addressing the second part of comments form PR#1680

This commit is contained in:
Kai Bao 2018-12-13 14:11:59 +01:00
parent c4254240e2
commit 76edcc0d91
4 changed files with 85 additions and 92 deletions

View File

@ -42,14 +42,6 @@ SET_BOOL_PROP(EclFlowOilWaterPolymerInjectivityProblem, EnablePolymerMW, true);
//! The indices required by the model
// For this case, there will be two primary variables introduced for the polymer
// polymer concentration and polymer molecular weight
// TODO: probaby it can be better to refer to the implementation of flow_ebos_oilwater, or other two phase
// simulators. Not sure why they make it more complicated.
/* SET_TYPE_PROP(EclFlowOilWaterPolymerProblem, Indices,
Ewoms::BlackOilTwoPhaseIndices< 0,
2,
0,
0,
2>); */
SET_PROP(EclFlowOilWaterPolymerInjectivityProblem, Indices)
{
private:
@ -71,7 +63,7 @@ public:
namespace Opm {
/* void flowEbosOilWaterPolymerInjectivitySetDeck(Deck& deck, EclipseState& eclState)
{
typedef TTAG(EclFlowOilWaterPolymerProblem) TypeTag;
typedef TTAG(EclFlowOilWaterPolymerInjectivityProblem) TypeTag;
typedef GET_PROP_TYPE(TypeTag, Vanguard) Vanguard;
Vanguard::setExternalDeck(&deck, &eclState);

View File

@ -19,12 +19,9 @@
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
namespace Opm {
// void flowEbosOilWaterPolymerInjectivitySetDeck(Deck& deck, EclipseState& eclState, Schedule& schedule, SummaryConfig& summary_config);
// void flowEbosOilWaterPolymerInjectivitySetDeck(Deck& deck, EclipseState& eclState);
int flowEbosOilWaterPolymerInjectivityMain(int argc, char** argv);
}

View File

@ -94,10 +94,6 @@ namespace Opm
// TODO: we should have indices for the well equations and well primary variables separately
static const int Bhp = numStaticWellEq - numWellControlEq;
// total number of the well equations and primary variables
// there might be extra equations be used, numWellEq will be updated during the initialization
int numWellEq = numStaticWellEq;
using typename Base::Scalar;
@ -226,6 +222,10 @@ namespace Opm
using Base::perf_length_;
using Base::bore_diameters_;
// total number of the well equations and primary variables
// there might be extra equations be used, numWellEq will be updated during the initialization
int numWellEq_ = numStaticWellEq;
// densities of the fluid in each perforation
std::vector<double> perf_densities_;
// pressure drop between different perforations
@ -421,17 +421,23 @@ namespace Opm
const double simulation_time, const int report_step, const bool terminal_output,
WellState& well_state, WellTestState& welltest_state, wellhelpers::WellSwitchingLogger& logger) override;
EvalWell pskin(const double througput,
// calculate the skin pressure based on water velocity, throughput and polymer concentration.
// throughput is used to describe the formation damage during water/polymer injection.
// calculated skin pressure will be applied to the drawdown during perforation rate calculation
// to handle the effect from formation damage.
EvalWell pskin(const double throuhgput,
const EvalWell& water_velocity,
const EvalWell& poly_inj_conc) const;
EvalWell pskinwater(const double througput,
// calculate the skin pressure based on water velocity, throughput during water injection.
EvalWell pskinwater(const double throughput,
const EvalWell& water_velocity) const;
// return the injecting polymer molecular weight
// calculate the injecting polymer molecular weight based on the througput and water velocity
EvalWell wpolymermw(const double throughput,
const EvalWell& water_velocity) const;
// handle the extra equations for polymer injectivity study
void handleInjectivityRateAndEquations(const IntensiveQuantities& int_quants,
const WellState& well_state,
const int perf,

View File

@ -67,14 +67,14 @@ namespace Opm
// counting/updating primary variable numbers
if (this->has_polymermw && well_type_ == INJECTOR) {
// adding a primary variable for water perforation rate per connection
numWellEq += number_of_perforations_;
numWellEq_ += number_of_perforations_;
// adding a primary variable for skin pressure per connection
numWellEq += number_of_perforations_;
numWellEq_ += number_of_perforations_;
}
// with the updated numWellEq, we can initialize the primary variables and matrices now
primary_variables_.resize(numWellEq, 0.0);
primary_variables_evaluation_.resize(numWellEq, {numWellEq + numEq, 0.0});
// with the updated numWellEq_, we can initialize the primary variables and matrices now
primary_variables_.resize(numWellEq_, 0.0);
primary_variables_evaluation_.resize(numWellEq_, EvalWell{numWellEq_ + numEq, 0.0});
// setup sparsity pattern for the matrices
//[A C^T [x = [ res
@ -89,7 +89,7 @@ namespace Opm
row.insert(row.index());
}
// the block size is run-time determined now
invDuneD_[0][0].resize(numWellEq, numWellEq);
invDuneD_[0][0].resize(numWellEq_, numWellEq_);
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
for (int perf = 0 ; perf < number_of_perforations_; ++perf) {
@ -101,7 +101,7 @@ namespace Opm
for (int perf = 0 ; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
// the block size is run-time determined now
duneB_[0][cell_idx].resize(numWellEq, numEq);
duneB_[0][cell_idx].resize(numWellEq_, numEq);
}
// make the C^T matrix
@ -114,22 +114,22 @@ namespace Opm
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
duneC_[0][cell_idx].resize(numWellEq, numEq);
duneC_[0][cell_idx].resize(numWellEq_, numEq);
}
resWell_.resize(1);
// the block size of resWell_ is also run-time determined now
resWell_[0].resize(numWellEq);
resWell_[0].resize(numWellEq_);
// resize temporary class variables
Bx_.resize( duneB_.N() );
for (unsigned i = 0; i < duneB_.N(); ++i) {
Bx_[i].resize(numWellEq);
Bx_[i].resize(numWellEq_);
}
invDrw_.resize( invDuneD_.N() );
for (unsigned i = 0; i < invDuneD_.N(); ++i) {
invDrw_[i].resize(numWellEq);
invDrw_[i].resize(numWellEq_);
}
}
@ -141,9 +141,9 @@ namespace Opm
void StandardWellV<TypeTag>::
initPrimaryVariablesEvaluation() const
{
for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) {
for (int eqIdx = 0; eqIdx < numWellEq_; ++eqIdx) {
primary_variables_evaluation_[eqIdx] =
EvalWell::createVariable(numWellEq + numEq, primary_variables_[eqIdx], numEq + eqIdx);
EvalWell::createVariable(numWellEq_ + numEq, primary_variables_[eqIdx], numEq + eqIdx);
}
}
@ -249,7 +249,7 @@ namespace Opm
}
// Oil fraction
EvalWell well_fraction(numWellEq + numEq, 1.0);
EvalWell well_fraction(numWellEq_ + numEq, 1.0);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
well_fraction -= primary_variables_evaluation_[WFrac];
}
@ -273,7 +273,7 @@ namespace Opm
wellSurfaceVolumeFraction(const int compIdx) const
{
EvalWell sum_volume_fraction_scaled(numWellEq + numEq, 0.);
EvalWell sum_volume_fraction_scaled(numWellEq_ + numEq, 0.);
for (int idx = 0; idx < num_components_; ++idx) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
}
@ -292,7 +292,7 @@ namespace Opm
StandardWellV<TypeTag>::
extendEval(const Eval& in) const
{
EvalWell out(numWellEq + numEq, in.value());
EvalWell out(numWellEq_ + numEq, in.value());
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(eqIdx));
}
@ -320,7 +320,7 @@ namespace Opm
const EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
const EvalWell rs = extendEval(fs.Rs());
const EvalWell rv = extendEval(fs.Rv());
std::vector<EvalWell> b_perfcells_dense(num_components_, {numWellEq + numEq, 0.0});
std::vector<EvalWell> b_perfcells_dense(num_components_, EvalWell{numWellEq_ + numEq, 0.0});
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
@ -392,13 +392,13 @@ namespace Opm
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// surface volume fraction of fluids within wellbore
std::vector<EvalWell> cmix_s(num_components_, EvalWell{numWellEq + numEq});
std::vector<EvalWell> cmix_s(num_components_, EvalWell{numWellEq_ + numEq});
for (int componentIdx = 0; componentIdx < num_components_; ++componentIdx) {
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
}
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio(numWellEq + numEq, 0.);
EvalWell volumeRatio(numWellEq_ + numEq, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
volumeRatio += cmix_s[waterCompIdx] / b_perfcells_dense[waterCompIdx];
@ -412,7 +412,7 @@ namespace Opm
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = EvalWell(numWellEq + numEq, 1.0) - rv * rs;
const EvalWell d = EvalWell(numWellEq_ + numEq, 1.0) - rv * rs;
if (d.value() == 0.0) {
OPM_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation"
@ -513,10 +513,10 @@ namespace Opm
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector<EvalWell> mob(num_components_, {numWellEq + numEq, 0.});
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.});
getMobility(ebosSimulator, perf, mob);
std::vector<EvalWell> cq_s(num_components_, {numWellEq + numEq, 0.});
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRate(intQuants, mob, bhp, perf, allow_cf,
@ -547,7 +547,7 @@ namespace Opm
resWell_[0][componentIdx] -= cq_s_effective.value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneC_[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
invDuneD_[0][0][componentIdx][pvIdx] -= cq_s_effective.derivative(pvIdx+numEq);
@ -576,7 +576,7 @@ namespace Opm
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
// convert to reservoar conditions
EvalWell cq_r_thermal(numWellEq + numEq, 0.);
EvalWell cq_r_thermal(numWellEq_ + numEq, 0.);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
if(FluidSystem::waterPhaseIdx == phaseIdx)
@ -678,7 +678,7 @@ namespace Opm
for (int componentIdx = 0; componentIdx < numWellConservationEq; ++componentIdx) {
EvalWell resWell_loc = (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt;
resWell_loc += getQs(componentIdx) * well_efficiency_factor_;
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
}
resWell_[0][componentIdx] += resWell_loc.value();
@ -708,11 +708,11 @@ namespace Opm
StandardWellV<TypeTag>::
assembleControlEq()
{
EvalWell control_eq(numWellEq + numEq, 0.);
EvalWell control_eq(numWellEq_ + numEq, 0.);
switch (well_controls_get_current_type(well_controls_)) {
case THP:
{
std::vector<EvalWell> rates(3, {numWellEq + numEq, 0.});
std::vector<EvalWell> rates(3, {numWellEq_ + numEq, 0.});
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[ Water ] = getQs(flowPhaseToEbosCompIdx(Water));
}
@ -741,7 +741,7 @@ namespace Opm
control_eq = getWQTotal() - target_rate;
} else if (well_type_ == PRODUCER) {
if (target_rate != 0.) {
EvalWell rate_for_control(numWellEq + numEq, 0.);
EvalWell rate_for_control(numWellEq_ + numEq, 0.);
const EvalWell& g_total = getWQTotal();
// a variable to check if we are producing any targeting fluids
double sum_fraction = 0.;
@ -792,7 +792,7 @@ namespace Opm
}
} else {
const EvalWell& g_total = getWQTotal();
EvalWell rate_for_control(numWellEq + numEq, 0.); // reservoir rate
EvalWell rate_for_control(numWellEq_ + numEq, 0.); // reservoir rate
for (int phase = 0; phase < number_of_phases_; ++phase) {
rate_for_control += g_total * wellVolumeFraction( flowPhaseToEbosCompIdx(phase) );
}
@ -807,7 +807,7 @@ namespace Opm
// using control_eq to update the matrix and residuals
// TODO: we should use a different index system for the well equations
resWell_[0][Bhp] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
for (int pv_idx = 0; pv_idx < numWellEq_; ++pv_idx) {
invDuneD_[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + numEq);
}
}
@ -960,12 +960,8 @@ namespace Opm
const double relaxation_factor = 0.9;
const double dx_wat_vel = dwells[0][wat_vel_index];
primary_variables_[wat_vel_index] -= relaxation_factor * dx_wat_vel;
const double dx_pskin = dwells[0][pskin_index];
primary_variables_[pskin_index] -= relaxation_factor * dx_pskin;
}
@ -1304,7 +1300,7 @@ namespace Opm
std::fill(ipr_b_.begin(), ipr_b_.end(), 0.);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
std::vector<EvalWell> mob(num_components_, {numWellEq + numEq, 0.0});
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.0});
// TODO: mabye we should store the mobility somewhere, so that we only need to calculate it one per iteration
getMobility(ebos_simulator, perf, mob);
@ -1464,7 +1460,7 @@ namespace Opm
// option 2: stick with the above IPR curve
// we use IPR here
std::vector<double> well_rates_bhp_limit;
computeWellRatesWithBhp(ebos_simulator, EvalWell(numWellEq + numEq, bhp_limit), well_rates_bhp_limit);
computeWellRatesWithBhp(ebos_simulator, EvalWell(numWellEq_ + numEq, bhp_limit), well_rates_bhp_limit);
const double thp = calculateThpFromBhp(well_rates_bhp_limit, bhp_limit);
const double thp_limit = this->getTHPConstraint();
@ -1649,7 +1645,7 @@ namespace Opm
initPrimaryVariablesEvaluation();
std::vector<double> rates;
computeWellRatesWithBhp(ebos_simulator, EvalWell(numWellEq + numEq, bhp), rates);
computeWellRatesWithBhp(ebos_simulator, EvalWell(numWellEq_ + numEq, bhp), rates);
// TODO: double checke the obtained rates
// this is another places we might obtain negative rates
@ -1973,8 +1969,8 @@ namespace Opm
const double tol_wells = param_.tolerance_wells_;
const double maxResidualAllowed = param_.max_residual_allowed_;
std::vector<double> res(numWellEq);
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
std::vector<double> res(numWellEq_);
for (int eq_idx = 0; eq_idx < numWellEq_; ++eq_idx) {
// magnitude of the residual matters
res[eq_idx] = std::abs(resWell_[0][eq_idx]);
}
@ -2010,7 +2006,7 @@ namespace Opm
}
// processing the residual of the well control equation
const double well_control_residual = res[numWellEq - 1];
const double well_control_residual = res[numWellEq_ - 1];
// TODO: we should have better way to specify the control equation tolerance
double control_tolerance = 0.;
switch(well_controls_get_current_type(well_controls_)) {
@ -2043,27 +2039,29 @@ namespace Opm
if (this->has_polymermw && well_type_ == INJECTOR) {
// checking the convergence of the perforation rates
const double wat_vel_tol = 1.e-8;
const auto wat_vel_failure_type = CR::WellFailure::Type::MassBalance;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const double wat_vel_residual = res[Bhp + 1 + perf];
if (std::isnan(wat_vel_residual)) {
report.setWellFailed({type, CR::Severity::NotANumber, dummy_component, name()});
report.setWellFailed({wat_vel_failure_type, CR::Severity::NotANumber, dummy_component, name()});
} else if (wat_vel_residual > maxResidualAllowed * 10.) {
report.setWellFailed({type, CR::Severity::TooLarge, dummy_component, name()});
report.setWellFailed({wat_vel_failure_type, CR::Severity::TooLarge, dummy_component, name()});
} else if (wat_vel_residual > wat_vel_tol) {
report.setWellFailed({type, CR::Severity::Normal, dummy_component, name()});
report.setWellFailed({wat_vel_failure_type, CR::Severity::Normal, dummy_component, name()});
}
}
// checking the convergence of the skin pressure
const double pskin_tol = 1000.; // 100 pascal
const double pskin_tol = 1000.; // 1000 pascal
const auto pskin_failure_type = CR::WellFailure::Type::Pressure;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const double pskin_residual = res[Bhp + 1 + perf + number_of_perforations_];
if (std::isnan(pskin_residual)) {
report.setWellFailed({type, CR::Severity::NotANumber, dummy_component, name()});
report.setWellFailed({pskin_failure_type, CR::Severity::NotANumber, dummy_component, name()});
} else if (pskin_residual > maxResidualAllowed * 10.) {
report.setWellFailed({type, CR::Severity::TooLarge, dummy_component, name()});
report.setWellFailed({pskin_failure_type, CR::Severity::TooLarge, dummy_component, name()});
} else if (pskin_residual > pskin_tol) {
report.setWellFailed({type, CR::Severity::Normal, dummy_component, name()});
report.setWellFailed({pskin_failure_type, CR::Severity::Normal, dummy_component, name()});
}
}
}
@ -2139,7 +2137,7 @@ namespace Opm
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
BVectorWell dx_well(1);
dx_well[0].resize(numWellEq);
dx_well[0].resize(numWellEq_);
invDuneD_.mv(resWell_, dx_well);
updateWellState(dx_well, well_state);
@ -2253,7 +2251,7 @@ namespace Opm
if (!this->isOperable()) return;
BVectorWell xw(1);
xw[0].resize(numWellEq);
xw[0].resize(numWellEq_);
recoverSolutionWell(x, xw);
updateWellState(xw, well_state);
@ -2279,10 +2277,10 @@ namespace Opm
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
// flux for each perforation
std::vector<EvalWell> mob(num_components_, {numWellEq + numEq, 0.});
std::vector<EvalWell> mob(num_components_, {numWellEq_ + numEq, 0.});
getMobility(ebosSimulator, perf, mob);
std::vector<EvalWell> cq_s(num_components_, {numWellEq + numEq, 0.});
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRate(intQuants, mob, bhp, perf, allow_cf,
@ -2367,7 +2365,7 @@ namespace Opm
converged = std::abs(old_bhp - bhp) < bhp_tolerance;
computeWellRatesWithBhp(ebosSimulator, EvalWell(numWellEq + numEq, bhp), potentials);
computeWellRatesWithBhp(ebosSimulator, EvalWell(numWellEq_ + numEq, bhp), potentials);
// checking whether the potentials have valid values
for (const double value : potentials) {
@ -2425,7 +2423,7 @@ namespace Opm
if ( !wellHasTHPConstraints() ) {
assert(std::abs(bhp) != std::numeric_limits<double>::max());
computeWellRatesWithBhp(ebosSimulator, EvalWell(numWellEq + numEq, bhp), well_potentials);
computeWellRatesWithBhp(ebosSimulator, EvalWell(numWellEq_ + numEq, bhp), well_potentials);
} else {
// the well has a THP related constraint
// checking whether a well is newly added, it only happens at the beginning of the report step
@ -2437,7 +2435,7 @@ namespace Opm
}
} else {
// We need to generate a reasonable rates to start the iteration process
computeWellRatesWithBhp(ebosSimulator, EvalWell(numWellEq + numEq, bhp), well_potentials);
computeWellRatesWithBhp(ebosSimulator, EvalWell(numWellEq_ + numEq, bhp), well_potentials);
for (double& value : well_potentials) {
// make the value a little safer in case the BHP limits are default ones
// TODO: a better way should be a better rescaling based on the investigation of the VFP table.
@ -2685,7 +2683,7 @@ namespace Opm
const bool allow_cf = getAllowCrossFlow() || openCrossFlowAvoidSingularity(ebos_simulator);
const EvalWell& bhp = getBhp();
std::vector<EvalWell> cq_s(num_components_, {numWellEq + numEq, 0.});
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.});
double perf_dis_gas_rate = 0.;
double perf_vap_oil_rate = 0.;
computePerfRate(int_quant, mob, bhp, perf, allow_cf,
@ -2927,16 +2925,16 @@ namespace Opm
{
if (!this->has_polymermw) {
OPM_THROW(std::runtime_error, "Polymermw is not activated, "
"while injecting skin pressure is requested" << name());
"while injecting skin pressure is requested for well " << name());
}
const int water_table_id = well_ecl_->getPolymerProperties(current_step_).m_skprwattable;
if (water_table_id <= 0) {
OPM_THROW(std::runtime_error, "Unused SKPRWAT table id used for well " << name());
}
const auto& water_table_func = PolymerModule::getSkprwatTable(water_table_id);
const EvalWell throughput_eval(numWellEq + numEq, throughput);
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
// the skin pressure when injecting water, which also means the polymer concentration is zero
EvalWell pskin_water(numWellEq + numEq, 0.0);
EvalWell pskin_water(numWellEq_ + numEq, 0.0);
water_table_func.eval(throughput_eval, water_velocity, pskin_water);
return pskin_water;
}
@ -2954,7 +2952,7 @@ namespace Opm
{
if (!this->has_polymermw) {
OPM_THROW(std::runtime_error, "Polymermw is not activated, "
"while injecting skin pressure is requested" << name());
"while injecting skin pressure is requested for well " << name());
}
const double sign = water_velocity >= 0. ? 1.0 : -1.0;
const EvalWell water_velocity_abs = Opm::abs(water_velocity);
@ -2967,9 +2965,9 @@ namespace Opm
}
const auto& skprpolytable = PolymerModule::getSkprpolyTable(polymer_table_id);
const double reference_concentration = skprpolytable.refConcentration;
const EvalWell throughput_eval(numWellEq + numEq, throughput);
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
// the skin pressure when injecting water, which also means the polymer concentration is zero
EvalWell pskin_poly(numWellEq + numEq, 0.0);
EvalWell pskin_poly(numWellEq_ + numEq, 0.0);
skprpolytable.table_func.eval(throughput_eval, water_velocity_abs, pskin_poly);
if (poly_inj_conc == reference_concentration) {
return sign * pskin_poly;
@ -2992,12 +2990,12 @@ namespace Opm
{
if (!this->has_polymermw) {
OPM_THROW(std::runtime_error, "Polymermw is not activated, "
"while injecting polymer molecular weight is requested" << name());
"while injecting polymer molecular weight is requested for well " << name());
}
const int table_id = well_ecl_->getPolymerProperties(current_step_).m_plymwinjtable;
const auto& table_func = PolymerModule::getPlymwinjTable(table_id);
const EvalWell throughput_eval(numWellEq + numEq, throughput);
EvalWell molecular_weight(numWellEq + numEq, 0.);
const EvalWell throughput_eval(numWellEq_ + numEq, throughput);
EvalWell molecular_weight(numWellEq_ + numEq, 0.);
if (wpolymer() == 0.) { // not injecting polymer
return molecular_weight;
}
@ -3053,7 +3051,7 @@ namespace Opm
const double throughput = well_state.perfThroughput()[first_perf_ + perf];
const int pskin_index = Bhp + 1 + number_of_perforations_ + perf;
EvalWell poly_conc(numWellEq + numEq, 0.0);
EvalWell poly_conc(numWellEq_ + numEq, 0.0);
poly_conc.setValue(wpolymer());
// equation for the skin pressure
@ -3061,7 +3059,7 @@ namespace Opm
- pskin(throughput, primary_variables_evaluation_[wat_vel_index], poly_conc);
resWell_[0][pskin_index] = eq_pskin.value();
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
for (int pvIdx = 0; pvIdx < numWellEq_; ++pvIdx) {
invDuneD_[0][0][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx+numEq);
invDuneD_[0][0][pskin_index][pvIdx] = eq_pskin.derivative(pvIdx+numEq);
}