adapted tutorial problems to changes in models

This commit is contained in:
Markus Wolff 2011-08-08 08:06:00 +00:00 committed by Andreas Lauser
parent 1974359bbe
commit 7b28dd8742
4 changed files with 180 additions and 63 deletions

View File

@ -49,7 +49,7 @@ class TutorialProblemCoupled;
namespace Properties
{
// create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP, TutorialSpatialParametersCoupled)); /*@\label{tutorial-coupled:create-type-tag}@*/
// Set the "Problem" property
SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/
@ -89,11 +89,6 @@ private: typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public: typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type; /*@\label{tutorial-coupled:nonwettingPhase}@*/
}; /*@\label{tutorial-coupled:2p-system-end}@*/
// Set the spatial parameters
SET_PROP(TutorialProblemCoupled, SpatialParameters) /*@\label{tutorial-coupled:set-spatialparameters}@*/
{ typedef Dumux::TutorialSpatialParametersCoupled<TypeTag> type; };
// Disable gravity
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/
}

View File

@ -55,7 +55,7 @@ class TutorialProblemDecoupled;
namespace Properties
{
// create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP)); /*@\label{tutorial-decoupled:create-type-tag}@*/
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP, TutorialSpatialParametersDecoupled)); /*@\label{tutorial-decoupled:create-type-tag}@*/
// Set the problem property
SET_PROP(TutorialProblemDecoupled, Problem) /*@\label{tutorial-decoupled:set-problem}@*/
@ -101,12 +101,6 @@ public:
typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type; /*@\label{tutorial-decoupled:nonwettingPhase}@*/
}; /*@\label{tutorial-decoupled:2p-system-end}@*/
// Set the spatial parameters
SET_PROP(TutorialProblemDecoupled, SpatialParameters) /*@\label{tutorial-decoupled:set-spatialparameters}@*/
{
typedef Dumux::TutorialSpatialParametersDecoupled<TypeTag> type;
};
// Set the model properties
SET_PROP(TutorialProblemDecoupled, TransportModel) /*@\label{tutorial-decoupled:TransportModel}@*/
{
@ -156,8 +150,12 @@ class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag> /*@\label{tutoria
enum
{
wPhaseIdx = Indices::wPhaseIdx, nPhaseIdx = Indices::nPhaseIdx,
eqIdxPress = Indices::pressureEq, eqIdxSat = Indices::saturationEq
wPhaseIdx = Indices::wPhaseIdx,
nPhaseIdx = Indices::nPhaseIdx,
pWIdx = Indices::pwIdx,
SwIdx = Indices::SwIdx,
pressEqIdx = Indices::pressEqIdx,
satEqIdx = Indices::satEqIdx
};
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
@ -200,8 +198,13 @@ public:
//! Returns the temperature within the domain at position globalPos.
/*! This problem assumes a temperature of 10 degrees Celsius.
*
* \param element The finite volume element
*
* Alternatively, the function temperatureAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
Scalar temperatureAtPos(const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:temperature}@*/
Scalar temperature(const Element& element) const /*@\label{tutorial-decoupled:temperature}@*/
{
return 273.15 + 10; // -> 10°C
}
@ -210,18 +213,31 @@ public:
/* For incrompressible simulations, a constant pressure is necessary
* to enter the material laws to gain a constant density etc. In the compressible
* case, the pressure is used for the initialization of material laws.
*
* \param element The finite volume element
*
* Alternatively, the function referencePressureAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
Scalar referencePressureAtPos(const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:refPressure}@*/
Scalar referencePressure(const Element& element) const /*@\label{tutorial-decoupled:refPressure}@*/
{
return 2e5;
}
//! Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$ at position globalPos.
//! Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$ of a finite volume.
/*! Evaluate the source term for all phases within a given
* volume. The method returns the mass generated (positive) or
* volume.
*
* \param values Includes sources for the two phases
* \param element The finite volume element
*
* The method returns the mass generated (positive) or
* annihilated (negative) per volume unit.
*
* Alternatively, the function sourceAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
void sourceAtPos(PrimaryVariables &values,const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:source}@*/
void source(PrimaryVariables &values, const Element& element) const /*@\label{tutorial-decoupled:source}@*/
{
values = 0;
}
@ -231,35 +247,53 @@ public:
* either pressure (dirichlet) or flux (neumann),
* and for the transport equation,
* either saturation (dirichlet) or flux (neumann).
*
* \param bcTypes Includes the types of boundary conditions
* \param globalPos The position of the center of the finite volume
*
* Alternatively, the function boundaryTypes(PrimaryVariables &values, const Intersection& intersection) could be defined,
* where intersection is the boundary intersection.
*/
void boundaryTypesAtPos(BoundaryTypes &bcTypes, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:bctype}@*/
{
if (globalPos[0] < this->bboxMin()[0] + eps_)
{
bcTypes.setDirichlet(eqIdxPress);
bcTypes.setDirichlet(eqIdxSat);
bcTypes.setDirichlet(pressEqIdx);
bcTypes.setDirichlet(satEqIdx);
// bcTypes.setAllDirichlet(); // alternative if the same BC is used for both types of equations
}
// all other boundaries
else
{
bcTypes.setNeumann(eqIdxPress);
bcTypes.setNeumann(eqIdxSat);
bcTypes.setNeumann(pressEqIdx);
bcTypes.setNeumann(satEqIdx);
// bcTypes.setAllNeumann(); // alternative if the same BC is used for both types of equations
}
}
//! Value for dirichlet boundary condition at position globalPos.
/*! In case of a dirichlet BC for the pressure equation the pressure \f$ [Pa] \f$, and for the transport equation the saturation [-]
* have to be defined on boundaries.
*
* \param values Values of primary variables at the boundary
* \param intersection The boundary intersection
*
* Alternatively, the function dirichletAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
void dirichletAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:dirichlet}@*/
void dirichlet(PrimaryVariables &values, const Intersection& intersection) const /*@\label{tutorial-decoupled:dirichlet}@*/
{
values[eqIdxPress] = 2e5;
values[eqIdxSat] = 1.0;
values[pWIdx] = 2e5;
values[SwIdx] = 1.0;
}
//! Value for neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$ at position globalPos.
/*! In case of a neumann boundary condition, the flux of matter
* is returned as a vector.
*
* \param values Boundary flux values for the different phases
* \param globalPos The position of the center of the finite volume
*
* Alternatively, the function neumann(PrimaryVariables &values, const Intersection& intersection) could be defined,
* where intersection is the boundary intersection.
*/
void neumannAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) const /*@\label{tutorial-decoupled:neumann}@*/
{
@ -271,9 +305,15 @@ public:
}
//! Initial condition at position globalPos.
/*! Only initial values for saturation have to be given!
*
* \param values Values of primary variables
* \param element The finite volume element
*
* Alternatively, the function initialAtPos(PrimaryVariables &values, const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
void initialAtPos(PrimaryVariables &values,
const GlobalPosition &globalPos) const /*@\label{tutorial-decoupled:initial}@*/
void initial(PrimaryVariables &values,
const Element &element) const /*@\label{tutorial-decoupled:initial}@*/
{
values = 0;
}

View File

@ -35,6 +35,33 @@
namespace Dumux
{
//forward declaration
template<class TypeTag>
class TutorialSpatialParametersCoupled;
namespace Properties
{
// The spatial parameters TypeTag
NEW_TYPE_TAG(TutorialSpatialParametersCoupled);/*@\label{tutorial-coupled:define-spatialparameters-typetag}@*/
// Set the spatial parameters
SET_TYPE_PROP(TutorialSpatialParametersCoupled, SpatialParameters, Dumux::TutorialSpatialParametersCoupled<TypeTag>); /*@\label{tutorial-coupled:set-spatialparameters}@*/
// Set the material law
SET_PROP(TutorialSpatialParametersCoupled, MaterialLaw)
{
private:
// material law typedefs
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
// select material law to be used
typedef RegularizedBrooksCorey<Scalar> RawMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/
public:
// adapter for absolute law
typedef EffToAbsLaw<RawMaterialLaw> type; /*@\label{tutorial-coupled:eff2abs}@*/
};
}
/*!
* \ingroup TwoPBoxModel
*
@ -59,18 +86,23 @@ class TutorialSpatialParametersCoupled: public BoxSpatialParameters<TypeTag> /*@
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry;
typedef typename Grid::Traits::template Codim<0>::Entity Element;
// select material law to be used
typedef RegularizedBrooksCorey<Scalar> EffectiveMaterialLaw; /*@\label{tutorial-coupled:rawlaw}@*/
public:
// adapter for absolute law
typedef EffToAbsLaw<EffectiveMaterialLaw> MaterialLaw; /*@\label{tutorial-coupled:eff2abs}@*/
// get material law from property system
typedef typename GET_PROP_TYPE(TypeTag, PTAG(MaterialLaw)) MaterialLaw;
// determine appropriate parameters depening on selected materialLaw
typedef typename MaterialLaw::Params MaterialLawParams; /*@\label{tutorial-coupled:matLawObjectType}@*/
// method returning the intrinsic permeability tensor K depending
// on the position within the domain
//! Intrinsic permeability tensor K \f$[m^2]\f$ depending
/*! on the position in the domain
*
* \param element The finite volume element
* \param fvElemGeom The finite-volume geometry in the box scheme
* \param scvIdx The local vertex index
*
* Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
const Dune::FieldMatrix<Scalar, dim, dim> &intrinsicPermeability(const Element &element, /*@\label{tutorial-coupled:permeability}@*/
const FVElementGeometry &fvElemGeom,
int scvIdx) const
@ -78,8 +110,16 @@ public:
return K_;
}
// method returning the porosity of the porous matrix depending on
// the position within the domain
//! Define the porosity \f$[-]\f$ of the porous medium depending
/*! on the position in the domain
*
* \param element The finite volume element
* \param fvElemGeom The finite-volume geometry in the box scheme
* \param scvIdx The local vertex index
*
* Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
double porosity(const Element &element, /*@\label{tutorial-coupled:porosity}@*/
const FVElementGeometry &fvElemGeom,
int scvIdx) const
@ -87,8 +127,16 @@ public:
return 0.2;
}
// return the parameter object for the material law (i.e. Brooks-Corey)
// which may vary with the spatial position
/*! Return the parameter object for the material law (i.e. Brooks-Corey)
* depending on the position in the domain
*
* \param element The finite volume element
* \param fvElemGeom The finite-volume geometry in the box scheme
* \param scvIdx The local vertex index
*
* Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
const MaterialLawParams& materialLawParams(const Element &element, /*@\label{tutorial-coupled:matLawParams}@*/
const FVElementGeometry &fvElemGeom,
int scvIdx) const

View File

@ -26,17 +26,44 @@
#define TUTORIALSPATIALPARAMETERS_DECOUPLED_HH
//#include <dumux/material/fluidmatrixinteractions/2p/linearmaterial.hh>
#include <dumux/material/spatialparameters/fvspatialparameters.hh>
#include <dumux/material/fluidmatrixinteractions/2p/linearmaterial.hh>
#include <dumux/material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh>
#include <dumux/material/fluidmatrixinteractions/2p/efftoabslaw.hh>
namespace Dumux
{
//forward declaration
template<class TypeTag>
class TutorialSpatialParametersDecoupled;
namespace Properties
{
// The spatial parameters TypeTag
NEW_TYPE_TAG(TutorialSpatialParametersDecoupled);
// Set the spatial parameters
SET_TYPE_PROP(TutorialSpatialParametersDecoupled, SpatialParameters, Dumux::TutorialSpatialParametersDecoupled<TypeTag>); /*@\label{tutorial-decoupled:set-spatialparameters}@*/
// Set the material law
SET_PROP(TutorialSpatialParametersDecoupled, MaterialLaw)
{
private:
// material law typedefs
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef RegularizedBrooksCorey<Scalar> RawMaterialLaw;
public:
typedef EffToAbsLaw<RawMaterialLaw> type;
};
}
//! Definition of the spatial parameters for the decoupled tutorial
template<class TypeTag>
class TutorialSpatialParametersDecoupled
class TutorialSpatialParametersDecoupled: public FVSpatialParameters<TypeTag>
{
typedef FVSpatialParameters<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
@ -50,45 +77,52 @@ class TutorialSpatialParametersDecoupled
typedef Dune::FieldVector<CoordScalar, dim> LocalPosition;
typedef Dune::FieldMatrix<Scalar,dim,dim> FieldMatrix;
// material law typedefs
typedef RegularizedBrooksCorey<Scalar> EffectiveMaterialLaw;
// typedef LinearMaterial<Scalar> EffectiveMaterialLaw;
public:
typedef EffToAbsLaw<EffectiveMaterialLaw> MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(MaterialLaw)) MaterialLaw;
typedef typename MaterialLaw::Params MaterialLawParams;
//! Update the spatial parameters with the flow solution after a timestep.
/*! Function left blank as there is nothing to do for the tutorial.
//! Intrinsic permeability tensor K \f$[m^2]\f$ depending
/*! on the position in the domain
*
* \param element The finite volume element
*
* Alternatively, the function intrinsicPermeabilityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
void update (Scalar saturationW, const Element& element)
{ }
//! Intrinsic permeability tensor
/*! Apply the intrinsic permeability tensor \f$[m^2]\f$ to a
* pressure potential gradient.
*/
const FieldMatrix& intrinsicPermeability (const GlobalPosition& globalPos,
const Element& element) const
const FieldMatrix& intrinsicPermeability (const Element& element) const
{
return K_;
}
//! Define the porosity \f$[-]\f$ of the spatial parameters
double porosity(const GlobalPosition& globalPos, const Element& element) const
//! Define the porosity \f$[-]\f$ of the porous medium depending
/*! on the position in the domain
*
* \param element The finite volume element
*
* Alternatively, the function porosityAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
double porosity(const Element& element) const
{
return 0.2;
}
//! return the parameter object for the material law (i.e. Brooks-Corey)
//! which may vary with the spatial position
const MaterialLawParams& materialLawParams(const GlobalPosition& globalPos,
const Element &element) const
/*! Return the parameter object for the material law (i.e. Brooks-Corey)
* depending on the position in the domain
*
* \param element The finite volume element
*
* Alternatively, the function materialLawParamsAtPos(const GlobalPosition& globalPos) could be defined, where globalPos
* is the vector including the global coordinates of the finite volume.
*/
const MaterialLawParams& materialLawParams(const Element &element) const
{
return materialLawParams_;
}
//! Constructor
TutorialSpatialParametersDecoupled(const GridView& gridView)
: K_(0)
: ParentType(gridView), K_(0)
{
for (int i = 0; i < dim; i++)
K_[i][i] = 1e-7;