());
if (groupcontrols.phase != Phase::WATER)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Aqua]];
if (groupcontrols.phase != Phase::OIL)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Liquid]];
if (groupcontrols.phase != Phase::GAS)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Vapour]];
voidageRate -= injReduction;
double target = std::max(0.0, ( voidageRate/coeff - groupTargetReduction)) / efficiencyFactor;
control_eq = getWQTotal() - fraction * target;
break;
}
case Group::InjectionCMode::FLD:
{
// The FLD case is handled earlier
assert(false);
break;
}
case Group::InjectionCMode::SALE:
{
// only for gas injectors
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
double inj_rate = well_state.currentInjectionREINRates(group.name())[phasePos];
if (schedule.gConSump(current_step_).has(group.name())) {
const auto& gconsump = schedule.gConSump(current_step_).get(group.name(), summaryState);
if (pu.phase_used[BlackoilPhases::Vapour]) {
inj_rate += gconsump.import_rate;
inj_rate -= gconsump.consumption_rate;
}
}
const auto& gconsale = schedule.gConSale(current_step_).get(group.name(), summaryState);
inj_rate -= gconsale.sales_target;
double target = std::max(0.0, (inj_rate - groupTargetReduction)) / efficiencyFactor;
control_eq = getWQTotal() - fraction * target;
break;
}
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unvalid group control specified for group " + well.groupName(), deferred_logger );
}
Base::getGroupInjectionControl(group,
well_state,
schedule,
summaryState,
injectorType,
getBhp(),
getWQTotal(),
control_eq,
efficiencyFactor);
}
@ -1136,78 +1005,14 @@ namespace Opm
template <typename TypeTag>
void
StandardWell<TypeTag>::
assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficiencyFactor, Opm::DeferredLogger& deferred_logger)
StandardWell<TypeTag>::assembleGroupProductionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
EvalWell& control_eq,
double efficiencyFactor)
{
const auto& well = well_ecl_;
const auto pu = phaseUsage();
const Group::ProductionCMode& currentGroupControl = well_state.currentProductionGroupControl(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.isAvailableForGroupControl()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_ecl_.productionControls(summaryState);
control_eq = getBhp() - controls.bhp_limit;
return;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
efficiencyFactor *= group.getGroupEfficiencyFactor();
assembleGroupProductionControl(parent, well_state, schedule, summaryState, control_eq, efficiencyFactor, deferred_logger);
return;
}
}
if (!group.isProductionGroup()) {
// use bhp as control eq and let the updateControl code find a vallied control
const auto& controls = well.productionControls(summaryState);
control_eq = getBhp() - controls.bhp_limit;
return;
}
// ------------------------------- New code start --------------------------------
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
wellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, Base::rateConverter_, Base::pvtRegionIdx_);
wellGroupHelpers::FractionCalculator fcalc(schedule, well_state, current_step_, Base::guide_rate_, tcalc.guideTargetMode(), pu);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, "");
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
// Assume we have a chain of groups as follows: BOTTOM -> MIDDLE -> TOP.
// Then ...
// TODO finish explanation.
const auto chain = wellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, current_step_);
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
target -= localReduction(chain[ii]);
// Next lines: different from in WellGroupHelpers.hpp
// if (ii == num_ancestors - 1) {
// // Final level. Add my reduction back.
// target += current_rate*efficiencyFactor;
// }
target *= localFraction(chain[ii+1]);
}
const double target_rate = target / efficiencyFactor;
std::vector<EvalWell> rates(pu.num_phases);
const int compIndices[3] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
const BlackoilPhases::PhaseIndex phases[3] = { BlackoilPhases::Aqua, BlackoilPhases::Liquid, BlackoilPhases::Vapour };
@ -1218,110 +1023,8 @@ namespace Opm
rates[pu.phase_pos[phase]] = getQs(Indices::canonicalToActiveComponentIndex(compIdx));
}
}
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
control_eq = current_rate - target_rate;
// ------------------------------- New code end --------------------------------
#if 0
const auto& groupcontrols = group.productionControls(summaryState);
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group.name());
switch(currentGroupControl) {
case Group::ProductionCMode::NONE:
{
// The NONE case is handled earlier
assert(false);
}
case Group::ProductionCMode::ORAT:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::OIL), pu);
const double rate_target = std::max(0.0, groupcontrols.oil_target - groupTargetReduction) / efficiencyFactor;
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
control_eq = rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::WRAT:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Water]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::WAT), pu);
const double rate_target = std::max(0.0, groupcontrols.water_target - groupTargetReduction) / efficiencyFactor;
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
control_eq = rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::GRAT:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Gas]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::GAS), pu);
const double rate_target = std::max(0.0, groupcontrols.gas_target - groupTargetReduction) / efficiencyFactor;
assert(FluidSystem::phaseIsActive(FluidSystem::gasCompIdx));
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
control_eq = rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::LRAT:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]] + groupTargetReductions[pu.phase_pos[Water]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::LIQ), pu);
const double rate_target = std::max(0.0, groupcontrols.liquid_target - groupTargetReduction) / efficiencyFactor;
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
EvalWell rate = -getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx))
- getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
control_eq = rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::CRAT:
{
OPM_DEFLOG_THROW(std::runtime_error, "CRAT group control not implemented for producers", deferred_logger );
break;
}
case Group::ProductionCMode::RESV:
{
double groupTargetReduction = groupTargetReductions[pu.phase_pos[Oil]]
+ groupTargetReductions[pu.phase_pos[Gas]]
+ groupTargetReductions[pu.phase_pos[Water]];
double fraction = wellGroupHelpers::fractionFromGuideRates(well.name(), group.name(), schedule, well_state, current_step_, Base::guide_rate_, GuideRateModel::convert_target(Well::GuideRateTarget::RES), pu);
EvalWell total_rate(numWellEq_ + numEq, 0.); // reservoir rate
std::vector<double> convert_coeff(number_of_phases_, 1.0);
Base::rateConverter_.calcCoeff(/*fipreg*/ 0, Base::pvtRegionIdx_, convert_coeff);
for (int phase = 0; phase < number_of_phases_; ++phase) {
total_rate -= getQs( flowPhaseToEbosCompIdx(phase) ) * convert_coeff[phase];
}
const double rate_target = std::max(0.0, groupcontrols.resv_target - groupTargetReduction) / efficiencyFactor;
assert(FluidSystem::phaseIsActive(FluidSystem::gasCompIdx));
control_eq = total_rate - fraction * rate_target;
break;
}
case Group::ProductionCMode::PRBL:
{
OPM_DEFLOG_THROW(std::runtime_error, "PRBL group control not implemented for producers", deferred_logger );
break;
}
case Group::ProductionCMode::FLD:
{
// The FLD case is handled earlier
assert(false);
break;
}
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unvallied group control specified for group " + well.groupName(), deferred_logger );
}
#endif
Base::getGroupProductionControl(group, well_state, schedule, summaryState, getBhp(), rates, control_eq, efficiencyFactor);
}

View File

@ -508,6 +508,28 @@ namespace Opm
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const;
template <class EvalWell>
void getGroupInjectionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
const EvalWell& bhp,
const EvalWell& injection_rate,
EvalWell& control_eq,
double efficiencyFactor);
template <class EvalWell>
void getGroupProductionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector<EvalWell>& rates,
EvalWell& control_eq,
double efficiencyFactor);
};

View File

@ -1814,6 +1814,255 @@ namespace Opm
template <typename TypeTag>
template <class EvalWell>
void
WellInterface<TypeTag>::getGroupInjectionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
const EvalWell& bhp,
const EvalWell& injection_rate,
EvalWell& control_eq,
double efficiencyFactor)
{
if (!group.isAvailableForGroupControl()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_ecl_.injectionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
const auto& well = well_ecl_;
const auto pu = phaseUsage();
int phasePos = -1;
Well::GuideRateTarget wellTarget;
Phase injectionPhase;
switch (injectorType) {
case InjectorType::WATER:
{
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
wellTarget = Well::GuideRateTarget::WAT;
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
wellTarget = Well::GuideRateTarget::OIL;
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
wellTarget = Well::GuideRateTarget::GAS;
injectionPhase = Phase::GAS;
break;
}
default:
// Should not be here.
assert(false);
}
const Group::InjectionCMode& currentGroupControl = well_state.currentInjectionGroupControl(injectionPhase, group.name());
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
// Inject share of parents control
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupInjectionControl(parent, well_state, schedule, summaryState, injectorType, bhp, injection_rate, control_eq, efficiencyFactor);
return;
}
assert(group.hasInjectionControl(injectionPhase));
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
const std::vector<double>& groupInjectionReductions = well_state.currentInjectionGroupReductionRates(group.name());
double groupTargetReduction = groupInjectionReductions[phasePos];
double fraction = wellGroupHelpers::fractionFromInjectionPotentials(well.name(),
group.name(),
schedule,
well_state,
current_step_,
guide_rate_,
GuideRateModel::convert_target(wellTarget),
pu,
injectionPhase,
false);
switch (currentGroupControl) {
case Group::InjectionCMode::NONE:
{
// The NONE case is handled earlier
assert(false);
break;
}
case Group::InjectionCMode::RATE:
{
double target = std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
case Group::InjectionCMode::RESV:
{
std::vector<double> convert_coeff(number_of_phases_, 1.0);
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
double coeff = convert_coeff[phasePos];
double target = std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
case Group::InjectionCMode::REIN:
{
double productionRate = well_state.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
double target = std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
case Group::InjectionCMode::VREP:
{
std::vector<double> convert_coeff(number_of_phases_, 1.0);
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
double coeff = convert_coeff[phasePos];
double voidageRate = well_state.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
double injReduction = 0.0;
std::vector<double> groupInjectionReservoirRates = well_state.currentInjectionGroupReservoirRates(group.name());
if (groupcontrols.phase != Phase::WATER)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Aqua]];
if (groupcontrols.phase != Phase::OIL)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Liquid]];
if (groupcontrols.phase != Phase::GAS)
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Vapour]];
voidageRate -= injReduction;
double target = std::max(0.0, ( voidageRate/coeff - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
case Group::InjectionCMode::FLD:
{
// The FLD case is handled earlier
assert(false);
break;
}
case Group::InjectionCMode::SALE:
{
// only for gas injectors
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
double inj_rate = well_state.currentInjectionREINRates(group.name())[phasePos];
if (schedule.gConSump(current_step_).has(group.name())) {
const auto& gconsump = schedule.gConSump(current_step_).get(group.name(), summaryState);
if (pu.phase_used[BlackoilPhases::Vapour]) {
inj_rate += gconsump.import_rate;
inj_rate -= gconsump.consumption_rate;
}
}
const auto& gconsale = schedule.gConSale(current_step_).get(group.name(), summaryState);
inj_rate -= gconsale.sales_target;
double target = std::max(0.0, (inj_rate - groupTargetReduction)) / efficiencyFactor;
control_eq = injection_rate - fraction * target;
break;
}
// default:
// OPM_DEFLOG_THROW(std::runtime_error, "Unvalid group control specified for group " + well.groupName(), deferred_logger );
}
}
template <typename TypeTag>
template <class EvalWell>
void
WellInterface<TypeTag>::getGroupProductionControl(const Group& group,
const WellState& well_state,
const Opm::Schedule& schedule,
const SummaryState& summaryState,
const EvalWell& bhp,
const std::vector<EvalWell>& rates,
EvalWell& control_eq,
double efficiencyFactor)
{
const auto& well = well_ecl_;
const auto pu = phaseUsage();
const Group::ProductionCMode& currentGroupControl = well_state.currentProductionGroupControl(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.isAvailableForGroupControl()) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
const auto& controls = well_ecl_.productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
efficiencyFactor *= group.getGroupEfficiencyFactor();
getGroupProductionControl(parent, well_state, schedule, summaryState, bhp, rates, control_eq, efficiencyFactor);
return;
}
}
if (!group.isProductionGroup()) {
// use bhp as control eq and let the updateControl code find a vallied control
const auto& controls = well.productionControls(summaryState);
control_eq = bhp - controls.bhp_limit;
return;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
wellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, rateConverter_, pvtRegionIdx_);
wellGroupHelpers::FractionCalculator fcalc(schedule, well_state, current_step_, guide_rate_, tcalc.guideTargetMode(), pu);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, "");
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
const auto chain = wellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, current_step_);
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
target -= localReduction(chain[ii]);
target *= localFraction(chain[ii+1]);
}
const double target_rate = target / efficiencyFactor;
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
control_eq = current_rate - target_rate;
}
} // namespace Opm