mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-22 09:16:27 -06:00
adapted tutorial problems to changes in models
This commit is contained in:
parent
1974359bbe
commit
7b28dd8742
@ -49,7 +49,7 @@ class TutorialProblemCoupled;
|
||||
namespace Properties
|
||||
{
|
||||
// create a new type tag for the problem
|
||||
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/
|
||||
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP, TutorialSpatialParametersCoupled)); /*@\label{tutorial-coupled:create-type-tag}@*/
|
||||
|
||||
// Set the "Problem" property
|
||||
SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/
|
||||
@ -89,11 +89,6 @@ private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
||||
public: typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/
|
||||
}; /*@\label{tutorial-coupled:2p-system-end}@*/
|
||||
|
||||
|
||||
// Set the spatial parameters
|
||||
SET_PROP(TutorialProblemCoupled, SpatialParameters) /*@\label{tutorial-coupled:set-spatialparameters}@*/
|
||||
{ typedef Dumux::TutorialSpatialParametersCoupled<TypeTag> type; };
|
||||
|
||||
// Disable gravity
|
||||
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/
|
||||
}
|
||||
|
@ -55,7 +55,7 @@ class TutorialProblemDecoupled;
|
||||
namespace Properties
|
||||
{
|
||||
// create a new type tag for the problem
|
||||
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP)); /*@\label{tutorial-decoupled:create-type-tag}@*/
|
||||
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP, TutorialSpatialParametersDecoupled)); /*@\label{tutorial-decoupled:create-type-tag}@*/
|
||||
|
||||
// Set the problem property
|
||||
SET_PROP(TutorialProblemDecoupled, Problem) /*@\label{tutorial-decoupled:set-problem}@*/
|
||||
@ -101,12 +101,6 @@ public:
|
||||
typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type; /*@\label{tutorial-decoupled:nonwettingPhase}@*/
|
||||
}; /*@\label{tutorial-decoupled:2p-system-end}@*/
|
||||
|
||||
// Set the spatial parameters
|
||||
SET_PROP(TutorialProblemDecoupled, SpatialParameters) /*@\label{tutorial-decoupled:set-spatialparameters}@*/
|
||||
{
|
||||
typedef Dumux::TutorialSpatialParametersDecoupled<TypeTag> type;
|
||||
};
|
||||
|
||||
// Set the model properties
|
||||
SET_PROP(TutorialProblemDecoupled, TransportModel) /*@\label{tutorial-decoupled:TransportModel}@*/
|
||||
{
|
||||
@ -156,8 +150,12 @@ class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag> /*@\label{tutoria
|
||||
|
||||
enum
|
||||
{
|
||||
wPhaseIdx = Indices::wPhaseIdx, nPhaseIdx = Indices::nPhaseIdx,
|
||||
eqIdxPress = Indices::pressureEq, eqIdxSat = Indices::saturationEq
|
||||
wPhaseIdx = Indices::wPhaseIdx,
|
||||
nPhaseIdx = Indices::nPhaseIdx,
|
||||
pWIdx = Indices::pwIdx,
|
||||
SwIdx = Indices::SwIdx,
|
||||
pressEqIdx = Indices::pressEqIdx,
|
||||
satEqIdx = Indices::satEqIdx
|
||||
};
|
||||
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
||||
@ -200,8 +198,13 @@ public:
|
||||
|
||||
//! Returns the temperature within the domain at position globalPos.
|
||||
/*! This problem assumes a temperature of 10 degrees Celsius.
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function temperatureAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
Scalar temperatureAtPos(const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:temperature}@*/
|
||||
Scalar temperature(const Element& element) const /*@\label{tutorial-decoupled:temperature}@*/
|
||||
{
|
||||
return 273.15 + 10; // -> 10°C
|
||||
}
|
||||
@ -210,18 +213,31 @@ public:
|
||||
/* For incrompressible simulations, a constant pressure is necessary
|
||||
* to enter the material laws to gain a constant density etc. In the compressible
|
||||
* case, the pressure is used for the initialization of material laws.
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function referencePressureAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
Scalar referencePressureAtPos(const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:refPressure}@*/
|
||||
Scalar referencePressure(const Element& element) const /*@\label{tutorial-decoupled:refPressure}@*/
|
||||
{
|
||||
return 2e5;
|
||||
}
|
||||
|
||||
//! Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$ at position globalPos.
|
||||
//! Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$ of a finite volume.
|
||||
/*! Evaluate the source term for all phases within a given
|
||||
* volume. The method returns the mass generated (positive) or
|
||||
* volume.
|
||||
*
|
||||
* \param values Includes sources for the two phases
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* The method returns the mass generated (positive) or
|
||||
* annihilated (negative) per volume unit.
|
||||
*
|
||||
* Alternatively, the function sourceAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
void sourceAtPos(PrimaryVariables &values,const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:source}@*/
|
||||
void source(PrimaryVariables &values, const Element& element) const /*@\label{tutorial-decoupled:source}@*/
|
||||
{
|
||||
values = 0;
|
||||
}
|
||||
@ -231,35 +247,53 @@ public:
|
||||
* either pressure (dirichlet) or flux (neumann),
|
||||
* and for the transport equation,
|
||||
* either saturation (dirichlet) or flux (neumann).
|
||||
*
|
||||
* \param bcTypes Includes the types of boundary conditions
|
||||
* \param globalPos The position of the center of the finite volume
|
||||
*
|
||||
* Alternatively, the function boundaryTypes(PrimaryVariables &values, const Intersection& intersection) could be defined,
|
||||
* where intersection is the boundary intersection.
|
||||
*/
|
||||
void boundaryTypesAtPos(BoundaryTypes &bcTypes, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:bctype}@*/
|
||||
{
|
||||
if (globalPos[0] < this->bboxMin()[0] + eps_)
|
||||
{
|
||||
bcTypes.setDirichlet(eqIdxPress);
|
||||
bcTypes.setDirichlet(eqIdxSat);
|
||||
bcTypes.setDirichlet(pressEqIdx);
|
||||
bcTypes.setDirichlet(satEqIdx);
|
||||
// bcTypes.setAllDirichlet(); // alternative if the same BC is used for both types of equations
|
||||
}
|
||||
// all other boundaries
|
||||
else
|
||||
{
|
||||
bcTypes.setNeumann(eqIdxPress);
|
||||
bcTypes.setNeumann(eqIdxSat);
|
||||
bcTypes.setNeumann(pressEqIdx);
|
||||
bcTypes.setNeumann(satEqIdx);
|
||||
// bcTypes.setAllNeumann(); // alternative if the same BC is used for both types of equations
|
||||
}
|
||||
}
|
||||
//! Value for dirichlet boundary condition at position globalPos.
|
||||
/*! In case of a dirichlet BC for the pressure equation the pressure \f$ [Pa] \f$, and for the transport equation the saturation [-]
|
||||
* have to be defined on boundaries.
|
||||
*
|
||||
* \param values Values of primary variables at the boundary
|
||||
* \param intersection The boundary intersection
|
||||
*
|
||||
* Alternatively, the function dirichletAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
void dirichletAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:dirichlet}@*/
|
||||
void dirichlet(PrimaryVariables &values, const Intersection& intersection) const /*@\label{tutorial-decoupled:dirichlet}@*/
|
||||
{
|
||||
values[eqIdxPress] = 2e5;
|
||||
values[eqIdxSat] = 1.0;
|
||||
values[pWIdx] = 2e5;
|
||||
values[SwIdx] = 1.0;
|
||||
}
|
||||
//! Value for neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$ at position globalPos.
|
||||
/*! In case of a neumann boundary condition, the flux of matter
|
||||
* is returned as a vector.
|
||||
*
|
||||
* \param values Boundary flux values for the different phases
|
||||
* \param globalPos The position of the center of the finite volume
|
||||
*
|
||||
* Alternatively, the function neumann(PrimaryVariables &values, const Intersection& intersection) could be defined,
|
||||
* where intersection is the boundary intersection.
|
||||
*/
|
||||
void neumannAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:neumann}@*/
|
||||
{
|
||||
@ -271,9 +305,15 @@ public:
|
||||
}
|
||||
//! Initial condition at position globalPos.
|
||||
/*! Only initial values for saturation have to be given!
|
||||
*
|
||||
* \param values Values of primary variables
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function initialAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
void initialAtPos(PrimaryVariables &values,
|
||||
const GlobalPosition &globalPos) const /*@\label{tutorial-decoupled:initial}@*/
|
||||
void initial(PrimaryVariables &values,
|
||||
const Element &element) const /*@\label{tutorial-decoupled:initial}@*/
|
||||
{
|
||||
values = 0;
|
||||
}
|
||||
|
@ -35,6 +35,33 @@
|
||||
|
||||
namespace Dumux
|
||||
{
|
||||
|
||||
//forward declaration
|
||||
template<class TypeTag>
|
||||
class TutorialSpatialParametersCoupled;
|
||||
|
||||
namespace Properties
|
||||
{
|
||||
// The spatial parameters TypeTag
|
||||
NEW_TYPE_TAG(TutorialSpatialParametersCoupled);/*@\label{tutorial-coupled:define-spatialparameters-typetag}@*/
|
||||
|
||||
// Set the spatial parameters
|
||||
SET_TYPE_PROP(TutorialSpatialParametersCoupled, SpatialParameters, Dumux::TutorialSpatialParametersCoupled<TypeTag>); /*@\label{tutorial-coupled:set-spatialparameters}@*/
|
||||
|
||||
// Set the material law
|
||||
SET_PROP(TutorialSpatialParametersCoupled, MaterialLaw)
|
||||
{
|
||||
private:
|
||||
// material law typedefs
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
||||
// select material law to be used
|
||||
typedef RegularizedBrooksCorey<Scalar> RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/
|
||||
public:
|
||||
// adapter for absolute law
|
||||
typedef EffToAbsLaw<RawMaterialLaw> type; /*@\label{tutorial-coupled:eff2abs}@*/
|
||||
};
|
||||
}
|
||||
|
||||
/*!
|
||||
* \ingroup TwoPBoxModel
|
||||
*
|
||||
@ -59,18 +86,23 @@ class TutorialSpatialParametersCoupled: public BoxSpatialParameters<TypeTag> /*@
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry;
|
||||
typedef typename Grid::Traits::template Codim<0>::Entity Element;
|
||||
|
||||
// select material law to be used
|
||||
typedef RegularizedBrooksCorey<Scalar> EffectiveMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/
|
||||
|
||||
public:
|
||||
// adapter for absolute law
|
||||
typedef EffToAbsLaw<EffectiveMaterialLaw> MaterialLaw; /*@\label{tutorial-coupled:eff2abs}@*/
|
||||
// get material law from property system
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(MaterialLaw)) MaterialLaw;
|
||||
// determine appropriate parameters depening on selected materialLaw
|
||||
typedef typename MaterialLaw::Params MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/
|
||||
|
||||
|
||||
// method returning the intrinsic permeability tensor K depending
|
||||
// on the position within the domain
|
||||
//! Intrinsic permeability tensor K \f$[m^2]\f$ depending
|
||||
/*! on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
* \param fvElemGeom The finite-volume geometry in the box scheme
|
||||
* \param scvIdx The local vertex index
|
||||
*
|
||||
* Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
const Dune::FieldMatrix<Scalar, dim, dim> &intrinsicPermeability(const Element &element, /*@\label{tutorial-coupled:permeability}@*/
|
||||
const FVElementGeometry &fvElemGeom,
|
||||
int scvIdx) const
|
||||
@ -78,8 +110,16 @@ public:
|
||||
return K_;
|
||||
}
|
||||
|
||||
// method returning the porosity of the porous matrix depending on
|
||||
// the position within the domain
|
||||
//! Define the porosity \f$[-]\f$ of the porous medium depending
|
||||
/*! on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
* \param fvElemGeom The finite-volume geometry in the box scheme
|
||||
* \param scvIdx The local vertex index
|
||||
*
|
||||
* Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
double porosity(const Element &element, /*@\label{tutorial-coupled:porosity}@*/
|
||||
const FVElementGeometry &fvElemGeom,
|
||||
int scvIdx) const
|
||||
@ -87,8 +127,16 @@ public:
|
||||
return 0.2;
|
||||
}
|
||||
|
||||
// return the parameter object for the material law (i.e. Brooks-Corey)
|
||||
// which may vary with the spatial position
|
||||
/*! Return the parameter object for the material law (i.e. Brooks-Corey)
|
||||
* depending on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
* \param fvElemGeom The finite-volume geometry in the box scheme
|
||||
* \param scvIdx The local vertex index
|
||||
*
|
||||
* Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
const MaterialLawParams& materialLawParams(const Element &element, /*@\label{tutorial-coupled:matLawParams}@*/
|
||||
const FVElementGeometry &fvElemGeom,
|
||||
int scvIdx) const
|
||||
|
@ -26,17 +26,44 @@
|
||||
#define TUTORIALSPATIALPARAMETERS_DECOUPLED_HH
|
||||
|
||||
|
||||
//#include <dumux/material/fluidmatrixinteractions/2p/linearmaterial.hh>
|
||||
#include <dumux/material/spatialparameters/fvspatialparameters.hh>
|
||||
#include <dumux/material/fluidmatrixinteractions/2p/linearmaterial.hh>
|
||||
#include <dumux/material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh>
|
||||
#include <dumux/material/fluidmatrixinteractions/2p/efftoabslaw.hh>
|
||||
|
||||
namespace Dumux
|
||||
{
|
||||
|
||||
//forward declaration
|
||||
template<class TypeTag>
|
||||
class TutorialSpatialParametersDecoupled;
|
||||
|
||||
namespace Properties
|
||||
{
|
||||
// The spatial parameters TypeTag
|
||||
NEW_TYPE_TAG(TutorialSpatialParametersDecoupled);
|
||||
|
||||
// Set the spatial parameters
|
||||
SET_TYPE_PROP(TutorialSpatialParametersDecoupled, SpatialParameters, Dumux::TutorialSpatialParametersDecoupled<TypeTag>); /*@\label{tutorial-decoupled:set-spatialparameters}@*/
|
||||
|
||||
// Set the material law
|
||||
SET_PROP(TutorialSpatialParametersDecoupled, MaterialLaw)
|
||||
{
|
||||
private:
|
||||
// material law typedefs
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
||||
typedef RegularizedBrooksCorey<Scalar> RawMaterialLaw;
|
||||
public:
|
||||
typedef EffToAbsLaw<RawMaterialLaw> type;
|
||||
};
|
||||
}
|
||||
|
||||
//! Definition of the spatial parameters for the decoupled tutorial
|
||||
|
||||
template<class TypeTag>
|
||||
class TutorialSpatialParametersDecoupled
|
||||
class TutorialSpatialParametersDecoupled: public FVSpatialParameters<TypeTag>
|
||||
{
|
||||
typedef FVSpatialParameters<TypeTag> ParentType;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
|
||||
@ -50,45 +77,52 @@ class TutorialSpatialParametersDecoupled
|
||||
typedef Dune::FieldVector<CoordScalar, dim> LocalPosition;
|
||||
typedef Dune::FieldMatrix<Scalar,dim,dim> FieldMatrix;
|
||||
|
||||
// material law typedefs
|
||||
typedef RegularizedBrooksCorey<Scalar> EffectiveMaterialLaw;
|
||||
// typedef LinearMaterial<Scalar> EffectiveMaterialLaw;
|
||||
public:
|
||||
typedef EffToAbsLaw<EffectiveMaterialLaw> MaterialLaw;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, PTAG(MaterialLaw)) MaterialLaw;
|
||||
typedef typename MaterialLaw::Params MaterialLawParams;
|
||||
|
||||
//! Update the spatial parameters with the flow solution after a timestep.
|
||||
/*! Function left blank as there is nothing to do for the tutorial.
|
||||
//! Intrinsic permeability tensor K \f$[m^2]\f$ depending
|
||||
/*! on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
void update (Scalar saturationW, const Element& element)
|
||||
{ }
|
||||
//! Intrinsic permeability tensor
|
||||
/*! Apply the intrinsic permeability tensor \f$[m^2]\f$ to a
|
||||
* pressure potential gradient.
|
||||
*/
|
||||
const FieldMatrix& intrinsicPermeability (const GlobalPosition& globalPos,
|
||||
const Element& element) const
|
||||
const FieldMatrix& intrinsicPermeability (const Element& element) const
|
||||
{
|
||||
return K_;
|
||||
}
|
||||
|
||||
//! Define the porosity \f$[-]\f$ of the spatial parameters
|
||||
double porosity(const GlobalPosition& globalPos, const Element& element) const
|
||||
//! Define the porosity \f$[-]\f$ of the porous medium depending
|
||||
/*! on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
double porosity(const Element& element) const
|
||||
{
|
||||
return 0.2;
|
||||
}
|
||||
|
||||
//! return the parameter object for the material law (i.e. Brooks-Corey)
|
||||
//! which may vary with the spatial position
|
||||
const MaterialLawParams& materialLawParams(const GlobalPosition& globalPos,
|
||||
const Element &element) const
|
||||
/*! Return the parameter object for the material law (i.e. Brooks-Corey)
|
||||
* depending on the position in the domain
|
||||
*
|
||||
* \param element The finite volume element
|
||||
*
|
||||
* Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
|
||||
* is the vector including the global coordinates of the finite volume.
|
||||
*/
|
||||
const MaterialLawParams& materialLawParams(const Element &element) const
|
||||
{
|
||||
return materialLawParams_;
|
||||
}
|
||||
|
||||
//! Constructor
|
||||
TutorialSpatialParametersDecoupled(const GridView& gridView)
|
||||
: K_(0)
|
||||
: ParentType(gridView), K_(0)
|
||||
{
|
||||
for (int i = 0; i < dim; i++)
|
||||
K_[i][i] = 1e-7;
|
||||
|
Loading…
Reference in New Issue
Block a user